summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDaniel Borca <dborca@users.sourceforge.net>2004-05-31 06:24:36 +0000
committerDaniel Borca <dborca@users.sourceforge.net>2004-05-31 06:24:36 +0000
commite35282cc13acc61d1a789ab729ae6a0ea72aa17b (patch)
tree3fce8778d1dd895d5b2e3c22a09a0b0d3fec8472
parent54f4f44843a2ea422cf78a04720562ecc1a5abfd (diff)
reworked FXT1
minor fixes to fxMesa
-rw-r--r--src/mesa/drivers/glide/fxdd.c2
-rw-r--r--src/mesa/drivers/glide/fxddtex.c16
-rw-r--r--src/mesa/drivers/glide/fxtris.c3
-rw-r--r--src/mesa/main/texcompress_fxt1.c998
4 files changed, 934 insertions, 85 deletions
diff --git a/src/mesa/drivers/glide/fxdd.c b/src/mesa/drivers/glide/fxdd.c
index 77b98793ec..7d4c168194 100644
--- a/src/mesa/drivers/glide/fxdd.c
+++ b/src/mesa/drivers/glide/fxdd.c
@@ -628,7 +628,7 @@ fxDDDrawBitmap4 (GLcontext *ctx, GLint px, GLint py,
struct gl_pixelstore_attrib scissoredUnpack;
/* check if there's any raster operations enabled which we can't handle */
- if ((swrast->_RasterMask & (ALPHATEST_BIT |
+ if ((swrast->_RasterMask & (/*ALPHATEST_BIT |*/
/*BLEND_BIT |*/ /* blending ok, through pixpipe */
DEPTH_BIT | /* could be done with RGB:DEPTH */
FOG_BIT | /* could be done with RGB:DEPTH */
diff --git a/src/mesa/drivers/glide/fxddtex.c b/src/mesa/drivers/glide/fxddtex.c
index 1fbeb8d252..2a263798c5 100644
--- a/src/mesa/drivers/glide/fxddtex.c
+++ b/src/mesa/drivers/glide/fxddtex.c
@@ -660,6 +660,9 @@ fxIsTexSupported(GLenum target, GLint internalFormat,
/**********************************************************************/
/**** NEW TEXTURE IMAGE FUNCTIONS ****/
/**********************************************************************/
+extern void
+fxt1_decode_1 (const void *texture, int width,
+ int i, int j, unsigned char *rgba);
/* Texel-fetch functions for software texturing and glGetTexImage().
* We should have been able to use some "standard" fetch functions (which
@@ -836,7 +839,8 @@ fetch_rgb_fxt1(const struct gl_texture_image *texImage,
i = i * mml->wScale;
j = j * mml->hScale;
- _mesa_texformat_rgb_fxt1.FetchTexel2D(texImage, i, j, k, rgba);
+ fxt1_decode_1(texImage->Data, mml->width, i, j, rgba);
+ rgba[ACOMP] = 255;
}
@@ -849,7 +853,7 @@ fetch_rgba_fxt1(const struct gl_texture_image *texImage,
i = i * mml->wScale;
j = j * mml->hScale;
- _mesa_texformat_rgba_fxt1.FetchTexel2D(texImage, i, j, k, rgba);
+ fxt1_decode_1(texImage->Data, mml->width, i, j, rgba);
}
@@ -1303,15 +1307,19 @@ fxDDTexImage2D(GLcontext * ctx, GLenum target, GLint level,
case GL_RGB4_S3TC:
internalFormat = GL_COMPRESSED_RGB_FXT1_3DFX;
break;
+ case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
case GL_RGBA_S3TC:
case GL_RGBA4_S3TC:
- texImage->CompressedSize /= 2;
- case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
internalFormat = GL_COMPRESSED_RGBA_FXT1_3DFX;
}
texImage->IntFormat = internalFormat;
+ texImage->CompressedSize = _mesa_compressed_texture_size(ctx,
+ mml->width,
+ mml->height,
+ 1,
+ internalFormat);
}
#endif
#if FX_TC_NAPALM
diff --git a/src/mesa/drivers/glide/fxtris.c b/src/mesa/drivers/glide/fxtris.c
index c9441673a4..44f672cbb3 100644
--- a/src/mesa/drivers/glide/fxtris.c
+++ b/src/mesa/drivers/glide/fxtris.c
@@ -1387,9 +1387,6 @@ void fxDDInitTriFuncs( GLcontext *ctx )
}
-/* [dBorca] Hack alert:
- * does this approach work with multitex?
- */
GLboolean fxMultipass_ColorSum (GLcontext *ctx, GLuint pass)
{
fxMesaContext fxMesa = FX_CONTEXT(ctx);
diff --git a/src/mesa/main/texcompress_fxt1.c b/src/mesa/main/texcompress_fxt1.c
index 518f4e074c..ded3a53f41 100644
--- a/src/mesa/main/texcompress_fxt1.c
+++ b/src/mesa/main/texcompress_fxt1.c
@@ -267,25 +267,27 @@ const struct gl_texture_format _mesa_texformat_rgba_fxt1 = {
* The encoder was built by reversing the decoder,
* and is vaguely based on Texus2 by 3dfx. Note that this code
* is merely a proof of concept, since it is higly UNoptimized;
- * moreover it is sub-optimal due to Lloyd's algorithm.
- * Only CHROMA and non-lerp ALPHA is implemented!
+ * moreover, it is sub-optimal due to inital conditions passed
+ * to Lloyd's algorithm (the interpolation modes are worse).
\***************************************************************************/
-#define MAX_COMP 4 /* ever meeded maximum number of components in texel */
+#define MAX_COMP 4 /* ever needed maximum number of components in texel */
#define MAX_VECT 4 /* ever needed maximum number of base vectors to find */
#define N_TEXELS 32 /* number of texels in a block (always 32) */
#define LL_N_REP 50 /* number of iterations in lloyd's vq */
-#define LL_MAX_E 255 /* fault tolerance (maximum error) */
+#define LL_RMS_D 10 /* fault tolerance (maximum delta) */
+#define LL_RMS_E 255 /* fault tolerance (maximum error) */
+#define ALPHA_TS 2 /* alpha threshold: (255 - ALPHA_TS) deemed opaque */
+#define ISTBLACK(v) (*((unsigned long *)(v)) == 0)
static int
-fxt1_besterr (float vec[][MAX_COMP], int nv,
- unsigned char input[MAX_COMP], int nc,
- float *d)
+fxt1_bestcol (float vec[][MAX_COMP], int nv,
+ unsigned char input[MAX_COMP], int nc)
{
int i, j, best = -1;
- float err = 1e5; /* big enough */
+ float err = 1e9; /* big enough */
for (j = 0; j < nv; j++) {
float e = 0;
@@ -298,14 +300,13 @@ fxt1_besterr (float vec[][MAX_COMP], int nv,
}
}
- *d = err;
return best;
}
static int
-fxt1_worsterr (float vec[MAX_COMP],
- unsigned char input[N_TEXELS][MAX_COMP], int nc, int n)
+fxt1_worst (float vec[MAX_COMP],
+ unsigned char input[N_TEXELS][MAX_COMP], int nc, int n)
{
int i, k, worst = -1;
float err = -1; /* small enough */
@@ -325,7 +326,131 @@ fxt1_worsterr (float vec[MAX_COMP],
}
-static void
+static int
+fxt1_variance (double variance[MAX_COMP],
+ unsigned char input[N_TEXELS][MAX_COMP], int nc, int n)
+{
+ int i, k, best;
+ int sx, sx2;
+ double var, maxvar = -1; /* small enough */
+ double teenth = 1.0 / n;
+
+ for (i = 0; i < nc; i++) {
+ sx = sx2 = 0;
+ for (k = 0; k < n; k++) {
+ int t = input[k][i];
+ sx += t;
+ sx2 += t * t;
+ }
+ var = sx2 * teenth - sx * sx * teenth * teenth;
+ if (maxvar < var) {
+ maxvar = var;
+ best = i;
+ }
+ if (variance) {
+ variance[i] = var;
+ }
+ }
+
+ return best;
+}
+
+
+static int
+fxt1_choose (float vec[][MAX_COMP], int nv,
+ unsigned char input[N_TEXELS][MAX_COMP], int nc, int n)
+{
+#if 0
+ /* Choose colors from a grid.
+ */
+ int i, j;
+
+ for (j = 0; j < nv; j++) {
+ int m = j * (n - 1) / (nv - 1);
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = input[m][i];
+ }
+ }
+#else
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 8x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ int i, j, k;
+ int minSum = 1000; /* big enough */
+ int maxSum = -1; /* small enough */
+ int minCol;
+ int maxCol;
+
+ struct {
+ int flag;
+ int key;
+ int freq;
+ int idx;
+ } hist[N_TEXELS];
+ int lenh = 0;
+
+ memset(hist, 0, sizeof(hist));
+
+ for (k = 0; k < n; k++) {
+ int l;
+ int key = 0;
+ int sum = 0;
+ for (i = 0; i < nc; i++) {
+ key <<= 8;
+ key |= input[k][i];
+ sum += input[k][i];
+ }
+ for (l = 0; l < n; l++) {
+ if (!hist[l].flag) {
+ /* alloc new slot */
+ hist[l].flag = !0;
+ hist[l].key = key;
+ hist[l].freq = 1;
+ hist[l].idx = k;
+ lenh = l + 1;
+ break;
+ } else if (hist[l].key == key) {
+ hist[l].freq++;
+ break;
+ }
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minCol = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxCol = k;
+ }
+ }
+
+ if (lenh <= nv) {
+ for (j = 0; j < lenh; j++) {
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = (float)input[hist[j].idx][i];
+ }
+ }
+ for (; j < nv; j++) {
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = vec[0][i];
+ }
+ }
+ return 0;
+ }
+
+ for (j = 0; j < nv; j++) {
+ for (i = 0; i < nc; i++) {
+ vec[j][i] = ((nv - 1 - j) * input[minCol][i] + j * input[maxCol][i] + (nv - 1) / 2) / (nv - 1);
+ }
+ }
+#endif
+
+ return !0;
+}
+
+
+static int
fxt1_lloyd (float vec[][MAX_COMP], int nv,
unsigned char input[N_TEXELS][MAX_COMP], int nc, int n)
{
@@ -342,7 +467,7 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv,
* if a color vector has no samples, or becomes the same as another
* vector, replace it with the color which is farthest from a sample.
*
- * vec[][MAX_COMP] resulting colors
+ * vec[][MAX_COMP] initial vectors and resulting colors
* nv number of resulting colors required
* input[N_TEXELS][MAX_COMP] input texels
* nc number of components in input / vec
@@ -351,18 +476,10 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv,
int sum[MAX_VECT][MAX_COMP]; /* used to accumulate closest texels */
int cnt[MAX_VECT]; /* how many times a certain vector was chosen */
- float error;
+ float error, lasterror = 1e9;
int i, j, k, rep;
- /* choose the base vectors from input */
- for (j = 0; j < nv; j++) {
- int m = j * (n - 1) / (nv - 1);
- for (i = 0; i < nc; i++) {
- vec[j][i] = input[m][i];
- }
- }
-
/* the quantizer */
for (rep = 0; rep < LL_N_REP; rep++) {
/* reset sums & counters */
@@ -376,8 +493,25 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv,
/* scan whole block */
for (k = 0; k < n; k++) {
- float d;
- int best = fxt1_besterr(vec, nv, input[k], nc, &d);
+#if 1
+ int best = -1;
+ float err = 1e9; /* big enough */
+ /* determine best vector */
+ for (j = 0; j < nv; j++) {
+ float e = (vec[j][0] - input[k][0]) * (vec[j][0] - input[k][0]) +
+ (vec[j][1] - input[k][1]) * (vec[j][1] - input[k][1]) +
+ (vec[j][2] - input[k][2]) * (vec[j][2] - input[k][2]);
+ if (nc == 4) {
+ e += (vec[j][3] - input[k][3]) * (vec[j][3] - input[k][3]);
+ }
+ if (e < err) {
+ err = e;
+ best = j;
+ }
+ }
+#else
+ int best = fxt1_bestcol(vec, n_vect, input[k], n_comp, &err);
+#endif
/* add in closest color */
for (i = 0; i < nc; i++) {
sum[best][i] += input[k][i];
@@ -385,13 +519,15 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv,
/* mark this vector as used */
cnt[best]++;
/* accumulate error */
- error += d;
+ error += err;
}
- /* accumulated distance (error) small enough? */
- if (error < LL_MAX_E) {
- break;
+ /* check RMS */
+ if ((error < LL_RMS_E) ||
+ ((error < lasterror) && ((lasterror - error) < LL_RMS_D))) {
+ return !0; /* good match */
}
+ lasterror = error;
/* move each vector to the barycenter of its closest colors */
for (j = 0; j < nv; j++) {
@@ -402,13 +538,15 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv,
}
} else {
/* this vec has no samples or is identical with a previous vec */
- int worst = fxt1_worsterr(vec[j], input, nc, n);
+ int worst = fxt1_worst(vec[j], input, nc, n);
for (i = 0; i < nc; i++) {
vec[j][i] = input[worst][i];
}
}
}
}
+
+ return 0; /* could not converge fast enough */
}
@@ -420,32 +558,33 @@ fxt1_quantize_CHROMA (unsigned long *cc,
const int n_comp = 3; /* 3 components: R, G, B */
float vec[MAX_VECT][MAX_COMP];
int i, j, k;
- unsigned long long hihi; /* high quadword */
+ unsigned long long hi; /* high quadword */
unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */
- float d;
- fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS);
+ if (fxt1_choose(vec, n_vect, input, n_comp, N_TEXELS) != 0) {
+ fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS);
+ }
- hihi = 4; /* cc-chroma = "010" + unused bit */
- for (j = 0; j < n_vect; j++) {
+ hi = 4; /* cc-chroma = "010" + unused bit */
+ for (j = n_vect - 1; j >= 0; j--) {
for (i = 0; i < n_comp; i++) {
/* add in colors */
- hihi <<= 5;
- hihi |= (unsigned int)vec[n_vect - 1 - j][i] >> 3;
+ hi <<= 5;
+ hi |= (unsigned int)(vec[j][i] / 8.0);
}
}
- ((unsigned long long *)cc)[1] = hihi;
+ ((unsigned long long *)cc)[1] = hi;
lohi = lolo = 0;
/* right microtile */
for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) {
lohi <<= 2;
- lohi |= fxt1_besterr(vec, n_vect, input[k], n_comp, &d);
+ lohi |= fxt1_bestcol(vec, n_vect, input[k], n_comp);
}
/* left microtile */
for (; k >= 0; k--) {
lolo <<= 2;
- lolo |= fxt1_besterr(vec, n_vect, input[k], n_comp, &d);
+ lolo |= fxt1_bestcol(vec, n_vect, input[k], n_comp);
}
cc[1] = lohi;
cc[0] = lolo;
@@ -461,9 +600,8 @@ fxt1_quantize_ALPHA0 (unsigned long *cc,
const int n_comp = 4; /* 4 components: R, G, B, A */
float vec[MAX_VECT][MAX_COMP];
int i, j, k;
- unsigned long long hihi; /* high quadword */
+ unsigned long long hi; /* high quadword */
unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */
- float d;
/* the last vector indicates zero */
for (i = 0; i < n_comp; i++) {
@@ -471,33 +609,35 @@ fxt1_quantize_ALPHA0 (unsigned long *cc,
}
/* the first n texels in reord are guaranteed to be non-zero */
- fxt1_lloyd(vec, n_vect, reord, n_comp, n);
+ if (fxt1_choose(vec, n_vect, reord, n_comp, n) != 0) {
+ fxt1_lloyd(vec, n_vect, reord, n_comp, n);
+ }
- hihi = 6; /* alpha = "011" + lerp = 0 */
- for (j = 0; j < n_vect; j++) {
+ hi = 6; /* alpha = "011" + lerp = 0 */
+ for (j = n_vect - 1; j >= 0; j--) {
/* add in alphas */
- hihi <<= 5;
- hihi |= (unsigned int)vec[n_vect - 1 - j][n_comp - 1] >> 3;
+ hi <<= 5;
+ hi |= (unsigned int)(vec[j][ACOMP] / 8.0);
}
- for (j = 0; j < n_vect; j++) {
+ for (j = n_vect - 1; j >= 0; j--) {
for (i = 0; i < n_comp - 1; i++) {
/* add in colors */
- hihi <<= 5;
- hihi |= (unsigned int)vec[n_vect - 1 - j][i] >> 3;
+ hi <<= 5;
+ hi |= (unsigned int)(vec[j][i] / 8.0);
}
}
- ((unsigned long long *)cc)[1] = hihi;
+ ((unsigned long long *)cc)[1] = hi;
lohi = lolo = 0;
/* right microtile */
for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) {
lohi <<= 2;
- lohi |= fxt1_besterr(vec, n_vect + 1, input[k], n_comp, &d);
+ lohi |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp);
}
/* left microtile */
for (; k >= 0; k--) {
lolo <<= 2;
- lolo |= fxt1_besterr(vec, n_vect + 1, input[k], n_comp, &d);
+ lolo |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp);
}
cc[1] = lohi;
cc[0] = lolo;
@@ -505,67 +645,764 @@ fxt1_quantize_ALPHA0 (unsigned long *cc,
static void
+fxt1_quantize_ALPHA1 (unsigned long *cc,
+ unsigned char input[N_TEXELS][MAX_COMP])
+{
+ const int n_vect = 3; /* highest vector number in each microtile */
+ const int n_comp = 4; /* 4 components: R, G, B, A */
+ float vec[1 + 1 + 1][MAX_COMP]; /* 1.5 extrema for each sub-block */
+ float b, iv[MAX_COMP]; /* interpolation vector */
+ int i, j, k;
+ unsigned long long hi; /* high quadword */
+ unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */
+
+ int minSum;
+ int maxSum;
+ int minColL, maxColL;
+ int minColR, maxColR;
+ int sumL = 0, sumR = 0;
+
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 4x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ minSum = 1000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (k = 0; k < N_TEXELS / 2; k++) {
+ int sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColL = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColL = k;
+ }
+ sumL += sum;
+ }
+ minSum = 1000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (; k < N_TEXELS; k++) {
+ int sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColR = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColR = k;
+ }
+ sumR += sum;
+ }
+
+ /* choose the common vector (yuck!) */
+{
+ int j1, j2;
+ int v1, v2;
+ float err = 1e9; /* big enough */
+ float tv[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
+ for (i = 0; i < n_comp; i++) {
+ tv[0][i] = input[minColL][i];
+ tv[1][i] = input[maxColL][i];
+ tv[2][i] = input[minColR][i];
+ tv[3][i] = input[maxColR][i];
+ }
+ for (j1 = 0; j1 < 2; j1++) {
+ for (j2 = 2; j2 < 4; j2++) {
+ float e = 0;
+ for (i = 0; i < n_comp; i++) {
+ e += (tv[j1][i] - tv[j2][i]) * (tv[j1][i] - tv[j2][i]);
+ }
+ if (e < err) {
+ err = e;
+ v1 = j1;
+ v2 = j2;
+ }
+ }
+ }
+ for (i = 0; i < n_comp; i++) {
+ vec[0][i] = tv[1 - v1][i];
+ vec[1][i] = (tv[v1][i] * sumL + tv[v2][i] * sumR) / (sumL + sumR);
+ vec[2][i] = tv[5 - v2][i];
+ }
+}
+
+ /* left microtile */
+ cc[0] = 0;
+ if (minColL != maxColL) {
+ /* compute interpolation vector */
+ float d2 = 0;
+ float rd2;
+
+ for (i = 0; i < n_comp; i++) {
+ iv[i] = vec[1][i] - vec[0][i];
+ d2 += iv[i] * iv[i];
+ }
+ rd2 = (float)n_vect / d2;
+ b = 0;
+ for (i = 0; i < n_comp; i++) {
+ b -= iv[i] * vec[0][i];
+ iv[i] *= rd2;
+ }
+ b = b * rd2 + 0.5f;
+
+ /* add in texels */
+ lolo = 0;
+ for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
+ int texel;
+ /* interpolate color */
+ float dot = 0;
+ for (i = 0; i < n_comp; i++) {
+ dot += input[k][i] * iv[i];
+ }
+ texel = (int)(dot + b);
+ if (texel < 0) {
+ texel = 0;
+ } else if (texel > n_vect) {
+ texel = n_vect;
+ }
+ /* add in texel */
+ lolo <<= 2;
+ lolo |= texel;
+ }
+
+ cc[0] = lolo;
+ }
+
+ /* right microtile */
+ cc[1] = 0;
+ if (minColR != maxColR) {
+ /* compute interpolation vector */
+ float d2 = 0;
+ float rd2;
+
+ for (i = 0; i < n_comp; i++) {
+ iv[i] = vec[1][i] - vec[2][i];
+ d2 += iv[i] * iv[i];
+ }
+ rd2 = (float)n_vect / d2;
+ b = 0;
+ for (i = 0; i < n_comp; i++) {
+ b -= iv[i] * vec[2][i];
+ iv[i] *= rd2;
+ }
+ b = b * rd2 + 0.5f;
+
+ /* add in texels */
+ lohi = 0;
+ for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
+ int texel;
+ /* interpolate color */
+ float dot = 0;
+ for (i = 0; i < n_comp; i++) {
+ dot += input[k][i] * iv[i];
+ }
+ texel = (int)(dot + b);
+ if (texel < 0) {
+ texel = 0;
+ } else if (texel > n_vect) {
+ texel = n_vect;
+ }
+ /* add in texel */
+ lohi <<= 2;
+ lohi |= texel;
+ }
+
+ cc[1] = lohi;
+ }
+
+ hi = 7; /* alpha = "011" + lerp = 1 */
+ for (j = n_vect - 1; j >= 0; j--) {
+ /* add in alphas */
+ hi <<= 5;
+ hi |= (unsigned int)(vec[j][ACOMP] / 8.0);
+ }
+ for (j = n_vect - 1; j >= 0; j--) {
+ for (i = 0; i < n_comp - 1; i++) {
+ /* add in colors */
+ hi <<= 5;
+ hi |= (unsigned int)(vec[j][i] / 8.0);
+ }
+ }
+ ((unsigned long long *)cc)[1] = hi;
+}
+
+
+static void
+fxt1_quantize_HI (unsigned long *cc,
+ unsigned char input[N_TEXELS][MAX_COMP],
+ unsigned char reord[N_TEXELS][MAX_COMP], int n)
+{
+ const int n_vect = 6; /* highest vector number */
+ const int n_comp = 3; /* 3 components: R, G, B */
+ float b, iv[MAX_COMP]; /* interpolation vector */
+ int i, k;
+ unsigned long hihi; /* high quadword: hi dword */
+
+ int minSum = 1000; /* big enough */
+ int maxSum = -1; /* small enough */
+ int minCol;
+ int maxCol;
+
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 8x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ for (k = 0; k < n; k++) {
+ int sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += reord[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minCol = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxCol = k;
+ }
+ }
+
+ hihi = 0; /* cc-hi = "00" */
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ hihi <<= 5;
+ hihi |= reord[maxCol][i] >> 3;
+ }
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ hihi <<= 5;
+ hihi |= reord[minCol][i] >> 3;
+ }
+ cc[3] = hihi;
+ cc[0] = cc[1] = cc[2] = 0;
+
+ /* compute interpolation vector */
+ if (minCol != maxCol) {
+ float d2 = 0;
+ float rd2;
+
+ for (i = 0; i < n_comp; i++) {
+ iv[i] = reord[maxCol][i] - reord[minCol][i];
+ d2 += iv[i] * iv[i];
+ }
+ rd2 = (float)n_vect / d2;
+ b = 0;
+ for (i = 0; i < n_comp; i++) {
+ b -= iv[i] * reord[minCol][i];
+ iv[i] *= rd2;
+ }
+ b = b * rd2 + 0.5f;
+ }
+
+ /* add in texels */
+ for (k = N_TEXELS - 1; k >= 0; k--) {
+ int t = k * 3;
+ unsigned long *kk = (unsigned long *)((unsigned long)cc + t / 8);
+ int texel = n_vect + 1; /* transparent black */
+
+ if (!ISTBLACK(input[k])) {
+ if (minCol != maxCol) {
+ /* interpolate color */
+ float dot = 0;
+ for (i = 0; i < n_comp; i++) {
+ dot += input[k][i] * iv[i];
+ }
+ texel = (int)(dot + b);
+ if (texel < 0) {
+ texel = 0;
+ } else if (texel > n_vect) {
+ texel = n_vect;
+ }
+ /* add in texel */
+ kk[0] |= texel << (t & 7);
+ }
+ } else {
+ /* add in texel */
+ kk[0] |= texel << (t & 7);
+ }
+ }
+}
+
+
+static void
+fxt1_quantize_MIXED1 (unsigned long *cc,
+ unsigned char input[N_TEXELS][MAX_COMP])
+{
+ const int n_vect = 2; /* highest vector number in each microtile */
+ const int n_comp = 3; /* 3 components: R, G, B */
+ unsigned char vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
+ float b, iv[MAX_COMP]; /* interpolation vector */
+ int i, j, k;
+ unsigned long long hi; /* high quadword */
+ unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */
+
+ int minSum;
+ int maxSum;
+ int minColL, maxColL = -1;
+ int minColR, maxColR = -1;
+
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 4x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ minSum = 1000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (k = 0; k < N_TEXELS / 2; k++) {
+ if (!ISTBLACK(input[k])) {
+ int sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColL = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColL = k;
+ }
+ }
+ }
+ minSum = 1000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (; k < N_TEXELS; k++) {
+ if (!ISTBLACK(input[k])) {
+ int sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColR = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColR = k;
+ }
+ }
+ }
+
+ /* left microtile */
+ if (maxColL == -1) {
+ /* all transparent black */
+ cc[0] = -1;
+ for (i = 0; i < n_comp; i++) {
+ vec[0][i] = 0;
+ vec[1][i] = 0;
+ }
+ } else {
+ cc[0] = 0;
+ for (i = 0; i < n_comp; i++) {
+ vec[0][i] = input[minColL][i];
+ vec[1][i] = input[maxColL][i];
+ }
+ if (minColL != maxColL) {
+ /* compute interpolation vector */
+ float d2 = 0;
+ float rd2;
+
+ for (i = 0; i < n_comp; i++) {
+ iv[i] = vec[1][i] - vec[0][i];
+ d2 += iv[i] * iv[i];
+ }
+ rd2 = (float)n_vect / d2;
+ b = 0;
+ for (i = 0; i < n_comp; i++) {
+ b -= iv[i] * vec[0][i];
+ iv[i] *= rd2;
+ }
+ b = b * rd2 + 0.5f;
+
+ /* add in texels */
+ lolo = 0;
+ for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
+ int texel = n_vect + 1; /* transparent black */
+ if (!ISTBLACK(input[k])) {
+ /* interpolate color */
+ float dot = 0;
+ for (i = 0; i < n_comp; i++) {
+ dot += input[k][i] * iv[i];
+ }
+ texel = (int)(dot + b);
+ if (texel < 0) {
+ texel = 0;
+ } else if (texel > n_vect) {
+ texel = n_vect;
+ }
+ }
+ /* add in texel */
+ lolo <<= 2;
+ lolo |= texel;
+ }
+ cc[0] = lolo;
+ }
+ }
+
+ /* right microtile */
+ if (maxColR == -1) {
+ /* all transparent black */
+ cc[1] = -1;
+ for (i = 0; i < n_comp; i++) {
+ vec[2][i] = 0;
+ vec[3][i] = 0;
+ }
+ } else {
+ cc[1] = 0;
+ for (i = 0; i < n_comp; i++) {
+ vec[2][i] = input[minColR][i];
+ vec[3][i] = input[maxColR][i];
+ }
+ if (minColR != maxColR) {
+ /* compute interpolation vector */
+ float d2 = 0;
+ float rd2;
+
+ for (i = 0; i < n_comp; i++) {
+ iv[i] = vec[3][i] - vec[2][i];
+ d2 += iv[i] * iv[i];
+ }
+ rd2 = (float)n_vect / d2;
+ b = 0;
+ for (i = 0; i < n_comp; i++) {
+ b -= iv[i] * vec[2][i];
+ iv[i] *= rd2;
+ }
+ b = b * rd2 + 0.5f;
+
+ /* add in texels */
+ lohi = 0;
+ for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
+ int texel = n_vect + 1; /* transparent black */
+ if (!ISTBLACK(input[k])) {
+ /* interpolate color */
+ float dot = 0;
+ for (i = 0; i < n_comp; i++) {
+ dot += input[k][i] * iv[i];
+ }
+ texel = (int)(dot + b);
+ if (texel < 0) {
+ texel = 0;
+ } else if (texel > n_vect) {
+ texel = n_vect;
+ }
+ }
+ /* add in texel */
+ lohi <<= 2;
+ lohi |= texel;
+ }
+ cc[1] = lohi;
+ }
+ }
+
+ hi = 9 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2); /* chroma = "1" */
+ for (j = 2 * 2 - 1; j >= 0; j--) {
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ hi <<= 5;
+ hi |= vec[j][i] >> 3;
+ }
+ }
+ ((unsigned long long *)cc)[1] = hi;
+}
+
+
+static void
+fxt1_quantize_MIXED0 (unsigned long *cc,
+ unsigned char input[N_TEXELS][MAX_COMP])
+{
+ const int n_vect = 3; /* highest vector number in each microtile */
+ const int n_comp = 3; /* 3 components: R, G, B */
+ unsigned char vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */
+ float b, iv[MAX_COMP]; /* interpolation vector */
+ int i, j, k;
+ unsigned long long hi; /* high quadword */
+ unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */
+
+ int minColL, maxColL;
+ int minColR, maxColR;
+#if 0
+ int minSum;
+ int maxSum;
+
+ /* Our solution here is to find the darkest and brightest colors in
+ * the 4x4 tile and use those as the two representative colors.
+ * There are probably better algorithms to use (histogram-based).
+ */
+ minSum = 1000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (k = 0; k < N_TEXELS / 2; k++) {
+ int sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColL = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColL = k;
+ }
+ }
+ minSum = 1000; /* big enough */
+ maxSum = -1; /* small enough */
+ for (; k < N_TEXELS; k++) {
+ int sum = 0;
+ for (i = 0; i < n_comp; i++) {
+ sum += input[k][i];
+ }
+ if (minSum > sum) {
+ minSum = sum;
+ minColR = k;
+ }
+ if (maxSum < sum) {
+ maxSum = sum;
+ maxColR = k;
+ }
+ }
+#else
+ int minVal;
+ int maxVal;
+ int maxVarL = fxt1_variance(NULL, input, n_comp, N_TEXELS / 2);
+ int maxVarR = fxt1_variance(NULL, &input[N_TEXELS / 2], n_comp, N_TEXELS / 2);
+
+ /* Scan the channel with max variance for lo & hi
+ * and use those as the two representative colors.
+ */
+ minVal = 1000; /* big enough */
+ maxVal = -1; /* small enough */
+ for (k = 0; k < N_TEXELS / 2; k++) {
+ int t = input[k][maxVarL];
+ if (minVal > t) {
+ minVal = t;
+ minColL = k;
+ }
+ if (maxVal < t) {
+ maxVal = t;
+ maxColL = k;
+ }
+ }
+ minVal = 1000; /* big enough */
+ maxVal = -1; /* small enough */
+ for (; k < N_TEXELS; k++) {
+ int t = input[k][maxVarR];
+ if (minVal > t) {
+ minVal = t;
+ minColR = k;
+ }
+ if (maxVal < t) {
+ maxVal = t;
+ maxColR = k;
+ }
+ }
+#endif
+
+ /* left microtile */
+ cc[0] = 0;
+ for (i = 0; i < n_comp; i++) {
+ vec[0][i] = input[minColL][i];
+ vec[1][i] = input[maxColL][i];
+ }
+ if (minColL != maxColL) {
+ /* compute interpolation vector */
+ float d2 = 0;
+ float rd2;
+
+ for (i = 0; i < n_comp; i++) {
+ iv[i] = vec[1][i] - vec[0][i];
+ d2 += iv[i] * iv[i];
+ }
+ rd2 = (float)n_vect / d2;
+ b = 0;
+ for (i = 0; i < n_comp; i++) {
+ b -= iv[i] * vec[0][i];
+ iv[i] *= rd2;
+ }
+ b = b * rd2 + 0.5f;
+
+ /* add in texels */
+ lolo = 0;
+ for (k = N_TEXELS / 2 - 1; k >= 0; k--) {
+ int texel;
+ /* interpolate color */
+ float dot = 0;
+ for (i = 0; i < n_comp; i++) {
+ dot += input[k][i] * iv[i];
+ }
+ texel = (int)(dot + b);
+ if (texel < 0) {
+ texel = 0;
+ } else if (texel > n_vect) {
+ texel = n_vect;
+ }
+ /* add in texel */
+ lolo <<= 2;
+ lolo |= texel;
+ }
+
+ /* funky encoding for LSB of green */
+ if (((lolo >> 1) & 1) != (((vec[1][GCOMP] ^ vec[0][GCOMP]) >> 2) & 1)) {
+ for (i = 0; i < n_comp; i++) {
+ vec[1][i] = input[minColL][i];
+ vec[0][i] = input[maxColL][i];
+ }
+ lolo = ~lolo;
+ }
+
+ cc[0] = lolo;
+ }
+
+ /* right microtile */
+ cc[1] = 0;
+ for (i = 0; i < n_comp; i++) {
+ vec[2][i] = input[minColR][i];
+ vec[3][i] = input[maxColR][i];
+ }
+ if (minColR != maxColR) {
+ /* compute interpolation vector */
+ float d2 = 0;
+ float rd2;
+
+ for (i = 0; i < n_comp; i++) {
+ iv[i] = vec[3][i] - vec[2][i];
+ d2 += iv[i] * iv[i];
+ }
+ rd2 = (float)n_vect / d2;
+ b = 0;
+ for (i = 0; i < n_comp; i++) {
+ b -= iv[i] * vec[2][i];
+ iv[i] *= rd2;
+ }
+ b = b * rd2 + 0.5f;
+
+ /* add in texels */
+ lohi = 0;
+ for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) {
+ int texel;
+ /* interpolate color */
+ float dot = 0;
+ for (i = 0; i < n_comp; i++) {
+ dot += input[k][i] * iv[i];
+ }
+ texel = (int)(dot + b);
+ if (texel < 0) {
+ texel = 0;
+ } else if (texel > n_vect) {
+ texel = n_vect;
+ }
+ /* add in texel */
+ lohi <<= 2;
+ lohi |= texel;
+ }
+
+ /* funky encoding for LSB of green */
+ if (((lohi >> 1) & 1) != (((vec[3][GCOMP] ^ vec[2][GCOMP]) >> 2) & 1)) {
+ for (i = 0; i < n_comp; i++) {
+ vec[3][i] = input[minColR][i];
+ vec[2][i] = input[maxColR][i];
+ }
+ lohi = ~lohi;
+ }
+
+ cc[1] = lohi;
+ }
+
+ hi = 8 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2); /* chroma = "1" */
+ for (j = 2 * 2 - 1; j >= 0; j--) {
+ for (i = 0; i < n_comp; i++) {
+ /* add in colors */
+ hi <<= 5;
+ hi |= vec[j][i] >> 3;
+ }
+ }
+ ((unsigned long long *)cc)[1] = hi;
+}
+
+
+static void
fxt1_quantize (unsigned long *cc, const unsigned char *lines[], int comps)
{
- int trualpha = 0;
+ int trualpha;
unsigned char reord[N_TEXELS][MAX_COMP];
unsigned char input[N_TEXELS][MAX_COMP];
int i, k, l;
+ memset(input, -1, sizeof(input));
+
/* 8 texels each line */
for (l = 0; l < 4; l++) {
for (k = 0; k < 4; k++) {
for (i = 0; i < comps; i++) {
input[k + l * 4][i] = *lines[l]++;
}
- for (; i < MAX_COMP; i++) {
- input[k + l * 4][i] = 255;
- }
}
- for (k = 0; k < 4; k++) {
+ for (; k < 8; k++) {
for (i = 0; i < comps; i++) {
- input[k + l * 4 + 16][i] = *lines[l]++;
- }
- for (; i < MAX_COMP; i++) {
- input[k + l * 4 + 16][i] = 255;
+ input[k + l * 4 + 12][i] = *lines[l]++;
}
}
}
+ /* block looks like this:
+ * 00, 01, 02, 03, 08, 09, 0a, 0b
+ * 10, 11, 12, 13, 18, 19, 1a, 1b
+ * 04, 05, 06, 07, 0c, 0d, 0e, 0f
+ * 14, 15, 16, 17, 1c, 1d, 1e, 1f
+ */
+
/* [dBorca]
* stupidity flows forth from this
*/
-
+ l = N_TEXELS;
+ trualpha = 0;
if (comps == 4) {
/* skip all transparent black texels */
l = 0;
for (k = 0; k < N_TEXELS; k++) {
- int t = 0;
/* test all components against 0 */
- for (i = 0; i < comps; i++) {
- reord[l][i] = input[k][i];
- t += input[k][i];
- }
- if (t) {
+ if (!ISTBLACK(input[k])) {
/* texel is not transparent black */
- if (reord[l][comps - 1] < 255) {
+ COPY_4UBV(reord[l], input[k]);
+ if (reord[l][ACOMP] < (255 - ALPHA_TS)) {
/* non-opaque texel */
trualpha = !0;
}
l++;
- } else {
- /* transparent black texel */
- trualpha = !0;
}
}
}
+#if 0
if (trualpha) {
fxt1_quantize_ALPHA0(cc, input, reord, l);
+ } else if (l == 0) {
+ cc[0] = cc[1] = cc[2] = -1;
+ cc[3] = 0;
+ } else if (l < N_TEXELS) {
+ fxt1_quantize_HI(cc, input, reord, l);
} else {
fxt1_quantize_CHROMA(cc, input);
}
+#else
+ if (trualpha) {
+ fxt1_quantize_ALPHA1(cc, input);
+ } else if (l == 0) {
+ cc[0] = cc[1] = cc[2] = -1;
+ cc[3] = 0;
+ } else if (l < N_TEXELS) {
+ fxt1_quantize_MIXED1(cc, input);
+ } else {
+ fxt1_quantize_MIXED0(cc, input);
+ }
+#endif
}
@@ -578,7 +1415,7 @@ fxt1_encode (GLcontext *ctx,
{
const int comps = (srcFormat == GL_RGB) ? 3 : 4;
unsigned int x, y;
- const unsigned char *data = source;
+ const unsigned char *data;
unsigned long *encoded = dest;
GLubyte *newSource = NULL;
@@ -597,14 +1434,17 @@ fxt1_encode (GLcontext *ctx,
srcRowStride = comps * newWidth;
}
+ data = source;
destRowStride = (destRowStride - width * 2) / 4;
for (y = 0; y < height; y += 4) {
+ unsigned int offs = 0 + (y + 0) * srcRowStride;
for (x = 0; x < width; x += 8) {
const unsigned char *lines[4];
- lines[0] = &data[x * comps + (y + 0) * srcRowStride];
- lines[1] = &data[x * comps + (y + 1) * srcRowStride];
- lines[2] = &data[x * comps + (y + 2) * srcRowStride];
- lines[3] = &data[x * comps + (y + 3) * srcRowStride];
+ lines[0] = &data[offs];
+ lines[1] = lines[0] + srcRowStride;
+ lines[2] = lines[1] + srcRowStride;
+ lines[3] = lines[2] + srcRowStride;
+ offs += 8 * comps;
fxt1_quantize(encoded, lines, comps);
/* 128 bits per 8x4 block = 4bpp */
encoded += 4;
@@ -612,6 +1452,10 @@ fxt1_encode (GLcontext *ctx,
encoded += destRowStride;
}
+ if (newSource != NULL) {
+ FREE(newSource);
+ }
+
return 0;
}