diff options
author | Daniel Borca <dborca@users.sourceforge.net> | 2004-05-31 06:24:36 +0000 |
---|---|---|
committer | Daniel Borca <dborca@users.sourceforge.net> | 2004-05-31 06:24:36 +0000 |
commit | e35282cc13acc61d1a789ab729ae6a0ea72aa17b (patch) | |
tree | 3fce8778d1dd895d5b2e3c22a09a0b0d3fec8472 | |
parent | 54f4f44843a2ea422cf78a04720562ecc1a5abfd (diff) |
reworked FXT1
minor fixes to fxMesa
-rw-r--r-- | src/mesa/drivers/glide/fxdd.c | 2 | ||||
-rw-r--r-- | src/mesa/drivers/glide/fxddtex.c | 16 | ||||
-rw-r--r-- | src/mesa/drivers/glide/fxtris.c | 3 | ||||
-rw-r--r-- | src/mesa/main/texcompress_fxt1.c | 998 |
4 files changed, 934 insertions, 85 deletions
diff --git a/src/mesa/drivers/glide/fxdd.c b/src/mesa/drivers/glide/fxdd.c index 77b98793ec..7d4c168194 100644 --- a/src/mesa/drivers/glide/fxdd.c +++ b/src/mesa/drivers/glide/fxdd.c @@ -628,7 +628,7 @@ fxDDDrawBitmap4 (GLcontext *ctx, GLint px, GLint py, struct gl_pixelstore_attrib scissoredUnpack; /* check if there's any raster operations enabled which we can't handle */ - if ((swrast->_RasterMask & (ALPHATEST_BIT | + if ((swrast->_RasterMask & (/*ALPHATEST_BIT |*/ /*BLEND_BIT |*/ /* blending ok, through pixpipe */ DEPTH_BIT | /* could be done with RGB:DEPTH */ FOG_BIT | /* could be done with RGB:DEPTH */ diff --git a/src/mesa/drivers/glide/fxddtex.c b/src/mesa/drivers/glide/fxddtex.c index 1fbeb8d252..2a263798c5 100644 --- a/src/mesa/drivers/glide/fxddtex.c +++ b/src/mesa/drivers/glide/fxddtex.c @@ -660,6 +660,9 @@ fxIsTexSupported(GLenum target, GLint internalFormat, /**********************************************************************/ /**** NEW TEXTURE IMAGE FUNCTIONS ****/ /**********************************************************************/ +extern void +fxt1_decode_1 (const void *texture, int width, + int i, int j, unsigned char *rgba); /* Texel-fetch functions for software texturing and glGetTexImage(). * We should have been able to use some "standard" fetch functions (which @@ -836,7 +839,8 @@ fetch_rgb_fxt1(const struct gl_texture_image *texImage, i = i * mml->wScale; j = j * mml->hScale; - _mesa_texformat_rgb_fxt1.FetchTexel2D(texImage, i, j, k, rgba); + fxt1_decode_1(texImage->Data, mml->width, i, j, rgba); + rgba[ACOMP] = 255; } @@ -849,7 +853,7 @@ fetch_rgba_fxt1(const struct gl_texture_image *texImage, i = i * mml->wScale; j = j * mml->hScale; - _mesa_texformat_rgba_fxt1.FetchTexel2D(texImage, i, j, k, rgba); + fxt1_decode_1(texImage->Data, mml->width, i, j, rgba); } @@ -1303,15 +1307,19 @@ fxDDTexImage2D(GLcontext * ctx, GLenum target, GLint level, case GL_RGB4_S3TC: internalFormat = GL_COMPRESSED_RGB_FXT1_3DFX; break; + case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT: case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: case GL_RGBA_S3TC: case GL_RGBA4_S3TC: - texImage->CompressedSize /= 2; - case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: internalFormat = GL_COMPRESSED_RGBA_FXT1_3DFX; } texImage->IntFormat = internalFormat; + texImage->CompressedSize = _mesa_compressed_texture_size(ctx, + mml->width, + mml->height, + 1, + internalFormat); } #endif #if FX_TC_NAPALM diff --git a/src/mesa/drivers/glide/fxtris.c b/src/mesa/drivers/glide/fxtris.c index c9441673a4..44f672cbb3 100644 --- a/src/mesa/drivers/glide/fxtris.c +++ b/src/mesa/drivers/glide/fxtris.c @@ -1387,9 +1387,6 @@ void fxDDInitTriFuncs( GLcontext *ctx ) } -/* [dBorca] Hack alert: - * does this approach work with multitex? - */ GLboolean fxMultipass_ColorSum (GLcontext *ctx, GLuint pass) { fxMesaContext fxMesa = FX_CONTEXT(ctx); diff --git a/src/mesa/main/texcompress_fxt1.c b/src/mesa/main/texcompress_fxt1.c index 518f4e074c..ded3a53f41 100644 --- a/src/mesa/main/texcompress_fxt1.c +++ b/src/mesa/main/texcompress_fxt1.c @@ -267,25 +267,27 @@ const struct gl_texture_format _mesa_texformat_rgba_fxt1 = { * The encoder was built by reversing the decoder, * and is vaguely based on Texus2 by 3dfx. Note that this code * is merely a proof of concept, since it is higly UNoptimized; - * moreover it is sub-optimal due to Lloyd's algorithm. - * Only CHROMA and non-lerp ALPHA is implemented! + * moreover, it is sub-optimal due to inital conditions passed + * to Lloyd's algorithm (the interpolation modes are worse). \***************************************************************************/ -#define MAX_COMP 4 /* ever meeded maximum number of components in texel */ +#define MAX_COMP 4 /* ever needed maximum number of components in texel */ #define MAX_VECT 4 /* ever needed maximum number of base vectors to find */ #define N_TEXELS 32 /* number of texels in a block (always 32) */ #define LL_N_REP 50 /* number of iterations in lloyd's vq */ -#define LL_MAX_E 255 /* fault tolerance (maximum error) */ +#define LL_RMS_D 10 /* fault tolerance (maximum delta) */ +#define LL_RMS_E 255 /* fault tolerance (maximum error) */ +#define ALPHA_TS 2 /* alpha threshold: (255 - ALPHA_TS) deemed opaque */ +#define ISTBLACK(v) (*((unsigned long *)(v)) == 0) static int -fxt1_besterr (float vec[][MAX_COMP], int nv, - unsigned char input[MAX_COMP], int nc, - float *d) +fxt1_bestcol (float vec[][MAX_COMP], int nv, + unsigned char input[MAX_COMP], int nc) { int i, j, best = -1; - float err = 1e5; /* big enough */ + float err = 1e9; /* big enough */ for (j = 0; j < nv; j++) { float e = 0; @@ -298,14 +300,13 @@ fxt1_besterr (float vec[][MAX_COMP], int nv, } } - *d = err; return best; } static int -fxt1_worsterr (float vec[MAX_COMP], - unsigned char input[N_TEXELS][MAX_COMP], int nc, int n) +fxt1_worst (float vec[MAX_COMP], + unsigned char input[N_TEXELS][MAX_COMP], int nc, int n) { int i, k, worst = -1; float err = -1; /* small enough */ @@ -325,7 +326,131 @@ fxt1_worsterr (float vec[MAX_COMP], } -static void +static int +fxt1_variance (double variance[MAX_COMP], + unsigned char input[N_TEXELS][MAX_COMP], int nc, int n) +{ + int i, k, best; + int sx, sx2; + double var, maxvar = -1; /* small enough */ + double teenth = 1.0 / n; + + for (i = 0; i < nc; i++) { + sx = sx2 = 0; + for (k = 0; k < n; k++) { + int t = input[k][i]; + sx += t; + sx2 += t * t; + } + var = sx2 * teenth - sx * sx * teenth * teenth; + if (maxvar < var) { + maxvar = var; + best = i; + } + if (variance) { + variance[i] = var; + } + } + + return best; +} + + +static int +fxt1_choose (float vec[][MAX_COMP], int nv, + unsigned char input[N_TEXELS][MAX_COMP], int nc, int n) +{ +#if 0 + /* Choose colors from a grid. + */ + int i, j; + + for (j = 0; j < nv; j++) { + int m = j * (n - 1) / (nv - 1); + for (i = 0; i < nc; i++) { + vec[j][i] = input[m][i]; + } + } +#else + /* Our solution here is to find the darkest and brightest colors in + * the 8x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + int i, j, k; + int minSum = 1000; /* big enough */ + int maxSum = -1; /* small enough */ + int minCol; + int maxCol; + + struct { + int flag; + int key; + int freq; + int idx; + } hist[N_TEXELS]; + int lenh = 0; + + memset(hist, 0, sizeof(hist)); + + for (k = 0; k < n; k++) { + int l; + int key = 0; + int sum = 0; + for (i = 0; i < nc; i++) { + key <<= 8; + key |= input[k][i]; + sum += input[k][i]; + } + for (l = 0; l < n; l++) { + if (!hist[l].flag) { + /* alloc new slot */ + hist[l].flag = !0; + hist[l].key = key; + hist[l].freq = 1; + hist[l].idx = k; + lenh = l + 1; + break; + } else if (hist[l].key == key) { + hist[l].freq++; + break; + } + } + if (minSum > sum) { + minSum = sum; + minCol = k; + } + if (maxSum < sum) { + maxSum = sum; + maxCol = k; + } + } + + if (lenh <= nv) { + for (j = 0; j < lenh; j++) { + for (i = 0; i < nc; i++) { + vec[j][i] = (float)input[hist[j].idx][i]; + } + } + for (; j < nv; j++) { + for (i = 0; i < nc; i++) { + vec[j][i] = vec[0][i]; + } + } + return 0; + } + + for (j = 0; j < nv; j++) { + for (i = 0; i < nc; i++) { + vec[j][i] = ((nv - 1 - j) * input[minCol][i] + j * input[maxCol][i] + (nv - 1) / 2) / (nv - 1); + } + } +#endif + + return !0; +} + + +static int fxt1_lloyd (float vec[][MAX_COMP], int nv, unsigned char input[N_TEXELS][MAX_COMP], int nc, int n) { @@ -342,7 +467,7 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv, * if a color vector has no samples, or becomes the same as another * vector, replace it with the color which is farthest from a sample. * - * vec[][MAX_COMP] resulting colors + * vec[][MAX_COMP] initial vectors and resulting colors * nv number of resulting colors required * input[N_TEXELS][MAX_COMP] input texels * nc number of components in input / vec @@ -351,18 +476,10 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv, int sum[MAX_VECT][MAX_COMP]; /* used to accumulate closest texels */ int cnt[MAX_VECT]; /* how many times a certain vector was chosen */ - float error; + float error, lasterror = 1e9; int i, j, k, rep; - /* choose the base vectors from input */ - for (j = 0; j < nv; j++) { - int m = j * (n - 1) / (nv - 1); - for (i = 0; i < nc; i++) { - vec[j][i] = input[m][i]; - } - } - /* the quantizer */ for (rep = 0; rep < LL_N_REP; rep++) { /* reset sums & counters */ @@ -376,8 +493,25 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv, /* scan whole block */ for (k = 0; k < n; k++) { - float d; - int best = fxt1_besterr(vec, nv, input[k], nc, &d); +#if 1 + int best = -1; + float err = 1e9; /* big enough */ + /* determine best vector */ + for (j = 0; j < nv; j++) { + float e = (vec[j][0] - input[k][0]) * (vec[j][0] - input[k][0]) + + (vec[j][1] - input[k][1]) * (vec[j][1] - input[k][1]) + + (vec[j][2] - input[k][2]) * (vec[j][2] - input[k][2]); + if (nc == 4) { + e += (vec[j][3] - input[k][3]) * (vec[j][3] - input[k][3]); + } + if (e < err) { + err = e; + best = j; + } + } +#else + int best = fxt1_bestcol(vec, n_vect, input[k], n_comp, &err); +#endif /* add in closest color */ for (i = 0; i < nc; i++) { sum[best][i] += input[k][i]; @@ -385,13 +519,15 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv, /* mark this vector as used */ cnt[best]++; /* accumulate error */ - error += d; + error += err; } - /* accumulated distance (error) small enough? */ - if (error < LL_MAX_E) { - break; + /* check RMS */ + if ((error < LL_RMS_E) || + ((error < lasterror) && ((lasterror - error) < LL_RMS_D))) { + return !0; /* good match */ } + lasterror = error; /* move each vector to the barycenter of its closest colors */ for (j = 0; j < nv; j++) { @@ -402,13 +538,15 @@ fxt1_lloyd (float vec[][MAX_COMP], int nv, } } else { /* this vec has no samples or is identical with a previous vec */ - int worst = fxt1_worsterr(vec[j], input, nc, n); + int worst = fxt1_worst(vec[j], input, nc, n); for (i = 0; i < nc; i++) { vec[j][i] = input[worst][i]; } } } } + + return 0; /* could not converge fast enough */ } @@ -420,32 +558,33 @@ fxt1_quantize_CHROMA (unsigned long *cc, const int n_comp = 3; /* 3 components: R, G, B */ float vec[MAX_VECT][MAX_COMP]; int i, j, k; - unsigned long long hihi; /* high quadword */ + unsigned long long hi; /* high quadword */ unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */ - float d; - fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS); + if (fxt1_choose(vec, n_vect, input, n_comp, N_TEXELS) != 0) { + fxt1_lloyd(vec, n_vect, input, n_comp, N_TEXELS); + } - hihi = 4; /* cc-chroma = "010" + unused bit */ - for (j = 0; j < n_vect; j++) { + hi = 4; /* cc-chroma = "010" + unused bit */ + for (j = n_vect - 1; j >= 0; j--) { for (i = 0; i < n_comp; i++) { /* add in colors */ - hihi <<= 5; - hihi |= (unsigned int)vec[n_vect - 1 - j][i] >> 3; + hi <<= 5; + hi |= (unsigned int)(vec[j][i] / 8.0); } } - ((unsigned long long *)cc)[1] = hihi; + ((unsigned long long *)cc)[1] = hi; lohi = lolo = 0; /* right microtile */ for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) { lohi <<= 2; - lohi |= fxt1_besterr(vec, n_vect, input[k], n_comp, &d); + lohi |= fxt1_bestcol(vec, n_vect, input[k], n_comp); } /* left microtile */ for (; k >= 0; k--) { lolo <<= 2; - lolo |= fxt1_besterr(vec, n_vect, input[k], n_comp, &d); + lolo |= fxt1_bestcol(vec, n_vect, input[k], n_comp); } cc[1] = lohi; cc[0] = lolo; @@ -461,9 +600,8 @@ fxt1_quantize_ALPHA0 (unsigned long *cc, const int n_comp = 4; /* 4 components: R, G, B, A */ float vec[MAX_VECT][MAX_COMP]; int i, j, k; - unsigned long long hihi; /* high quadword */ + unsigned long long hi; /* high quadword */ unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */ - float d; /* the last vector indicates zero */ for (i = 0; i < n_comp; i++) { @@ -471,33 +609,35 @@ fxt1_quantize_ALPHA0 (unsigned long *cc, } /* the first n texels in reord are guaranteed to be non-zero */ - fxt1_lloyd(vec, n_vect, reord, n_comp, n); + if (fxt1_choose(vec, n_vect, reord, n_comp, n) != 0) { + fxt1_lloyd(vec, n_vect, reord, n_comp, n); + } - hihi = 6; /* alpha = "011" + lerp = 0 */ - for (j = 0; j < n_vect; j++) { + hi = 6; /* alpha = "011" + lerp = 0 */ + for (j = n_vect - 1; j >= 0; j--) { /* add in alphas */ - hihi <<= 5; - hihi |= (unsigned int)vec[n_vect - 1 - j][n_comp - 1] >> 3; + hi <<= 5; + hi |= (unsigned int)(vec[j][ACOMP] / 8.0); } - for (j = 0; j < n_vect; j++) { + for (j = n_vect - 1; j >= 0; j--) { for (i = 0; i < n_comp - 1; i++) { /* add in colors */ - hihi <<= 5; - hihi |= (unsigned int)vec[n_vect - 1 - j][i] >> 3; + hi <<= 5; + hi |= (unsigned int)(vec[j][i] / 8.0); } } - ((unsigned long long *)cc)[1] = hihi; + ((unsigned long long *)cc)[1] = hi; lohi = lolo = 0; /* right microtile */ for (k = N_TEXELS - 1; k >= N_TEXELS/2; k--) { lohi <<= 2; - lohi |= fxt1_besterr(vec, n_vect + 1, input[k], n_comp, &d); + lohi |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp); } /* left microtile */ for (; k >= 0; k--) { lolo <<= 2; - lolo |= fxt1_besterr(vec, n_vect + 1, input[k], n_comp, &d); + lolo |= fxt1_bestcol(vec, n_vect + 1, input[k], n_comp); } cc[1] = lohi; cc[0] = lolo; @@ -505,67 +645,764 @@ fxt1_quantize_ALPHA0 (unsigned long *cc, static void +fxt1_quantize_ALPHA1 (unsigned long *cc, + unsigned char input[N_TEXELS][MAX_COMP]) +{ + const int n_vect = 3; /* highest vector number in each microtile */ + const int n_comp = 4; /* 4 components: R, G, B, A */ + float vec[1 + 1 + 1][MAX_COMP]; /* 1.5 extrema for each sub-block */ + float b, iv[MAX_COMP]; /* interpolation vector */ + int i, j, k; + unsigned long long hi; /* high quadword */ + unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */ + + int minSum; + int maxSum; + int minColL, maxColL; + int minColR, maxColR; + int sumL = 0, sumR = 0; + + /* Our solution here is to find the darkest and brightest colors in + * the 4x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + minSum = 1000; /* big enough */ + maxSum = -1; /* small enough */ + for (k = 0; k < N_TEXELS / 2; k++) { + int sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColL = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColL = k; + } + sumL += sum; + } + minSum = 1000; /* big enough */ + maxSum = -1; /* small enough */ + for (; k < N_TEXELS; k++) { + int sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColR = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColR = k; + } + sumR += sum; + } + + /* choose the common vector (yuck!) */ +{ + int j1, j2; + int v1, v2; + float err = 1e9; /* big enough */ + float tv[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ + for (i = 0; i < n_comp; i++) { + tv[0][i] = input[minColL][i]; + tv[1][i] = input[maxColL][i]; + tv[2][i] = input[minColR][i]; + tv[3][i] = input[maxColR][i]; + } + for (j1 = 0; j1 < 2; j1++) { + for (j2 = 2; j2 < 4; j2++) { + float e = 0; + for (i = 0; i < n_comp; i++) { + e += (tv[j1][i] - tv[j2][i]) * (tv[j1][i] - tv[j2][i]); + } + if (e < err) { + err = e; + v1 = j1; + v2 = j2; + } + } + } + for (i = 0; i < n_comp; i++) { + vec[0][i] = tv[1 - v1][i]; + vec[1][i] = (tv[v1][i] * sumL + tv[v2][i] * sumR) / (sumL + sumR); + vec[2][i] = tv[5 - v2][i]; + } +} + + /* left microtile */ + cc[0] = 0; + if (minColL != maxColL) { + /* compute interpolation vector */ + float d2 = 0; + float rd2; + + for (i = 0; i < n_comp; i++) { + iv[i] = vec[1][i] - vec[0][i]; + d2 += iv[i] * iv[i]; + } + rd2 = (float)n_vect / d2; + b = 0; + for (i = 0; i < n_comp; i++) { + b -= iv[i] * vec[0][i]; + iv[i] *= rd2; + } + b = b * rd2 + 0.5f; + + /* add in texels */ + lolo = 0; + for (k = N_TEXELS / 2 - 1; k >= 0; k--) { + int texel; + /* interpolate color */ + float dot = 0; + for (i = 0; i < n_comp; i++) { + dot += input[k][i] * iv[i]; + } + texel = (int)(dot + b); + if (texel < 0) { + texel = 0; + } else if (texel > n_vect) { + texel = n_vect; + } + /* add in texel */ + lolo <<= 2; + lolo |= texel; + } + + cc[0] = lolo; + } + + /* right microtile */ + cc[1] = 0; + if (minColR != maxColR) { + /* compute interpolation vector */ + float d2 = 0; + float rd2; + + for (i = 0; i < n_comp; i++) { + iv[i] = vec[1][i] - vec[2][i]; + d2 += iv[i] * iv[i]; + } + rd2 = (float)n_vect / d2; + b = 0; + for (i = 0; i < n_comp; i++) { + b -= iv[i] * vec[2][i]; + iv[i] *= rd2; + } + b = b * rd2 + 0.5f; + + /* add in texels */ + lohi = 0; + for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { + int texel; + /* interpolate color */ + float dot = 0; + for (i = 0; i < n_comp; i++) { + dot += input[k][i] * iv[i]; + } + texel = (int)(dot + b); + if (texel < 0) { + texel = 0; + } else if (texel > n_vect) { + texel = n_vect; + } + /* add in texel */ + lohi <<= 2; + lohi |= texel; + } + + cc[1] = lohi; + } + + hi = 7; /* alpha = "011" + lerp = 1 */ + for (j = n_vect - 1; j >= 0; j--) { + /* add in alphas */ + hi <<= 5; + hi |= (unsigned int)(vec[j][ACOMP] / 8.0); + } + for (j = n_vect - 1; j >= 0; j--) { + for (i = 0; i < n_comp - 1; i++) { + /* add in colors */ + hi <<= 5; + hi |= (unsigned int)(vec[j][i] / 8.0); + } + } + ((unsigned long long *)cc)[1] = hi; +} + + +static void +fxt1_quantize_HI (unsigned long *cc, + unsigned char input[N_TEXELS][MAX_COMP], + unsigned char reord[N_TEXELS][MAX_COMP], int n) +{ + const int n_vect = 6; /* highest vector number */ + const int n_comp = 3; /* 3 components: R, G, B */ + float b, iv[MAX_COMP]; /* interpolation vector */ + int i, k; + unsigned long hihi; /* high quadword: hi dword */ + + int minSum = 1000; /* big enough */ + int maxSum = -1; /* small enough */ + int minCol; + int maxCol; + + /* Our solution here is to find the darkest and brightest colors in + * the 8x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + for (k = 0; k < n; k++) { + int sum = 0; + for (i = 0; i < n_comp; i++) { + sum += reord[k][i]; + } + if (minSum > sum) { + minSum = sum; + minCol = k; + } + if (maxSum < sum) { + maxSum = sum; + maxCol = k; + } + } + + hihi = 0; /* cc-hi = "00" */ + for (i = 0; i < n_comp; i++) { + /* add in colors */ + hihi <<= 5; + hihi |= reord[maxCol][i] >> 3; + } + for (i = 0; i < n_comp; i++) { + /* add in colors */ + hihi <<= 5; + hihi |= reord[minCol][i] >> 3; + } + cc[3] = hihi; + cc[0] = cc[1] = cc[2] = 0; + + /* compute interpolation vector */ + if (minCol != maxCol) { + float d2 = 0; + float rd2; + + for (i = 0; i < n_comp; i++) { + iv[i] = reord[maxCol][i] - reord[minCol][i]; + d2 += iv[i] * iv[i]; + } + rd2 = (float)n_vect / d2; + b = 0; + for (i = 0; i < n_comp; i++) { + b -= iv[i] * reord[minCol][i]; + iv[i] *= rd2; + } + b = b * rd2 + 0.5f; + } + + /* add in texels */ + for (k = N_TEXELS - 1; k >= 0; k--) { + int t = k * 3; + unsigned long *kk = (unsigned long *)((unsigned long)cc + t / 8); + int texel = n_vect + 1; /* transparent black */ + + if (!ISTBLACK(input[k])) { + if (minCol != maxCol) { + /* interpolate color */ + float dot = 0; + for (i = 0; i < n_comp; i++) { + dot += input[k][i] * iv[i]; + } + texel = (int)(dot + b); + if (texel < 0) { + texel = 0; + } else if (texel > n_vect) { + texel = n_vect; + } + /* add in texel */ + kk[0] |= texel << (t & 7); + } + } else { + /* add in texel */ + kk[0] |= texel << (t & 7); + } + } +} + + +static void +fxt1_quantize_MIXED1 (unsigned long *cc, + unsigned char input[N_TEXELS][MAX_COMP]) +{ + const int n_vect = 2; /* highest vector number in each microtile */ + const int n_comp = 3; /* 3 components: R, G, B */ + unsigned char vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ + float b, iv[MAX_COMP]; /* interpolation vector */ + int i, j, k; + unsigned long long hi; /* high quadword */ + unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */ + + int minSum; + int maxSum; + int minColL, maxColL = -1; + int minColR, maxColR = -1; + + /* Our solution here is to find the darkest and brightest colors in + * the 4x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + minSum = 1000; /* big enough */ + maxSum = -1; /* small enough */ + for (k = 0; k < N_TEXELS / 2; k++) { + if (!ISTBLACK(input[k])) { + int sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColL = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColL = k; + } + } + } + minSum = 1000; /* big enough */ + maxSum = -1; /* small enough */ + for (; k < N_TEXELS; k++) { + if (!ISTBLACK(input[k])) { + int sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColR = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColR = k; + } + } + } + + /* left microtile */ + if (maxColL == -1) { + /* all transparent black */ + cc[0] = -1; + for (i = 0; i < n_comp; i++) { + vec[0][i] = 0; + vec[1][i] = 0; + } + } else { + cc[0] = 0; + for (i = 0; i < n_comp; i++) { + vec[0][i] = input[minColL][i]; + vec[1][i] = input[maxColL][i]; + } + if (minColL != maxColL) { + /* compute interpolation vector */ + float d2 = 0; + float rd2; + + for (i = 0; i < n_comp; i++) { + iv[i] = vec[1][i] - vec[0][i]; + d2 += iv[i] * iv[i]; + } + rd2 = (float)n_vect / d2; + b = 0; + for (i = 0; i < n_comp; i++) { + b -= iv[i] * vec[0][i]; + iv[i] *= rd2; + } + b = b * rd2 + 0.5f; + + /* add in texels */ + lolo = 0; + for (k = N_TEXELS / 2 - 1; k >= 0; k--) { + int texel = n_vect + 1; /* transparent black */ + if (!ISTBLACK(input[k])) { + /* interpolate color */ + float dot = 0; + for (i = 0; i < n_comp; i++) { + dot += input[k][i] * iv[i]; + } + texel = (int)(dot + b); + if (texel < 0) { + texel = 0; + } else if (texel > n_vect) { + texel = n_vect; + } + } + /* add in texel */ + lolo <<= 2; + lolo |= texel; + } + cc[0] = lolo; + } + } + + /* right microtile */ + if (maxColR == -1) { + /* all transparent black */ + cc[1] = -1; + for (i = 0; i < n_comp; i++) { + vec[2][i] = 0; + vec[3][i] = 0; + } + } else { + cc[1] = 0; + for (i = 0; i < n_comp; i++) { + vec[2][i] = input[minColR][i]; + vec[3][i] = input[maxColR][i]; + } + if (minColR != maxColR) { + /* compute interpolation vector */ + float d2 = 0; + float rd2; + + for (i = 0; i < n_comp; i++) { + iv[i] = vec[3][i] - vec[2][i]; + d2 += iv[i] * iv[i]; + } + rd2 = (float)n_vect / d2; + b = 0; + for (i = 0; i < n_comp; i++) { + b -= iv[i] * vec[2][i]; + iv[i] *= rd2; + } + b = b * rd2 + 0.5f; + + /* add in texels */ + lohi = 0; + for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { + int texel = n_vect + 1; /* transparent black */ + if (!ISTBLACK(input[k])) { + /* interpolate color */ + float dot = 0; + for (i = 0; i < n_comp; i++) { + dot += input[k][i] * iv[i]; + } + texel = (int)(dot + b); + if (texel < 0) { + texel = 0; + } else if (texel > n_vect) { + texel = n_vect; + } + } + /* add in texel */ + lohi <<= 2; + lohi |= texel; + } + cc[1] = lohi; + } + } + + hi = 9 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2); /* chroma = "1" */ + for (j = 2 * 2 - 1; j >= 0; j--) { + for (i = 0; i < n_comp; i++) { + /* add in colors */ + hi <<= 5; + hi |= vec[j][i] >> 3; + } + } + ((unsigned long long *)cc)[1] = hi; +} + + +static void +fxt1_quantize_MIXED0 (unsigned long *cc, + unsigned char input[N_TEXELS][MAX_COMP]) +{ + const int n_vect = 3; /* highest vector number in each microtile */ + const int n_comp = 3; /* 3 components: R, G, B */ + unsigned char vec[2 * 2][MAX_COMP]; /* 2 extrema for each sub-block */ + float b, iv[MAX_COMP]; /* interpolation vector */ + int i, j, k; + unsigned long long hi; /* high quadword */ + unsigned long lohi, lolo; /* low quadword: hi dword, lo dword */ + + int minColL, maxColL; + int minColR, maxColR; +#if 0 + int minSum; + int maxSum; + + /* Our solution here is to find the darkest and brightest colors in + * the 4x4 tile and use those as the two representative colors. + * There are probably better algorithms to use (histogram-based). + */ + minSum = 1000; /* big enough */ + maxSum = -1; /* small enough */ + for (k = 0; k < N_TEXELS / 2; k++) { + int sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColL = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColL = k; + } + } + minSum = 1000; /* big enough */ + maxSum = -1; /* small enough */ + for (; k < N_TEXELS; k++) { + int sum = 0; + for (i = 0; i < n_comp; i++) { + sum += input[k][i]; + } + if (minSum > sum) { + minSum = sum; + minColR = k; + } + if (maxSum < sum) { + maxSum = sum; + maxColR = k; + } + } +#else + int minVal; + int maxVal; + int maxVarL = fxt1_variance(NULL, input, n_comp, N_TEXELS / 2); + int maxVarR = fxt1_variance(NULL, &input[N_TEXELS / 2], n_comp, N_TEXELS / 2); + + /* Scan the channel with max variance for lo & hi + * and use those as the two representative colors. + */ + minVal = 1000; /* big enough */ + maxVal = -1; /* small enough */ + for (k = 0; k < N_TEXELS / 2; k++) { + int t = input[k][maxVarL]; + if (minVal > t) { + minVal = t; + minColL = k; + } + if (maxVal < t) { + maxVal = t; + maxColL = k; + } + } + minVal = 1000; /* big enough */ + maxVal = -1; /* small enough */ + for (; k < N_TEXELS; k++) { + int t = input[k][maxVarR]; + if (minVal > t) { + minVal = t; + minColR = k; + } + if (maxVal < t) { + maxVal = t; + maxColR = k; + } + } +#endif + + /* left microtile */ + cc[0] = 0; + for (i = 0; i < n_comp; i++) { + vec[0][i] = input[minColL][i]; + vec[1][i] = input[maxColL][i]; + } + if (minColL != maxColL) { + /* compute interpolation vector */ + float d2 = 0; + float rd2; + + for (i = 0; i < n_comp; i++) { + iv[i] = vec[1][i] - vec[0][i]; + d2 += iv[i] * iv[i]; + } + rd2 = (float)n_vect / d2; + b = 0; + for (i = 0; i < n_comp; i++) { + b -= iv[i] * vec[0][i]; + iv[i] *= rd2; + } + b = b * rd2 + 0.5f; + + /* add in texels */ + lolo = 0; + for (k = N_TEXELS / 2 - 1; k >= 0; k--) { + int texel; + /* interpolate color */ + float dot = 0; + for (i = 0; i < n_comp; i++) { + dot += input[k][i] * iv[i]; + } + texel = (int)(dot + b); + if (texel < 0) { + texel = 0; + } else if (texel > n_vect) { + texel = n_vect; + } + /* add in texel */ + lolo <<= 2; + lolo |= texel; + } + + /* funky encoding for LSB of green */ + if (((lolo >> 1) & 1) != (((vec[1][GCOMP] ^ vec[0][GCOMP]) >> 2) & 1)) { + for (i = 0; i < n_comp; i++) { + vec[1][i] = input[minColL][i]; + vec[0][i] = input[maxColL][i]; + } + lolo = ~lolo; + } + + cc[0] = lolo; + } + + /* right microtile */ + cc[1] = 0; + for (i = 0; i < n_comp; i++) { + vec[2][i] = input[minColR][i]; + vec[3][i] = input[maxColR][i]; + } + if (minColR != maxColR) { + /* compute interpolation vector */ + float d2 = 0; + float rd2; + + for (i = 0; i < n_comp; i++) { + iv[i] = vec[3][i] - vec[2][i]; + d2 += iv[i] * iv[i]; + } + rd2 = (float)n_vect / d2; + b = 0; + for (i = 0; i < n_comp; i++) { + b -= iv[i] * vec[2][i]; + iv[i] *= rd2; + } + b = b * rd2 + 0.5f; + + /* add in texels */ + lohi = 0; + for (k = N_TEXELS - 1; k >= N_TEXELS / 2; k--) { + int texel; + /* interpolate color */ + float dot = 0; + for (i = 0; i < n_comp; i++) { + dot += input[k][i] * iv[i]; + } + texel = (int)(dot + b); + if (texel < 0) { + texel = 0; + } else if (texel > n_vect) { + texel = n_vect; + } + /* add in texel */ + lohi <<= 2; + lohi |= texel; + } + + /* funky encoding for LSB of green */ + if (((lohi >> 1) & 1) != (((vec[3][GCOMP] ^ vec[2][GCOMP]) >> 2) & 1)) { + for (i = 0; i < n_comp; i++) { + vec[3][i] = input[minColR][i]; + vec[2][i] = input[maxColR][i]; + } + lohi = ~lohi; + } + + cc[1] = lohi; + } + + hi = 8 | (vec[3][GCOMP] & 4) | ((vec[1][GCOMP] >> 1) & 2); /* chroma = "1" */ + for (j = 2 * 2 - 1; j >= 0; j--) { + for (i = 0; i < n_comp; i++) { + /* add in colors */ + hi <<= 5; + hi |= vec[j][i] >> 3; + } + } + ((unsigned long long *)cc)[1] = hi; +} + + +static void fxt1_quantize (unsigned long *cc, const unsigned char *lines[], int comps) { - int trualpha = 0; + int trualpha; unsigned char reord[N_TEXELS][MAX_COMP]; unsigned char input[N_TEXELS][MAX_COMP]; int i, k, l; + memset(input, -1, sizeof(input)); + /* 8 texels each line */ for (l = 0; l < 4; l++) { for (k = 0; k < 4; k++) { for (i = 0; i < comps; i++) { input[k + l * 4][i] = *lines[l]++; } - for (; i < MAX_COMP; i++) { - input[k + l * 4][i] = 255; - } } - for (k = 0; k < 4; k++) { + for (; k < 8; k++) { for (i = 0; i < comps; i++) { - input[k + l * 4 + 16][i] = *lines[l]++; - } - for (; i < MAX_COMP; i++) { - input[k + l * 4 + 16][i] = 255; + input[k + l * 4 + 12][i] = *lines[l]++; } } } + /* block looks like this: + * 00, 01, 02, 03, 08, 09, 0a, 0b + * 10, 11, 12, 13, 18, 19, 1a, 1b + * 04, 05, 06, 07, 0c, 0d, 0e, 0f + * 14, 15, 16, 17, 1c, 1d, 1e, 1f + */ + /* [dBorca] * stupidity flows forth from this */ - + l = N_TEXELS; + trualpha = 0; if (comps == 4) { /* skip all transparent black texels */ l = 0; for (k = 0; k < N_TEXELS; k++) { - int t = 0; /* test all components against 0 */ - for (i = 0; i < comps; i++) { - reord[l][i] = input[k][i]; - t += input[k][i]; - } - if (t) { + if (!ISTBLACK(input[k])) { /* texel is not transparent black */ - if (reord[l][comps - 1] < 255) { + COPY_4UBV(reord[l], input[k]); + if (reord[l][ACOMP] < (255 - ALPHA_TS)) { /* non-opaque texel */ trualpha = !0; } l++; - } else { - /* transparent black texel */ - trualpha = !0; } } } +#if 0 if (trualpha) { fxt1_quantize_ALPHA0(cc, input, reord, l); + } else if (l == 0) { + cc[0] = cc[1] = cc[2] = -1; + cc[3] = 0; + } else if (l < N_TEXELS) { + fxt1_quantize_HI(cc, input, reord, l); } else { fxt1_quantize_CHROMA(cc, input); } +#else + if (trualpha) { + fxt1_quantize_ALPHA1(cc, input); + } else if (l == 0) { + cc[0] = cc[1] = cc[2] = -1; + cc[3] = 0; + } else if (l < N_TEXELS) { + fxt1_quantize_MIXED1(cc, input); + } else { + fxt1_quantize_MIXED0(cc, input); + } +#endif } @@ -578,7 +1415,7 @@ fxt1_encode (GLcontext *ctx, { const int comps = (srcFormat == GL_RGB) ? 3 : 4; unsigned int x, y; - const unsigned char *data = source; + const unsigned char *data; unsigned long *encoded = dest; GLubyte *newSource = NULL; @@ -597,14 +1434,17 @@ fxt1_encode (GLcontext *ctx, srcRowStride = comps * newWidth; } + data = source; destRowStride = (destRowStride - width * 2) / 4; for (y = 0; y < height; y += 4) { + unsigned int offs = 0 + (y + 0) * srcRowStride; for (x = 0; x < width; x += 8) { const unsigned char *lines[4]; - lines[0] = &data[x * comps + (y + 0) * srcRowStride]; - lines[1] = &data[x * comps + (y + 1) * srcRowStride]; - lines[2] = &data[x * comps + (y + 2) * srcRowStride]; - lines[3] = &data[x * comps + (y + 3) * srcRowStride]; + lines[0] = &data[offs]; + lines[1] = lines[0] + srcRowStride; + lines[2] = lines[1] + srcRowStride; + lines[3] = lines[2] + srcRowStride; + offs += 8 * comps; fxt1_quantize(encoded, lines, comps); /* 128 bits per 8x4 block = 4bpp */ encoded += 4; @@ -612,6 +1452,10 @@ fxt1_encode (GLcontext *ctx, encoded += destRowStride; } + if (newSource != NULL) { + FREE(newSource); + } + return 0; } |