summaryrefslogtreecommitdiff
path: root/src/mesa/shader/slang/library/slang_common_builtin.gc
diff options
context:
space:
mode:
authorMichal Krol <mjkrol@gmail.org>2006-02-13 11:47:41 +0000
committerMichal Krol <mjkrol@gmail.org>2006-02-13 11:47:41 +0000
commite7ffe4619fe5ba14630dd34aa01854061f7a613e (patch)
treed1020ee4eb0a23b403f3432aceb48dc10ff2591f /src/mesa/shader/slang/library/slang_common_builtin.gc
parent8a54fad6cda429bc28aea239d7f33cd3975865ce (diff)
More glsl code.
Diffstat (limited to 'src/mesa/shader/slang/library/slang_common_builtin.gc')
-rwxr-xr-xsrc/mesa/shader/slang/library/slang_common_builtin.gc2359
1 files changed, 1273 insertions, 1086 deletions
diff --git a/src/mesa/shader/slang/library/slang_common_builtin.gc b/src/mesa/shader/slang/library/slang_common_builtin.gc
index 0b3ed0e880..094bc79884 100755
--- a/src/mesa/shader/slang/library/slang_common_builtin.gc
+++ b/src/mesa/shader/slang/library/slang_common_builtin.gc
@@ -1,58 +1,34 @@
-//
+//
// TODO:
-// - implement sin, asin, acos, atan, pow, log2, floor, ceil,
// - implement texture1D, texture2D, texture3D, textureCube,
// - implement shadow1D, shadow2D,
// - implement noise1, noise2, noise3, noise4,
-//
+//
-//
+//
// From Shader Spec, ver. 1.10, rev. 59
-//
-// The following built-in constants are provided to vertex and fragment shaders.
-//
-
-//
-// Implementation dependent constants. The example values below
-// are the minimum values allowed for these maximums.
-//
-
-const int gl_MaxLights = 8; // GL 1.0
-const int gl_MaxClipPlanes = 6; // GL 1.0
-const int gl_MaxTextureUnits = 2; // GL 1.3
-const int gl_MaxTextureCoords = 2; // ARB_fragment_program
-const int gl_MaxVertexAttribs = 16; // ARB_vertex_shader
-const int gl_MaxVertexUniformComponents = 512; // ARB_vertex_shader
-const int gl_MaxVaryingFloats = 32; // ARB_vertex_shader
-const int gl_MaxVertexTextureImageUnits = 0; // ARB_vertex_shader
-const int gl_MaxCombinedTextureImageUnits = 2; // ARB_vertex_shader
-const int gl_MaxTextureImageUnits = 2; // ARB_fragment_shader
-const int gl_MaxFragmentUniformComponents = 64; // ARB_fragment_shader
-const int gl_MaxDrawBuffers = 1; // proposed ARB_draw_buffers
-
-//
-// As an aid to accessing OpenGL processing state, the following uniform variables are built into
-// the OpenGL Shading Language. All page numbers and notations are references to the 1.4
-// specification.
-//
-
-//
-// Matrix state. p. 31, 32, 37, 39, 40.
-//
+//
+
+const int gl_MaxLights = 8;
+const int gl_MaxClipPlanes = 6;
+const int gl_MaxTextureUnits = 8;
+const int gl_MaxTextureCoords = 8;
+const int gl_MaxVertexAttribs = 16;
+const int gl_MaxVertexUniformComponents = 512;
+const int gl_MaxVaryingFloats = 32;
+const int gl_MaxVertexTextureImageUnits = 0;
+const int gl_MaxCombinedTextureImageUnits = 2;
+const int gl_MaxTextureImageUnits = 2;
+const int gl_MaxFragmentUniformComponents = 64;
+const int gl_MaxDrawBuffers = 1;
uniform mat4 gl_ModelViewMatrix;
uniform mat4 gl_ProjectionMatrix;
uniform mat4 gl_ModelViewProjectionMatrix;
uniform mat4 gl_TextureMatrix[gl_MaxTextureCoords];
-//
-// Derived matrix state that provides inverse and transposed versions
-// of the matrices above. Poorly conditioned matrices may result
-// in unpredictable values in their inverse forms.
-//
-uniform mat3 gl_NormalMatrix; // transpose of the inverse of the
- // upper leftmost 3x3 of gl_ModelViewMatrix
+uniform mat3 gl_NormalMatrix;
uniform mat4 gl_ModelViewMatrixInverse;
uniform mat4 gl_ProjectionMatrixInverse;
@@ -69,34 +45,18 @@ uniform mat4 gl_ProjectionMatrixInverseTranspose;
uniform mat4 gl_ModelViewProjectionMatrixInverseTranspose;
uniform mat4 gl_TextureMatrixInverseTranspose[gl_MaxTextureCoords];
-//
-// Normal scaling p. 39.
-//
-
uniform float gl_NormalScale;
-//
-// Depth range in window coordinates, p. 33
-//
-
struct gl_DepthRangeParameters {
- float near; // n
- float far; // f
- float diff; // f - n
+ float near;
+ float far;
+ float diff;
};
uniform gl_DepthRangeParameters gl_DepthRange;
-//
-// Clip planes p. 42.
-//
-
uniform vec4 gl_ClipPlane[gl_MaxClipPlanes];
-//
-// Point Size, p. 66, 67.
-//
-
struct gl_PointParameters {
float size;
float sizeMin;
@@ -109,74 +69,56 @@ struct gl_PointParameters {
uniform gl_PointParameters gl_Point;
-//
-// Material State p. 50, 55.
-//
-
struct gl_MaterialParameters {
- vec4 emission; // Ecm
- vec4 ambient; // Acm
- vec4 diffuse; // Dcm
- vec4 specular; // Scm
- float shininess; // Srm
+ vec4 emission;
+ vec4 ambient;
+ vec4 diffuse;
+ vec4 specular;
+ float shininess;
};
uniform gl_MaterialParameters gl_FrontMaterial;
uniform gl_MaterialParameters gl_BackMaterial;
-//
-// Light State p 50, 53, 55.
-//
-
struct gl_LightSourceParameters {
- vec4 ambient; // Acli
- vec4 diffuse; // Dcli
- vec4 specular; // Scli
- vec4 position; // Ppli
- vec4 halfVector; // Derived: Hi
- vec3 spotDirection; // Sdli
- float spotExponent; // Srli
- float spotCutoff; // Crli
- // (range: [0.0,90.0], 180.0)
- float spotCosCutoff; // Derived: cos(Crli)
- // (range: [1.0,0.0],-1.0)
- float constantAttenuation; // K0
- float linearAttenuation; // K1
- float quadraticAttenuation; // K2
+ vec4 ambient;
+ vec4 diffuse;
+ vec4 specular;
+ vec4 position;
+ vec4 halfVector;
+ vec3 spotDirection;
+ float spotExponent;
+ float spotCutoff;
+ float spotCosCutoff;
+ float constantAttenuation;
+ float linearAttenuation;
+ float quadraticAttenuation;
};
uniform gl_LightSourceParameters gl_LightSource[gl_MaxLights];
struct gl_LightModelParameters {
- vec4 ambient; // Acs
+ vec4 ambient;
};
uniform gl_LightModelParameters gl_LightModel;
-//
-// Derived state from products of light and material.
-//
-
struct gl_LightModelProducts {
- vec4 sceneColor; // Derived. Ecm + Acm * Acs
+ vec4 sceneColor;
};
uniform gl_LightModelProducts gl_FrontLightModelProduct;
uniform gl_LightModelProducts gl_BackLightModelProduct;
struct gl_LightProducts {
- vec4 ambient; // Acm * Acli
- vec4 diffuse; // Dcm * Dcli
- vec4 specular; // Scm * Scli
+ vec4 ambient;
+ vec4 diffuse;
+ vec4 specular;
};
uniform gl_LightProducts gl_FrontLightProduct[gl_MaxLights];
uniform gl_LightProducts gl_BackLightProduct[gl_MaxLights];
-//
-// Texture Environment and Generation, p. 152, p. 40-42.
-//
-
uniform vec4 gl_TextureEnvColor[gl_MaxTextureImageUnits];
uniform vec4 gl_EyePlaneS[gl_MaxTextureCoords];
uniform vec4 gl_EyePlaneT[gl_MaxTextureCoords];
@@ -187,1224 +129,1469 @@ uniform vec4 gl_ObjectPlaneT[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneR[gl_MaxTextureCoords];
uniform vec4 gl_ObjectPlaneQ[gl_MaxTextureCoords];
-//
-// Fog p. 161
-//
-
struct gl_FogParameters {
vec4 color;
float density;
float start;
float end;
- float scale; // Derived: 1.0 / (end - start)
+ float scale;
};
uniform gl_FogParameters gl_Fog;
-//
-// The OpenGL Shading Language defines an assortment of built-in convenience functions for scalar
-// and vector operations. Many of these built-in functions can be used in more than one type
-// of shader, but some are intended to provide a direct mapping to hardware and so are available
-// only for a specific type of shader.
-//
-// The built-in functions basically fall into three categories:
-//
-// * They expose some necessary hardware functionality in a convenient way such as accessing
-// a texture map. There is no way in the language for these functions to be emulated by a shader.
-//
-// * They represent a trivial operation (clamp, mix, etc.) that is very simple for the user
-// to write, but they are very common and may have direct hardware support. It is a very hard
-// problem for the compiler to map expressions to complex assembler instructions.
-//
-// * They represent an operation graphics hardware is likely to accelerate at some point. The
-// trigonometry functions fall into this category.
-//
-// Many of the functions are similar to the same named ones in common C libraries, but they support
-// vector input as well as the more traditional scalar input.
-//
-// Applications should be encouraged to use the built-in functions rather than do the equivalent
-// computations in their own shader code since the built-in functions are assumed to be optimal
-// (e.g., perhaps supported directly in hardware).
-//
-// User code can replace built-in functions with their own if they choose, by simply re-declaring
-// and defining the same name and argument list.
-//
-
-//
+//
// 8.1 Angle and Trigonometry Functions
-//
-// Function parameters specified as angle are assumed to be in units of radians. In no case will
-// any of these functions result in a divide by zero error. If the divisor of a ratio is 0, then
-// results will be undefined.
-//
-// These all operate component-wise. The description is per component.
-//
-
-//
-// Converts degrees to radians and returns the result, i.e., result = PI*deg/180.
-//
+//
float radians (float deg) {
return 3.141593 * deg / 180.0;
-}
+}
+
vec2 radians (vec2 deg) {
- return vec2 (radians (deg.x), radians (deg.y));
-}
+ return vec2 (3.141593) * deg / vec2 (180.0);
+}
+
vec3 radians (vec3 deg) {
- return vec3 (radians (deg.x), radians (deg.y), radians (deg.z));
-}
+ return vec3 (3.141593) * deg / vec3 (180.0);
+}
+
vec4 radians (vec4 deg) {
- return vec4 (radians (deg.x), radians (deg.y), radians (deg.z), radians (deg.w));
+ return vec4 (3.141593) * deg / vec4 (180.0);
}
-//
-// Converts radians to degrees and returns the result, i.e., result = 180*rad/PI.
-//
-
float degrees (float rad) {
return 180.0 * rad / 3.141593;
-}
+}
+
vec2 degrees (vec2 rad) {
- return vec2 (degrees (rad.x), degrees (rad.y));
-}
+ return vec2 (180.0) * rad / vec2 (3.141593);
+}
+
vec3 degrees (vec3 rad) {
- return vec3 (degrees (rad.x), degrees (rad.y), degrees (rad.z));
-}
+ return vec3 (180.0) * rad / vec3 (3.141593);
+}
+
vec4 degrees (vec4 rad) {
- return vec4 (degrees (rad.x), degrees (rad.y), degrees (rad.z), degrees (rad.w));
+ return vec4 (180.0) * rad / vec4 (3.141593);
}
-//
-// The standard trigonometric sine function.
-//
-// XXX
-float sin (float angle) {
- return 0.0;
-}
+float sin (float angle) {
+ float x;
+ __asm float_sine x, angle;
+ return x;
+}
+
vec2 sin (vec2 angle) {
- return vec2 (sin (angle.x), sin (angle.y));
-}
+ vec2 u;
+ u.x = sin (angle.x);
+ u.y = sin (angle.y);
+ return u;
+}
+
vec3 sin (vec3 angle) {
- return vec3 (sin (angle.x), sin (angle.y), sin (angle.z));
-}
+ vec3 u;
+ u.x = sin (angle.x);
+ u.y = sin (angle.y);
+ u.z = sin (angle.z);
+ return u;
+}
+
vec4 sin (vec4 angle) {
- return vec4 (sin (angle.x), sin (angle.y), sin (angle.z), sin (angle.w));
+ vec4 u;
+ u.x = sin (angle.x);
+ u.y = sin (angle.y);
+ u.z = sin (angle.z);
+ u.w = sin (angle.w);
+ return u;
}
-//
-// The standard trigonometric cosine function.
-//
-
float cos (float angle) {
return sin (angle + 1.5708);
-}
+}
+
vec2 cos (vec2 angle) {
- return vec2 (cos (angle.x), cos (angle.y));
-}
+ vec2 u;
+ u.x = cos (angle.x);
+ u.y = cos (angle.y);
+ return u;
+}
+
vec3 cos (vec3 angle) {
- return vec3 (cos (angle.x), cos (angle.y), cos (angle.z));
-}
+ vec3 u;
+ u.x = cos (angle.x);
+ u.y = cos (angle.y);
+ u.z = cos (angle.z);
+ return u;
+}
+
vec4 cos (vec4 angle) {
- return vec4 (cos (angle.x), cos (angle.y), cos (angle.z), cos (angle.w));
+ vec4 u;
+ u.x = cos (angle.x);
+ u.y = cos (angle.y);
+ u.z = cos (angle.z);
+ u.w = cos (angle.w);
+ return u;
}
-//
-// The standard trigonometric tangent.
-//
-
float tan (float angle) {
return sin (angle) / cos (angle);
-}
+}
+
vec2 tan (vec2 angle) {
- return vec2 (tan (angle.x), tan (angle.y));
-}
+ vec2 u;
+ u.x = tan (angle.x);
+ u.y = tan (angle.y);
+ return u;
+}
+
vec3 tan (vec3 angle) {
- return vec3 (tan (angle.x), tan (angle.y), tan (angle.z));
-}
+ vec3 u;
+ u.x = tan (angle.x);
+ u.y = tan (angle.y);
+ u.z = tan (angle.z);
+ return u;
+}
+
vec4 tan (vec4 angle) {
- return vec4 (tan (angle.x), tan (angle.y), tan (angle.z), tan (angle.w));
+ vec4 u;
+ u.x = tan (angle.x);
+ u.y = tan (angle.y);
+ u.z = tan (angle.z);
+ u.w = tan (angle.w);
+ return u;
}
-//
-// Arc sine. Returns an angle whose sine is x. The range of values returned by this function is
-// [–PI/2, PI/2]. Results are undefined if |x| > 1.
-//
-// XXX
float asin (float x) {
- return 0.0;
-}
-vec2 asin (vec2 x) {
- return vec2 (asin (x.x), asin (x.y));
-}
-vec3 asin (vec3 x) {
- return vec3 (asin (x.x), asin (x.y), asin (x.z));
-}
-vec4 asin (vec4 x) {
- return vec4 (asin (x.x), asin (x.y), asin (x.z), asin (x.w));
+ float y;
+ __asm float_arcsine y, x;
+ return y;
+}
+
+vec2 asin (vec2 v) {
+ vec2 u;
+ u.x = asin (v.x);
+ u.y = asin (v.y);
+ return u;
+}
+
+vec3 asin (vec3 v) {
+ vec3 u;
+ u.x = asin (v.x);
+ u.y = asin (v.y);
+ u.z = asin (v.z);
+ return u;
+}
+
+vec4 asin (vec4 v) {
+ vec4 u;
+ u.x = asin (v.x);
+ u.y = asin (v.y);
+ u.z = asin (v.z);
+ u.w = asin (v.w);
+ return u;
}
-//
-// Arc cosine. Returns an angle whose cosine is x. The range of values returned by this function is
-// [0, PI]. Results are undefined if |x| > 1.
-//
-// XXX
float acos (float x) {
- return 0.0;
-}
-vec2 acos (vec2 x) {
- return vec2 (acos (x.x), acos (x.y));
-}
-vec3 acos (vec3 x) {
- return vec3 (acos (x.x), acos (x.y), acos (x.z));
-}
-vec4 acos (vec4 x) {
- return vec4 (acos (x.x), acos (x.y), acos (x.z), acos (x.w));
+ return 1.5708 - asin (x);
+}
+
+vec2 acos (vec2 v) {
+ vec2 u;
+ u.x = acos (v.x);
+ u.y = acos (v.y);
+ return u;
+}
+
+vec3 acos (vec3 v) {
+ vec3 u;
+ u.x = acos (v.x);
+ u.y = acos (v.y);
+ u.z = acos (v.z);
+ return u;
+}
+
+vec4 acos (vec4 v) {
+ vec4 u;
+ u.x = acos (v.x);
+ u.y = acos (v.y);
+ u.z = acos (v.z);
+ u.w = acos (v.w);
+ return u;
+}
+
+float atan (float y_over_x) {
+ float z;
+ __asm float_arctan z, y_over_x;
+ return z;
+}
+
+vec2 atan (vec2 y_over_x) {
+ vec2 u;
+ u.x = atan (y_over_x.x);
+ u.y = atan (y_over_x.y);
+ return u;
+}
+
+vec3 atan (vec3 y_over_x) {
+ vec3 u;
+ u.x = atan (y_over_x.x);
+ u.y = atan (y_over_x.y);
+ u.z = atan (y_over_x.z);
+ return u;
+}
+
+vec4 atan (vec4 y_over_x) {
+ vec4 u;
+ u.x = atan (y_over_x.x);
+ u.y = atan (y_over_x.y);
+ u.z = atan (y_over_x.z);
+ u.w = atan (y_over_x.w);
+ return u;
+}
+
+float atan (float y, float x) {
+ float z;
+ z = atan (y / x);
+ if (x < 0.0)
+ {
+ if (y < 0.0)
+ return z - 3.141593;
+ return z + 3.141593;
+ }
+ return z;
+}
+
+vec2 atan (vec2 u, vec2 v) {
+ vec2 t;
+ t.x = atan (u.x, v.x);
+ t.y = atan (u.y, v.y);
+ return t;
+}
+
+vec3 atan (vec3 u, vec3 v) {
+ vec3 t;
+ t.x = atan (u.x, v.x);
+ t.y = atan (u.y, v.y);
+ t.z = atan (u.z, v.z);
+ return t;
+}
+
+vec4 atan (vec4 u, vec4 v) {
+ vec4 t;
+ t.x = atan (u.x, v.x);
+ t.y = atan (u.y, v.y);
+ t.z = atan (u.z, v.z);
+ t.w = atan (u.w, v.w);
+ return t;
}
-//
-// Arc tangent. Returns an angle whose tangent is y/x. The signs of x and y are used to determine
-// what quadrant the angle is in. The range of values returned by this function is [–PI, PI].
-// Results are undefined if x and y are both 0.
-//
-// XXX
-float atan (float x, float y) {
- return 0.0;
-}
-vec2 atan (vec2 x, vec2 y) {
- return vec2 (atan (x.x, y.x), atan (x.y, y.y));
-}
-vec3 atan (vec3 x, vec3 y) {
- return vec3 (atan (x.x, y.x), atan (x.y, y.y), atan (x.z, y.z));
-}
-vec4 atan (vec4 x, vec4 y) {
- return vec4 (atan (x.x, y.x), atan (x.y, y.y), atan (x.z, y.z), atan (x.w, y.w));
-}
-
-//
-// Arc tangent. Returns an angle whose tangent is y_over_x. The range of values returned by this
-// function is [–PI/2, PI/2].
-//
-// XXX
-float atan (float y_over_x) {
- return 0.0;
-}
-vec2 atan (vec2 y_over_x) {
- return vec2 (atan (y_over_x.x), atan (y_over_x.y));
-}
-vec3 atan (vec3 y_over_x) {
- return vec3 (atan (y_over_x.x), atan (y_over_x.y), atan (y_over_x.z));
-}
-vec4 atan (vec4 y_over_x) {
- return vec4 (atan (y_over_x.x), atan (y_over_x.y), atan (y_over_x.z), atan (y_over_x.w));
-}
-
-//
+//
// 8.2 Exponential Functions
-//
-// These all operate component-wise. The description is per component.
-//
-
-//
-// Returns x raised to the y power, i.e., x^y.
-// Results are undefined if x < 0.
-// Results are undefined if x = 0 and y <= 0.
-//
-// XXX
-float pow (float x, float y) {
- return 0.0;
-}
-vec2 pow (vec2 x, vec2 y) {
- return vec2 (pow (x.x, y.x), pow (x.y, y.y));
-}
-vec3 pow (vec3 x, vec3 y) {
- return vec3 (pow (x.x, y.x), pow (x.y, y.y), pow (x.z, y.z));
-}
-vec4 pow (vec4 x, vec4 y) {
- return vec4 (pow (x.x, y.x), pow (x.y, y.y), pow (x.z, y.z), pow (x.w, y.w));
-}
+//
-//
-// Returns the natural exponentiation of x, i.e., e^x.
-//
+float pow (float x, float y) {
+ float p;
+ __asm float_power p, x, y;
+ return p;
+}
+
+vec2 pow (vec2 v, vec2 u) {
+ vec2 t;
+ t.x = pow (v.x, u.x);
+ t.y = pow (v.y, u.y);
+ return t;
+}
+
+vec3 pow (vec3 v, vec3 u) {
+ vec3 t;
+ t.x = pow (v.x, u.x);
+ t.y = pow (v.y, u.y);
+ t.z = pow (v.z, u.z);
+ return t;
+}
+
+vec4 pow (vec4 v, vec4 u) {
+ vec4 t;
+ t.x = pow (v.x, u.x);
+ t.y = pow (v.y, u.y);
+ t.z = pow (v.z, u.z);
+ t.w = pow (v.w, u.w);
+ return t;
+}
float exp (float x) {
return pow (2.71828183, x);
-}
-vec2 exp (vec2 x) {
- return vec2 (exp (x.x), exp (x.y));
-}
-vec3 exp (vec3 x) {
- return vec3 (exp (x.x), exp (x.y), exp (x.z));
-}
-vec4 exp (vec4 x) {
- return vec4 (exp (x.x), exp (x.y), exp (x.z), exp (x.w));
-}
-
-//
-// Returns the natural logarithm of x, i.e., returns the value y which satisfies the equation
-// x = e^y.
-// Results are undefined if x <= 0.
-//
-
+}
+
+vec2 exp (vec2 v) {
+ return pow (vec2 (2.71828183), v);
+}
+
+vec3 exp (vec3 v) {
+ return pow (vec3 (2.71828183), v);
+}
+
+vec4 exp (vec4 v) {
+ return pow (vec4 (2.71828183), v);
+}
+
+float log2 (float x) {
+ float y;
+ __asm float_log2 y, x;
+ return y;
+}
+
+vec2 log2 (vec2 v) {
+ vec2 u;
+ u.x = log2 (v.x);
+ u.y = log2 (v.y);
+ return u;
+}
+
+vec3 log2 (vec3 v) {
+ vec3 u;
+ u.x = log2 (v.x);
+ u.y = log2 (v.y);
+ u.z = log2 (v.z);
+ return u;
+}
+
+vec4 log2 (vec4 v) {
+ vec4 u;
+ u.x = log2 (v.x);
+ u.y = log2 (v.y);
+ u.z = log2 (v.z);
+ u.w = log2 (v.w);
+ return u;
+}
+
float log (float x) {
return log2 (x) / log2 (2.71828183);
-}
-vec2 log (vec2 x) {
- return vec2 (log (x.x), log (x.y));
-}
-vec3 log (vec3 x) {
- return vec3 (log (x.x), log (x.y), log (x.z));
-}
-vec4 log (vec4 x) {
- return vec4 (log (x.x), log (x.y), log (x.z), log (x.w));
-}
+}
+
+vec2 log (vec2 v) {
+ return log2 (v) / log2 (vec2 (2.71828183));
+}
+
+vec3 log (vec3 v) {
+ return log2 (v) / log2 (vec3 (2.71828183));
+}
-//
-// Returns 2 raised to the x power, i.e., 2^x
-//
+vec4 log (vec4 v) {
+ return log2 (v) / log2 (vec4 (2.71828183));
+}
float exp2 (float x) {
return pow (2.0, x);
-}
-vec2 exp2 (vec2 x) {
- return vec2 (exp2 (x.x), exp2 (x.y));
-}
-vec3 exp2 (vec3 x) {
- return vec3 (exp2 (x.x), exp2 (x.y), exp2 (x.z));
-}
-vec4 exp2 (vec4 x) {
- return vec4 (exp2 (x.x), exp2 (x.y), exp2 (x.z), exp2 (x.w));
-}
+}
-//
-// Returns the base 2 logarithm of x, i.e., returns the value y which satisfies the equation
-// x = 2^y.
-// Results are undefined if x <= 0.
-//
-// XXX
-float log2 (float x) {
- return 0.0;
-}
-vec2 log2 (vec2 x) {
- return vec2 (log2 (x.x), log2 (x.y));
-}
-vec3 log2 (vec3 x) {
- return vec3 (log2 (x.x), log2 (x.y), log2 (x.z));
-}
-vec4 log2 (vec4 x) {
- return vec4 (log2 (x.x), log2 (x.y), log2 (x.z), log2 (x.w));
-}
+vec2 exp2 (vec2 v) {
+ return pow (vec2 (2.0), v);
+}
-//
-// Returns the positive square root of x.
-// Results are undefined if x < 0.
-//
+vec3 exp2 (vec3 v) {
+ return pow (vec3 (2.0), v);
+}
+
+vec4 exp2 (vec4 v) {
+ return pow (vec4 (2.0), v);
+}
float sqrt (float x) {
return pow (x, 0.5);
-}
-vec2 sqrt (vec2 x) {
- return vec2 (sqrt (x.x), sqrt (x.y));
-}
-vec3 sqrt (vec3 x) {
- return vec3 (sqrt (x.x), sqrt (x.y), sqrt (x.z));
-}
-vec4 sqrt (vec4 x) {
- return vec4 (sqrt (x.x), sqrt (x.y), sqrt (x.z), sqrt (x.w));
-}
+}
-//
-// Returns the reciprocal of the positive square root of x.
-// Results are undefined if x <= 0.
-//
+vec2 sqrt (vec2 v) {
+ return pow (v, vec2 (0.5));
+}
+
+vec3 sqrt (vec3 v) {
+ return pow (v, vec3 (0.5));
+}
+
+vec4 sqrt (vec4 v) {
+ return pow (v, vec4 (0.5));
+}
float inversesqrt (float x) {
return 1.0 / sqrt (x);
-}
-vec2 inversesqrt (vec2 x) {
- return vec2 (inversesqrt (x.x), inversesqrt (x.y));
-}
-vec3 inversesqrt (vec3 x) {
- return vec3 (inversesqrt (x.x), inversesqrt (x.y), inversesqrt (x.z));
-}
-vec4 inversesqrt (vec4 x) {
- return vec4 (inversesqrt (x.x), inversesqrt (x.y), inversesqrt (x.z), inversesqrt (x.w));
+}
+
+vec2 inversesqrt (vec2 v) {
+ return vec2 (1.0) / sqrt (v);
+}
+
+vec3 inversesqrt (vec3 v) {
+ return vec3 (1.0) / sqrt (v);
+}
+
+vec4 inversesqrt (vec4 v) {
+ return vec4 (1.0) / sqrt (v);
}
-//
+//
// 8.3 Common Functions
-//
-// These all operate component-wise. The description is per component.
-//
-
-//
-// Returns x if x >= 0, otherwise it returns –x
-//
+//
float abs (float x) {
return x >= 0.0 ? x : -x;
-}
-vec2 abs (vec2 x) {
- return vec2 (abs (x.x), abs (x.y));
-}
-vec3 abs (vec3 x) {
- return vec3 (abs (x.x), abs (x.y), abs (x.z));
-}
-vec4 abs (vec4 x) {
- return vec4 (abs (x.x), abs (x.y), abs (x.z), abs (x.w));
+}
+
+vec2 abs (vec2 v) {
+ vec2 u;
+ u.x = abs (v.x);
+ u.y = abs (v.y);
+ return u;
+}
+
+vec3 abs (vec3 v) {
+ vec3 u;
+ u.x = abs (v.x);
+ u.y = abs (v.y);
+ u.z = abs (v.z);
+ return u;
+}
+
+vec4 abs (vec4 v) {
+ vec4 u;
+ u.x = abs (v.x);
+ u.y = abs (v.y);
+ u.z = abs (v.z);
+ u.w = abs (v.w);
+ return u;
}
-//
-// Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if x < 0
-//
-
float sign (float x) {
return x > 0.0 ? 1.0 : x < 0.0 ? -1.0 : 0.0;
-}
-vec2 sign (vec2 x) {
- return vec2 (sign (x.x), sign (x.y));
-}
-vec3 sign (vec3 x) {
- return vec3 (sign (x.x), sign (x.y), sign (x.z));
-}
-vec4 sign (vec4 x) {
- return vec4 (sign (x.x), sign (x.y), sign (x.z), sign (x.w));
-}
-
-//
-// Returns a value equal to the nearest integer that is less than or equal to x
-//
-// XXX
-float floor (float x) {
- return 0.0;
-}
-vec2 floor (vec2 x) {
- return vec2 (floor (x.x), floor (x.y));
-}
-vec3 floor (vec3 x) {
- return vec3 (floor (x.x), floor (x.y), floor (x.z));
-}
-vec4 floor (vec4 x) {
- return vec4 (floor (x.x), floor (x.y), floor (x.z), floor (x.w));
-}
+}
+
+vec2 sign (vec2 v) {
+ vec2 u;
+ u.x = sign (v.x);
+ u.y = sign (v.y);
+ return u;
+}
+
+vec3 sign (vec3 v) {
+ vec3 u;
+ u.x = sign (v.x);
+ u.y = sign (v.y);
+ u.z = sign (v.z);
+ return u;
+}
+
+vec4 sign (vec4 v) {
+ vec4 u;
+ u.x = sign (v.x);
+ u.y = sign (v.y);
+ u.z = sign (v.z);
+ u.w = sign (v.w);
+ return u;
+}
+
+float floor (float x) {
+ float y;
+ __asm float_floor y, x;
+ return y;
+}
+
+vec2 floor (vec2 v) {
+ vec2 u;
+ u.x = floor (v.x);
+ u.y = floor (v.y);
+ return u;
+}
+
+vec3 floor (vec3 v) {
+ vec3 u;
+ u.x = floor (v.x);
+ u.y = floor (v.y);
+ u.z = floor (v.z);
+ return u;
+}
+
+vec4 floor (vec4 v) {
+ vec4 u;
+ u.x = floor (v.x);
+ u.y = floor (v.y);
+ u.z = floor (v.z);
+ u.w = floor (v.w);
+ return u;
+}
+
+float ceil (float x) {
+ float y;
+ __asm float_ceil y, x;
+ return y;
+}
+
+vec2 ceil (vec2 v) {
+ vec2 u;
+ u.x = ceil (v.x);
+ u.y = ceil (v.y);
+ return u;
+}
+
+vec3 ceil (vec3 v) {
+ vec3 u;
+ u.x = ceil (v.x);
+ u.y = ceil (v.y);
+ u.z = ceil (v.z);
+ return u;
+}
+
+vec4 ceil (vec4 v) {
+ vec4 u;
+ u.x = ceil (v.x);
+ u.y = ceil (v.y);
+ u.z = ceil (v.z);
+ u.w = ceil (v.w);
+ return u;
+}
+
+float fract (float x) {
+ return x - floor (x);
+}
+
+vec2 fract (vec2 v) {
+ return v - floor (v);
+}
+
+vec3 fract (vec3 v) {
+ return v - floor (v);
+}
+
+vec4 fract (vec4 v) {
+ return v - floor (v);
+}
-//
-// Returns a value equal to the nearest integer that is greater than or equal to x
-//
-// XXX
-float ceil (float x) {
- return 0.0;
-}
-vec2 ceil (vec2 x) {
- return vec2 (ceil (x.x), ceil (x.y));
-}
-vec3 ceil (vec3 x) {
- return vec3 (ceil (x.x), ceil (x.y), ceil (x.z));
-}
-vec4 ceil (vec4 x) {
- return vec4 (ceil (x.x), ceil (x.y), ceil (x.z), ceil (x.w));
-}
+float mod (float x, float y) {
+ return x - y * floor (x / y);
+}
-//
-// Returns x – floor (x)
-//
+vec2 mod (vec2 v, float u) {
+ return v - u * floor (v / u);
+}
-float fract (float x) {
- return x - floor (x);
-}
-vec2 fract (vec2 x) {
- return vec2 (fract (x.x), fract (x.y));
-}
-vec3 fract (vec3 x) {
- return vec3 (fract (x.x), fract (x.y), fract (x.z));
-}
-vec4 fract (vec4 x) {
- return vec4 (fract (x.x), fract (x.y), fract (x.z), fract (x.w));
-}
+vec3 mod (vec3 v, float u) {
+ return v - u * floor (v / u);
+}
-//
-// Modulus. Returns x – y * floor (x/y)
-//
+vec4 mod (vec4 v, float u) {
+ return v - u * floor (v / u);
+}
-float mod (float x, float y) {
- return x - y * floor (x / y);
-}
-vec2 mod (vec2 x, float y) {
- return vec2 (mod (x.x, y), mod (x.y, y));
-}
-vec3 mod (vec3 x, float y) {
- return vec3 (mod (x.x, y), mod (x.y, y), mod (x.z, y));
-}
-vec4 mod (vec4 x, float y) {
- return vec4 (mod (x.x, y), mod (x.y, y), mod (x.z, y), mod (x.w, y));
-}
-vec2 mod (vec2 x, vec2 y) {
- return vec2 (mod (x.x, y.x), mod (x.y, y.y));
-}
-vec3 mod (vec3 x, vec3 y) {
- return vec3 (mod (x.x, y.x), mod (x.y, y.y), mod (x.z, y.z));
-}
-vec4 mod (vec4 x, vec4 y) {
- return vec4 (mod (x.x, y.x), mod (x.y, y.y), mod (x.z, y.z), mod (x.w, y.w));
-}
+vec2 mod (vec2 v, vec2 u) {
+ return v - u * floor (v / u);
+}
-//
-// Returns y if y < x, otherwise it returns x
-//
+vec3 mod (vec3 v, vec3 u) {
+ return v - u * floor (v / u);
+}
-float min (float x, float y) {
- return y < x ? y : x;
-}
-vec2 min (vec2 x, float y) {
- return vec2 (min (x.x, y), min (x.y, y));
-}
-vec3 min (vec3 x, float y) {
- return vec3 (min (x.x, y), min (x.y, y), min (x.z, y));
-}
-vec4 min (vec4 x, float y) {
- return vec4 (min (x.x, y), min (x.y, y), min (x.z, y), min (x.w, y));
-}
-vec2 min (vec2 x, vec2 y) {
- return vec2 (min (x.x, y.x), min (x.y, y.y));
-}
-vec3 min (vec3 x, vec3 y) {
- return vec3 (min (x.x, y.x), min (x.y, y.y), min (x.z, y.z));
-}
-vec4 min (vec4 x, vec4 y) {
- return vec4 (min (x.x, y.x), min (x.y, y.y), min (x.z, y.z), min (x.w, y.w));
+vec4 mod (vec4 v, vec4 u) {
+ return v - u * floor (v / u);
}
-//
-// Returns y if x < y, otherwise it returns x
-//
+float min (float x, float y) {
+ return x < y ? x : y;
+}
+
+vec2 min (vec2 v, vec2 u) {
+ vec2 t;
+ t.x = min (v.x, u.x);
+ t.y = min (v.y, u.y);
+ return t;
+}
+
+vec3 min (vec3 v, vec3 u) {
+ vec3 t;
+ t.x = min (v.x, u.x);
+ t.y = min (v.y, u.y);
+ t.z = min (v.z, u.z);
+ return t;
+}
+
+vec4 min (vec4 v, vec4 u) {
+ vec4 t;
+ t.x = min (v.x, u.x);
+ t.y = min (v.y, u.y);
+ t.z = min (v.z, u.z);
+ t.w = min (v.w, u.w);
+ return t;
+}
+
+vec2 min (vec2 v, float y) {
+ return min (v, vec2 (y));
+}
+
+vec3 min (vec3 v, float y) {
+ return min (v, vec3 (y));
+}
+
+vec4 min (vec4 v, float y) {
+ return min (v, vec4 (y));
+}
float max (float x, float y) {
- return min (y, x);
-}
-vec2 max (vec2 x, float y) {
- return vec2 (max (x.x, y), max (x.y, y));
-}
-vec3 max (vec3 x, float y) {
- return vec3 (max (x.x, y), max (x.y, y), max (x.z, y));
-}
-vec4 max (vec4 x, float y) {
- return vec4 (max (x.x, y), max (x.y, y), max (x.z, y), max (x.w, y));
-}
-vec2 max (vec2 x, vec2 y) {
- return vec2 (max (x.x, y.x), max (x.y, y.y));
-}
-vec3 max (vec3 x, vec3 y) {
- return vec3 (max (x.x, y.x), max (x.y, y.y), max (x.z, y.z));
-}
-vec4 max (vec4 x, vec4 y) {
- return vec4 (max (x.x, y.x), max (x.y, y.y), max (x.z, y.z), max (x.w, y.w));
-}
-
-//
-// Returns min (max (x, minVal), maxVal)
-//
-// Note that colors and depths written by fragment shaders will be clamped by the implementation
-// after the fragment shader runs.
-//
+ return x < y ? y : x;
+}
+
+vec2 max (vec2 v, vec2 u) {
+ vec2 t;
+ t.x = max (v.x, u.x);
+ t.y = max (v.y, u.y);
+ return t;
+}
+
+vec3 max (vec3 v, vec3 u) {
+ vec3 t;
+ t.x = max (v.x, u.x);
+ t.y = max (v.y, u.y);
+ t.z = max (v.z, u.z);
+ return t;
+}
+
+vec4 max (vec4 v, vec4 u) {
+ vec4 t;
+ t.x = max (v.x, u.x);
+ t.y = max (v.y, u.y);
+ t.z = max (v.z, u.z);
+ t.w = max (v.w, u.w);
+ return t;
+}
+
+vec2 max (vec2 v, float y) {
+ return max (v, vec2 (y));
+}
+
+vec3 max (vec3 v, float y) {
+ return max (v, vec3 (y));
+}
+
+vec4 max (vec4 v, float y) {
+ return max (v, vec4 (y));
+}
float clamp (float x, float minVal, float maxVal) {
return min (max (x, minVal), maxVal);
-}
+}
+
vec2 clamp (vec2 x, float minVal, float maxVal) {
- return vec2 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal));
-}
+ return min (max (x, minVal), maxVal);
+}
+
vec3 clamp (vec3 x, float minVal, float maxVal) {
- return vec3 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal),
- clamp (x.z, minVal, maxVal));
-}
+ return min (max (x, minVal), maxVal);
+}
+
vec4 clamp (vec4 x, float minVal, float maxVal) {
- return vec4 (clamp (x.x, minVal, maxVal), clamp (x.y, minVal, maxVal),
- clamp (x.z, minVal, maxVal), clamp (x.w, minVal, maxVal));
-}
+ return min (max (x, minVal), maxVal);
+}
+
vec2 clamp (vec2 x, vec2 minVal, vec2 maxVal) {
- return vec2 (clamp (x.x, minVal.x, maxVal.x), clamp (x.y, minVal.y, maxVal.y));
-}
+ return min (max (x, minVal), maxVal);
+}
+
vec3 clamp (vec3 x, vec3 minVal, vec3 maxVal) {
- return vec3 (clamp (x.x, minVal.x, maxVal.x), clamp (x.y, minVal.y, maxVal.y),
- clamp (x.z, minVal.z, maxVal.z));
-}
+ return min (max (x, minVal), maxVal);
+}
+
vec4 clamp (vec4 x, vec4 minVal, vec4 maxVal) {
- return vec4 (clamp (x.x, minVal.x, maxVal.y), clamp (x.y, minVal.y, maxVal.y),
- clamp (x.z, minVal.z, maxVal.z), clamp (x.w, minVal.w, maxVal.w));
+ return min (max (x, minVal), maxVal);
}
-//
-// Returns x * (1 – a) + y * a, i.e., the linear blend of x and y
-//
-
float mix (float x, float y, float a) {
return x * (1.0 - a) + y * a;
-}
+}
+
vec2 mix (vec2 x, vec2 y, float a) {
- return vec2 (mix (x.x, y.x, a), mix (x.y, y.y, a));
-}
+ return x * (1.0 - a) + y * a;
+}
+
vec3 mix (vec3 x, vec3 y, float a) {
- return vec3 (mix (x.x, y.x, a), mix (x.y, y.y, a), mix (x.z, y.z, a));
-}
+ return x * (1.0 - a) + y * a;
+}
+
vec4 mix (vec4 x, vec4 y, float a) {
- return vec4 (mix (x.x, y.x, a), mix (x.y, y.y, a), mix (x.z, y.z, a), mix (x.w, y.w, a));
-}
+ return x * (1.0 - a) + y * a;
+}
+
vec2 mix (vec2 x, vec2 y, vec2 a) {
- return vec2 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y));
-}
+ return x * (1.0 - a) + y * a;
+}
+
vec3 mix (vec3 x, vec3 y, vec3 a) {
- return vec3 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y), mix (x.z, y.z, a.z));
-}
+ return x * (1.0 - a) + y * a;
+}
+
vec4 mix (vec4 x, vec4 y, vec4 a) {
- return vec4 (mix (x.x, y.x, a.x), mix (x.y, y.y, a.y), mix (x.z, y.z, a.z),
- mix (x.w, y.w, a.w));
+ return x * (1.0 - a) + y * a;
}
-//
-// Returns 0.0 if x < edge, otherwise it returns 1.0
-//
-
float step (float edge, float x) {
return x < edge ? 0.0 : 1.0;
-}
-vec2 step (float edge, vec2 x) {
- return vec2 (step (edge, x.x), step (edge, x.y));
-}
-vec3 step (float edge, vec3 x) {
- return vec3 (step (edge, x.x), step (edge, x.y), step (edge, x.z));
-}
-vec4 step (float edge, vec4 x) {
- return vec4 (step (edge, x.x), step (edge, x.y), step (edge, x.z), step (edge, x.w));
-}
-vec2 step (vec2 edge, vec2 x) {
- return vec2 (step (edge.x, x.x), step (edge.y, x.y));
-}
-vec3 step (vec3 edge, vec3 x) {
- return vec3 (step (edge.x, x.x), step (edge.y, x.y), step (edge.z, x.z));
-}
-vec4 step (vec4 edge, vec4 x) {
- return vec4 (step (edge.x, x.x), step (edge.y, x.y), step (edge.z, x.z), step (edge.w, x.w));
-}
-
-//
-// Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and performs smooth Hermite interpolation
-// between 0 and 1 when edge0 < x < edge1. This is useful in cases where you would want a threshold
-// function with a smooth transition. This is equivalent to:
-// <type> t;
-// t = clamp ((x – edge0) / (edge1 – edge0), 0, 1);
-// return t * t * (3 – 2 * t);
-//
+}
+
+vec2 step (vec2 edge, vec2 v) {
+ vec2 u;
+ u.x = step (edge.x, v.x);
+ u.y = step (edge.y, v.y);
+ return u;
+}
+
+vec3 step (vec3 edge, vec3 v) {
+ vec3 u;
+ u.x = step (edge.x, v.x);
+ u.y = step (edge.y, v.y);
+ u.z = step (edge.z, v.z);
+ return u;
+}
+
+vec4 step (vec4 edge, vec4 v) {
+ vec4 u;
+ u.x = step (edge.x, v.x);
+ u.y = step (edge.y, v.y);
+ u.z = step (edge.z, v.z);
+ u.w = step (edge.w, v.w);
+ return u;
+}
+
+vec2 step (float edge, vec2 v) {
+ return step (vec2 (edge), v);
+}
+
+vec3 step (float edge, vec3 v) {
+ return step (vec3 (edge), v);
+}
+
+vec4 step (float edge, vec4 v) {
+ return step (vec4 (edge), v);
+}
float smoothstep (float edge0, float edge1, float x) {
- const float t = clamp ((x - edge0) / (edge1 - edge0), 0.0, 1.0);
+ float t;
+ t = clamp ((x - edge0) / (edge1 - edge0), 0.0, 1.0);
return t * t * (3.0 - 2.0 * t);
-}
-vec2 smoothstep (float edge0, float edge1, vec2 x) {
- return vec2 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y));
-}
-vec3 smoothstep (float edge0, float edge1, vec3 x) {
- return vec3 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y),
- smoothstep (edge0, edge1, x.z));
-}
-vec4 smoothstep (float edge0, float edge1, vec4 x) {
- return vec4 (smoothstep (edge0, edge1, x.x), smoothstep (edge0, edge1, x.y),
- smoothstep (edge0, edge1, x.z), smoothstep (edge0, edge1, x.w));
-}
-vec2 smoothstep (vec2 edge0, vec2 edge1, vec2 x) {
- return vec2 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y));
-}
-vec3 smoothstep (vec3 edge0, vec3 edge1, vec3 x) {
- return vec3 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y),
- smoothstep (edge0.z, edge1.z, x.z));
-}
-vec4 smoothstep (vec4 edge0, vec4 edge1, vec4 x) {
- return vec4 (smoothstep (edge0.x, edge1.x, x.x), smoothstep (edge0.y, edge1.y, x.y),
- smoothstep (edge0.z, edge1.z, x.z), smoothstep (edge0.w, edge1.w, x.w));
-}
+}
+
+vec2 smoothstep (vec2 edge0, vec2 edge1, vec2 v) {
+ vec2 u;
+ u.x = smoothstep (edge0.x, edge1.x, v.x);
+ u.y = smoothstep (edge0.y, edge1.y, v.y);
+ return u;
+}
+
+vec3 smoothstep (vec3 edge0, vec3 edge1, vec3 v) {
+ vec3 u;
+ u.x = smoothstep (edge0.x, edge1.x, v.x);
+ u.y = smoothstep (edge0.y, edge1.y, v.y);
+ u.z = smoothstep (edge0.z, edge1.z, v.z);
+ return u;
+}
+
+vec4 smoothstep (vec4 edge0, vec4 edge1, vec4 v) {
+ vec4 u;
+ u.x = smoothstep (edge0.x, edge1.x, v.x);
+ u.y = smoothstep (edge0.y, edge1.y, v.y);
+ u.z = smoothstep (edge0.z, edge1.z, v.z);
+ u.w = smoothstep (edge0.w, edge1.w, v.w);
+ return u;
+}
+
+vec2 smoothstep (float edge0, float edge1, vec2 v) {
+ vec2 u;
+ u.x = smoothstep (edge0, edge1, v.x);
+ u.y = smoothstep (edge0, edge1, v.y);
+ return u;
+}
+
+vec3 smoothstep (float edge0, float edge1, vec3 v) {
+ vec3 u;
+ u.x = smoothstep (edge0, edge1, v.x);
+ u.y = smoothstep (edge0, edge1, v.y);
+ u.z = smoothstep (edge0, edge1, v.z);
+ return u;
+}
+
+vec4 smoothstep (float edge0, float edge1, vec4 v) {
+ vec4 u;
+ u.x = smoothstep (edge0, edge1, v.x);
+ u.y = smoothstep (edge0, edge1, v.y);
+ u.z = smoothstep (edge0, edge1, v.z);
+ u.w = smoothstep (edge0, edge1, v.w);
+ return u;
+}
-//
+//
// 8.4 Geometric Functions
-//
-// These operate on vectors as vectors, not component-wise.
-//
-
-//
-// Returns the dot product of x and y, i.e., result = x[0] * y[0] + x[1] * y[1] + ...
-//
+//
float dot (float x, float y) {
return x * y;
-}
-float dot (vec2 x, vec2 y) {
- return dot (x.x, y.x) + dot (x.y, y.y);
-}
-float dot (vec3 x, vec3 y) {
- return dot (x.x, y.x) + dot (x.y, y.y) + dot (x.z, y.z);
-}
-float dot (vec4 x, vec4 y) {
- return dot (x.x, y.x) + dot (x.y, y.y) + dot (x.z, y.z) + dot (x.w, y.w);
-}
+}
-//
-// Returns the length of vector x, i.e., sqrt (x[0] * x[0] + x[1] * x[1] + ...)
-//
+float dot (vec2 v, vec2 u) {
+ return v.x * u.x + v.y * u.y;
+}
-float length (float x) {
- return sqrt (dot (x, x));
-}
-float length (vec2 x) {
- return sqrt (dot (x, x));
-}
-float length (vec3 x) {
- return sqrt (dot (x, x));
+float dot (vec3 v, vec3 u) {
+ return v.x * u.x + v.y * u.y + v.z * u.z;
+}
+
+float dot (vec4 v, vec4 u) {
+ return v.x * u.x + v.y * u.y + v.z * u.z + v.w * u.w;
}
-float length (vec4 x) {
+
+float length (float x) {
return sqrt (dot (x, x));
-}
+}
-//
-// Returns the distance between p0 and p1, i.e. length (p0 – p1)
-//
+float length (vec2 v) {
+ return sqrt (dot (v, v));
+}
-float distance (float x, float y) {
- return length (x - y);
-}
-float distance (vec2 x, vec2 y) {
- return length (x - y);
-}
-float distance (vec3 x, vec3 y) {
- return length (x - y);
+float length (vec3 v) {
+ return sqrt (dot (v, v));
+}
+
+float length (vec4 v) {
+ return sqrt (dot (v, v));
}
-float distance (vec4 x, vec4 y) {
+
+float distance (float x, float y) {
return length (x - y);
-}
+}
+
+float distance (vec2 v, vec2 u) {
+ return length (v - u);
+}
-//
-// Returns the cross product of x and y, i.e.
-// result.0 = x[1] * y[2] - y[1] * x[2]
-// result.1 = x[2] * y[0] - y[2] * x[0]
-// result.2 = x[0] * y[1] - y[0] * x[1]
-//
+float distance (vec3 v, vec3 u) {
+ return length (v - u);
+}
-vec3 cross (vec3 x, vec3 y) {
- return vec3 (x.y * y.z - y.y * x.z, x.z * y.x - y.z * x.x, x.x * y.y - y.x * x.y);
+float distance (vec4 v, vec4 u) {
+ return length (v - u);
}
-//
-// Returns a vector in the same direction as x but with a length of 1.
-//
+vec3 cross (vec3 v, vec3 u) {
+ vec3 t;
+ t.x = v.y * u.z - u.y * v.z;
+ t.y = v.z * u.x - u.z * v.x;
+ t.z = v.x * u.y - u.x * v.y;
+ return t;
+}
float normalize (float x) {
return 1.0;
-}
-vec2 normalize (vec2 x) {
- return x / length (x);
-}
-vec3 normalize (vec3 x) {
- return x / length (x);
-}
-vec4 normalize (vec4 x) {
- return x / length (x);
-}
+}
+
+vec2 normalize (vec2 v) {
+ return v / length (v);
+}
-//
-// If dot (Nref, I) < 0 return N otherwise return –N
-//
+vec3 normalize (vec3 v) {
+ return v / length (v);
+}
+
+vec4 normalize (vec4 v) {
+ return v / length (v);
+}
float faceforward (float N, float I, float Nref) {
return dot (Nref, I) < 0.0 ? N : -N;
-}
+}
+
vec2 faceforward (vec2 N, vec2 I, vec2 Nref) {
return dot (Nref, I) < 0.0 ? N : -N;
-}
+}
+
vec3 faceforward (vec3 N, vec3 I, vec3 Nref) {
return dot (Nref, I) < 0.0 ? N : -N;
-}
+}
+
vec4 faceforward (vec4 N, vec4 I, vec4 Nref) {
return dot (Nref, I) < 0.0 ? N : -N;
}
-//
-// For the incident vector I and surface orientation N, returns the reflection direction:
-// result = I - 2 * dot (N, I) * N
-// N must already be normalized in order to achieve the desired result.
-//
-
float reflect (float I, float N) {
return I - 2.0 * dot (N, I) * N;
-}
+}
+
vec2 reflect (vec2 I, vec2 N) {
return I - 2.0 * dot (N, I) * N;
-}
+}
+
vec3 reflect (vec3 I, vec3 N) {
return I - 2.0 * dot (N, I) * N;
-}
+}
+
vec4 reflect (vec4 I, vec4 N) {
return I - 2.0 * dot (N, I) * N;
}
-//
-// For the incident vector I and surface normal N, and the ratio of inidices of refraction eta,
-// return the refraction vector. The returned result is computed by
-//
-// k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I))
-// if (k < 0.0)
-// result = genType (0.0)
-// else
-// result = eta * I - (eta * dot (N, I) + sqrt (k)) * N
-//
-// The input parameters for the incident vector I and the surface normal N must already be
-// normalized to get the desired results.
-//
-
float refract (float I, float N, float eta) {
- const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
+ float k;
+ k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
if (k < 0.0)
- return 0.0;
+ return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
-}
+}
+
vec2 refract (vec2 I, vec2 N, float eta) {
- const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
- if (k < 0.0)
- return vec2 (0.0);
+ float k;
+ k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
+ if (k < 0.0)
+ return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
-}
+}
+
vec3 refract (vec3 I, vec3 N, float eta) {
- const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
- if (k < 0.0)
- return vec3 (0.0);
+ float k;
+ k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
+ if (k < 0.0)
+ return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
-}
+}
+
vec4 refract (vec4 I, vec4 N, float eta) {
- const float k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
- if (k < 0.0)
- return vec4 (0.0);
+ float k;
+ k = 1.0 - eta * eta * (1.0 - dot (N, I) * dot (N, I));
+ if (k < 0.0)
+ return 0.0;
return eta * I - (eta * dot (N, I) + sqrt (k)) * N;
}
-//
+//
// 8.5 Matrix Functions
-//
-
-//
-// Multiply matrix x by matrix y component-wise, i.e., result[i][j] is the scalar product
-// of x[i][j] and y[i][j].
-// Note: to get linear algebraic matrix multiplication, use the multiply operator (*).
-//
-
-mat2 matrixCompMult (mat2 x, mat2 y) {
- return mat2 (
- x[0].x * y[0].x, x[0].y * y[0].y,
- x[1].x * y[1].x, x[1].y * y[1].y
- );
-}
-mat3 matrixCompMult (mat3 x, mat3 y) {
- return mat4 (
- x[0].x * y[0].x, x[0].y * y[0].y, x[0].z * y[0].z,
- x[1].x * y[1].x, x[1].y * y[1].y, x[1].z * y[1].z,
- x[2].x * y[2].x, x[2].y * y[2].y, x[2].z * y[2].z
- );
-}
-mat4 matrixCompMult (mat4 x, mat4 y) {
- return mat4 (
- x[0].x * y[0].x, x[0].y * y[0].y, x[0].z * y[0].z + x[0].w * y[0].w,
- x[1].x * y[1].x, x[1].y * y[1].y, x[1].z * y[1].z + x[1].w * y[1].w,
- x[2].x * y[2].x, x[2].y * y[2].y, x[2].z * y[2].z + x[2].w * y[2].w,
- x[3].x * y[3].x, x[3].y * y[3].y, x[3].z * y[3].z + x[3].w * y[3].w
- );
-}
-
-//
-// 8.6 Vector Relational Functions
-//
-// Relational and equality operators (<, <=, >, >=, ==, !=) are defined (or reserved) to produce
-// scalar Boolean results.
-//
-
-//
-// Returns the component-wise compare of x < y.
-//
+//
-bvec2 lessThan (vec2 x, vec2 y) {
- return bvec2 (x.x < y.x, x.y < y.y);
-}
-bvec3 lessThan (vec3 x, vec3 y) {
- return bvec3 (x.x < y.x, x.y < y.y, x.z < y.z);
-}
-bvec4 lessThan (vec4 x, vec4 y) {
- return bvec4 (x.x < y.x, x.y < y.y, x.z < y.z, x.w < y.w);
-}
-bvec2 lessThan (ivec2 x, ivec2 y) {
- return bvec2 (x.x < y.x, x.y < y.y);
-}
-bvec3 lessThan (ivec3 x, ivec3 y) {
- return bvec3 (x.x < y.x, x.y < y.y, x.z < y.z);
-}
-bvec4 lessThan (ivec4 x, ivec4 y) {
- return bvec4 (x.x < y.x, x.y < y.y, x.z < y.z, x.w < y.w);
+mat2 matrixCompMult (mat2 m, mat2 n) {
+ mat2 o;
+ o[0] = m[0] * n[0];
+ o[1] = m[1] * n[1];
+ return o;
+}
+
+mat3 matrixCompMult (mat3 m, mat3 n) {
+ mat3 o;
+ o[0] = m[0] * n[0];
+ o[1] = m[1] * n[1];
+ o[2] = m[2] * n[2];
+ return o;
+}
+
+mat4 matrixCompMult (mat4 m, mat4 n) {
+ mat4 o;
+ o[0] = m[0] * n[0];
+ o[1] = m[1] * n[1];
+ o[2] = m[2] * n[2];
+ o[3] = m[3] * n[3];
+ return o;
}
-//
-// Returns the component-wise compare of x <= y.
-//
-
-bvec2 lessThanEqual (vec2 x, vec2 y) {
- return bvec2 (x.x <= y.x, x.y <= y.y);
-}
-bvec3 lessThanEqual (vec3 x, vec3 y) {
- return bvec3 (x.x <= y.x, x.y <= y.y, x.z <= y.z);
-}
-bvec4 lessThanEqual (vec4 x, vec4 y) {
- return bvec4 (x.x <= y.x, x.y <= y.y, x.z <= y.z, x.w <= y.w);
-}
-bvec2 lessThanEqual (ivec2 x, ivec2 y) {
- return bvec2 (x.x <= y.x, x.y <= y.y);
-}
-bvec3 lessThanEqual (ivec3 x, ivec3 y) {
- return bvec3 (x.x <= y.x, x.y <= y.y, x.z <= y.z);
-}
-bvec4 lessThanEqual (ivec4 x, ivec4 y) {
- return bvec4 (x.x <= y.x, x.y <= y.y, x.z <= y.z, x.w <= y.w);
-}
-
-//
-// Returns the component-wise compare of x > y.
-//
-
-bvec2 greaterThan (vec2 x, vec2 y) {
- return bvec2 (x.x > y.x, x.y > y.y);
-}
-bvec3 greaterThan (vec3 x, vec3 y) {
- return bvec3 (x.x > y.x, x.y > y.y, x.z > y.z);
-}
-bvec4 greaterThan (vec4 x, vec4 y) {
- return bvec4 (x.x > y.x, x.y > y.y, x.z > y.z, x.w > y.w);
-}
-bvec2 greaterThan (ivec2 x, ivec2 y) {
- return bvec2 (x.x > y.x, x.y > y.y);
-}
-bvec3 greaterThan (ivec3 x, ivec3 y) {
- return bvec3 (x.x > y.x, x.y > y.y, x.z > y.z);
-}
-bvec4 greaterThan (ivec4 x, ivec4 y) {
- return bvec4 (x.x > y.x, x.y > y.y, x.z > y.z, x.w > y.w);
-}
-
-//
-// Returns the component-wise compare of x >= y.
-//
+//
+// 8.6 Vector Relational Functions
+//
-bvec2 greaterThanEqual (vec2 x, vec2 y) {
- return bvec2 (x.x >= y.x, x.y >= y.y);
-}
-bvec3 greaterThanEqual (vec3 x, vec3 y) {
- return bvec3 (x.x >= y.x, x.y >= y.y, x.z >= y.z);
-}
-bvec4 greaterThanEqual (vec4 x, vec4 y) {
- return bvec4 (x.x >= y.x, x.y >= y.y, x.z >= y.z, x.w >= y.w);
-}
-bvec2 greaterThanEqual (ivec2 x, ivec2 y) {
- return bvec2 (x.x >= y.x, x.y >= y.y);
-}
-bvec3 greaterThanEqual (ivec3 x, ivec3 y) {
- return bvec3 (x.x >= y.x, x.y >= y.y, x.z >= y.z);
-}
-bvec4 greaterThanEqual (ivec4 x, ivec4 y) {
- return bvec4 (x.x >= y.x, x.y >= y.y, x.z >= y.z, x.w >= y.w);
+bvec2 lessThan (vec2 v, vec2 u) {
+ bvec2 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ return b;
+}
+
+bvec3 lessThan (vec3 v, vec3 u) {
+ bvec3 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ b.z = v.z < u.z;
+ return b;
+}
+
+bvec4 lessThan (vec4 v, vec4 u) {
+ bvec4 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ b.z = v.z < u.z;
+ b.w = v.w < u.w;
+ return b;
+}
+
+bvec2 lessThan (ivec2 v, ivec2 u) {
+ bvec2 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ return b;
+}
+
+bvec3 lessThan (ivec3 v, ivec3 u) {
+ bvec3 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ b.z = v.z < u.z;
+ return b;
+}
+
+bvec4 lessThan (ivec4 v, ivec4 u) {
+ bvec4 b;
+ b.x = v.x < u.x;
+ b.y = v.y < u.y;
+ b.z = v.z < u.z;
+ b.w = v.w < u.w;
+ return b;
+}
+
+bvec2 lessThanEqual (vec2 v, vec2 u) {
+ bvec2 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ return b;
+}
+
+bvec3 lessThanEqual (vec3 v, vec3 u) {
+ bvec3 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ b.z = v.z <= u.z;
+ return b;
+}
+
+bvec4 lessThanEqual (vec4 v, vec4 u) {
+ bvec4 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ b.z = v.z <= u.z;
+ b.w = v.w <= u.w;
+ return b;
+}
+
+bvec2 lessThanEqual (ivec2 v, ivec2 u) {
+ bvec2 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ return b;
+}
+
+bvec3 lessThanEqual (ivec3 v, ivec3 u) {
+ bvec3 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ b.z = v.z <= u.z;
+ return b;
+}
+
+bvec4 lessThanEqual (ivec4 v, ivec4 u) {
+ bvec4 b;
+ b.x = v.x <= u.x;
+ b.y = v.y <= u.y;
+ b.z = v.z <= u.z;
+ b.w = v.w <= u.w;
+ return b;
+}
+
+bvec2 greaterThan (vec2 v, vec2 u) {
+ bvec2 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ return b;
+}
+
+bvec3 greaterThan (vec3 v, vec3 u) {
+ bvec3 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ b.z = v.z > u.z;
+ return b;
+}
+
+bvec4 greaterThan (vec4 v, vec4 u) {
+ bvec4 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ b.z = v.z > u.z;
+ b.w = v.w > u.w;
+ return b;
+}
+
+bvec2 greaterThan (ivec2 v, ivec2 u) {
+ bvec2 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ return b;
+}
+
+bvec3 greaterThan (ivec3 v, ivec3 u) {
+ bvec3 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ b.z = v.z > u.z;
+ return b;
+}
+
+bvec4 greaterThan (ivec4 v, ivec4 u) {
+ bvec4 b;
+ b.x = v.x > u.x;
+ b.y = v.y > u.y;
+ b.z = v.z > u.z;
+ b.w = v.w > u.w;
+ return b;
+}
+
+bvec2 greaterThanEqual (vec2 v, vec2 u) {
+ bvec2 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ return b;
+}
+
+bvec3 greaterThanEqual (vec3 v, vec3 u) {
+ bvec3 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ b.z = v.z >= u.z;
+ return b;
+}
+
+bvec4 greaterThanEqual (vec4 v, vec4 u) {
+ bvec4 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ b.z = v.z >= u.z;
+ b.w = v.w >= u.w;
+ return b;
+}
+
+bvec2 greaterThanEqual (ivec2 v, ivec2 u) {
+ bvec2 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ return b;
+}
+
+bvec3 greaterThanEqual (ivec3 v, ivec3 u) {
+ bvec3 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ b.z = v.z >= u.z;
+ return b;
+}
+
+bvec4 greaterThanEqual (ivec4 v, ivec4 u) {
+ bvec4 b;
+ b.x = v.x >= u.x;
+ b.y = v.y >= u.y;
+ b.z = v.z >= u.z;
+ b.w = v.w >= u.w;
+ return b;
+}
+
+bvec2 equal (vec2 v, vec2 u) {
+ bvec2 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ return b;
+}
+
+bvec3 equal (vec3 v, vec3 u) {
+ bvec3 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ b.z = v.z == u.z;
+ return b;
+}
+
+bvec4 equal (vec4 v, vec4 u) {
+ bvec4 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ b.z = v.z == u.z;
+ b.w = v.w == u.w;
+ return b;
+}
+
+bvec2 equal (ivec2 v, ivec2 u) {
+ bvec2 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ return b;
+}
+
+bvec3 equal (ivec3 v, ivec3 u) {
+ bvec3 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ b.z = v.z == u.z;
+ return b;
+}
+
+bvec4 equal (ivec4 v, ivec4 u) {
+ bvec4 b;
+ b.x = v.x == u.x;
+ b.y = v.y == u.y;
+ b.z = v.z == u.z;
+ b.w = v.w == u.w;
+ return b;
+}
+
+bvec2 notEqual (vec2 v, vec2 u) {
+ bvec2 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ return b;
+}
+
+bvec3 notEqual (vec3 v, vec3 u) {
+ bvec3 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ b.z = v.z != u.z;
+ return b;
+}
+
+bvec4 notEqual (vec4 v, vec4 u) {
+ bvec4 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ b.z = v.z != u.z;
+ b.w = v.w != u.w;
+ return b;
+}
+
+bvec2 notEqual (ivec2 v, ivec2 u) {
+ bvec2 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ return b;
+}
+
+bvec3 notEqual (ivec3 v, ivec3 u) {
+ bvec3 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ b.z = v.z != u.z;
+ return b;
+}
+
+bvec4 notEqual (ivec4 v, ivec4 u) {
+ bvec4 b;
+ b.x = v.x != u.x;
+ b.y = v.y != u.y;
+ b.z = v.z != u.z;
+ b.w = v.w != u.w;
+ return b;
+}
+
+bool any (bvec2 v) {
+ return v.x || v.y;
+}
+
+bool any (bvec3 v) {
+ return v.x || v.y || v.z;
+}
+
+bool any (bvec4 v) {
+ return v.x || v.y || v.z || v.w;
+}
+
+bool all (bvec2 v) {
+ return v.x && v.y;
+}
+
+bool all (bvec3 v) {
+ return v.x && v.y && v.z;
+}
+
+bool all (bvec4 v) {
+ return v.x && v.y && v.z && v.w;
+}
+
+bvec2 not (bvec2 v) {
+ bvec2 u;
+ u.x = !v.x;
+ u.y = !v.y;
+ return u;
+}
+
+bvec3 not (bvec3 v) {
+ bvec3 u;
+ u.x = !v.x;
+ u.y = !v.y;
+ u.z = !v.z;
+ return u;
+}
+
+bvec4 not (bvec4 v) {
+ bvec4 u;
+ u.x = !v.x;
+ u.y = !v.y;
+ u.z = !v.z;
+ u.w = !v.w;
+ return u;
}
-//
-// Returns the component-wise compare of x == y.
-//
+//
+// 8.7 Texture Lookup Functions
+//
-bvec2 equal (vec2 x, vec2 y) {
- return bvec2 (x.x == y.x, x.y == y.y);
-}
-bvec3 equal (vec3 x, vec3 y) {
- return bvec3 (x.x == y.x, x.y == y.y, x.z == y.z);
-}
-bvec4 equal (vec4 x, vec4 y) {
- return bvec4 (x.x == y.x, x.y == y.y, x.z == y.z, x.w == y.w);
-}
-bvec2 equal (ivec2 x, ivec2 y) {
- return bvec2 (x.x == y.x, x.y == y.y);
-}
-bvec3 equal (ivec3 x, ivec3 y) {
- return bvec3 (x.x == y.x, x.y == y.y, x.z == y.z);
-}
-bvec4 equal (ivec4 x, ivec4 y) {
- return bvec4 (x.x == y.x, x.y == y.y, x.z == y.z, x.w == y.w);
-}
+vec4 texture1D (sampler1D sampler, float coord) {
+ // XXX:
+ return vec4 (0.0);
+}
-//
-// Returns the component-wise compare of x != y.
-//
+vec4 texture1DProj (sampler1D sampler, vec2 coord) {
+ return texture1D (sampler, coord.s / coord.t);
+}
-bvec2 notEqual (vec2 x, vec2 y) {
- return bvec2 (x.x != y.x, x.y != y.y);
-}
-bvec3 notEqual (vec3 x, vec3 y) {
- return bvec3 (x.x != y.x, x.y != y.y, x.z != y.z);
-}
-bvec4 notEqual (vec4 x, vec4 y) {
- return bvec4 (x.x != y.x, x.y != y.y, x.z != y.z, x.w != y.w);
-}
-bvec2 notEqual (ivec2 x, ivec2 y) {
- return bvec2 (x.x != y.x, x.y != y.y);
-}
-bvec3 notEqual (ivec3 x, ivec3 y) {
- return bvec3 (x.x != y.x, x.y != y.y, x.z != y.z);
-}
-bvec4 notEqual (ivec4 x, ivec4 y) {
- return bvec4 (x.x != y.x, x.y != y.y, x.z != y.z, x.w != y.w);
+vec4 texture1DProj (sampler1D sampler, vec4 coord) {
+ return texture1D (sampler, coord.s / coord.q);
}
-//
-// Returns true if any component of x is true.
-//
-
-bool any (bvec2 x) {
- return x.x || x.y;
-}
-bool any (bvec3 x) {
- return x.x || x.y || x.z;
-}
-bool any (bvec4 x) {
- return x.x || x.y || x.z || x.w;
-}
+vec4 texture2D (sampler2D sampler, vec2 coord) {
+ // XXX:
+ return vec4 (0.0);
+}
-//
-// Returns true only if all components of x are true.
-//
+vec4 texture2DProj (sampler2D sampler, vec3 coord) {
+ vec2 u;
+ u.s = coord.s / coord.p;
+ u.t = coord.t / coord.p;
+ return texture2D (sampler, u);
+}
-bool all (bvec2 x) {
- return x.x && x.y;
-}
-bool all (bvec3 x) {
- return x.x && x.y && x.z;
-}
-bool all (bvec4 x) {
- return x.x && x.y && x.z && x.w;
+vec4 texture2DProj (sampler2D sampler, vec4 coord) {
+ vec2 u;
+ u.s = coord.s / coord.q;
+ u.t = coord.t / coord.q;
+ return texture2D (sampler, u);
}
-//
-// Returns the component-wise logical complement of x.
-//
+vec4 texture3D (sampler3D sampler, vec3 coord) {
+ // XXX:
+ return vec4 (0.0);
+}
-bvec2 not (bvec2 x) {
- return bvec2 (!x.x, !x.y);
-}
-bvec3 not (bvec3 x) {
- return bvec3 (!x.x, !x.y, !x.z);
-}
-bvec4 not (bvec4 x) {
- return bvec4 (!x.x, !x.y, !x.z, !x.w);
+vec4 texture3DProj (sampler3D sampler, vec4 coord) {
+ vec3 u;
+ u.s = coord.s / coord.q;
+ u.t = coord.t / coord.q;
+ u.p = coord.p / coord.q;
+ return texture3D (sampler, u);
}
-//
-// 8.7 Texture Lookup Functions
-//
-// Texture lookup functions are available to both vertex and fragment shaders. However, level
-// of detail is not computed by fixed functionality for vertex shaders, so there are some
-// differences in operation between vertex and fragment texture lookups. The functions in the table
-// below provide access to textures through samplers, as set up through the OpenGL API. Texture
-// properties such as size, pixel format, number of dimensions, filtering method, number of mip-map
-// levels, depth comparison, and so on are also defined by OpenGL API calls. Such properties are
-// taken into account as the texture is accessed via the built-in functions defined below.
-//
-// If a non-shadow texture call is made to a sampler that represents a depth texture with depth
-// comparisons turned on, then results are undefined. If a shadow texture call is made to a sampler
-// that represents a depth texture with depth comparisions turned off, the results are undefined.
-// If a shadow texture call is made to a sampler that does not represent a depth texture, then
-// results are undefined.
-//
-// In all functions below, the bias parameter is optional for fragment shaders. The bias parameter
-// is not accepted in a vertex shader. For a fragment shader, if bias is present, it is added to
-// the calculated level of detail prior to performing the texture access operation. If the bias
-// parameter is not provided, then the implementation automatically selects level of detail:
-// For a texture that is not mip-mapped, the texture is used directly. If it is mip-mapped and
-// running in a fragment shader, the LOD computed by the implementation is used to do the texture
-// lookup. If it is mip-mapped and running on the vertex shader, then the base texture is used.
-//
-// The built-ins suffixed with "Lod" are allowed only in a vertex shader. For the "Lod" functions,
-// lod is directly used as the level of detail.
-//
-
-//
-// Use the texture coordinate coord to do a texture lookup in the 1D texture currently bound
-// to sampler. For the projective ("Proj") versions, the texture coordinate coord.s is divided by
-// the last component of coord.
-//
-// XXX
-vec4 texture1D (sampler1D sampler, float coord) {
+vec4 textureCube (samplerCube sampler, vec3 coord) {
+ // XXX:
return vec4 (0.0);
}
-vec4 texture1DProj (sampler1D sampler, vec2 coord) {
- return texture1D (sampler, coord.s / coord.t);
-}
-vec4 texture1DProj (sampler1D sampler, vec4 coord) {
- return texture1D (sampler, coord.s / coord.q);
-}
-//
-// Use the texture coordinate coord to do a texture lookup in the 2D texture currently bound
-// to sampler. For the projective ("Proj") versions, the texture coordinate (coord.s, coord.t) is
-// divided by the last component of coord. The third component of coord is ignored for the vec4
-// coord variant.
-//
-// XXX
-vec4 texture2D (sampler2D sampler, vec2 coord) {
+vec4 shadow1D (sampler1DShadow sampler, vec3 coord) {
+ // XXX:
return vec4 (0.0);
}
-vec4 texture2DProj (sampler2D sampler, vec3 coord) {
- return texture2D (sampler, vec2 (coord.s / coord.p, coord.t / coord.p));
-}
-vec4 texture2DProj (sampler2D sampler, vec4 coord) {
- return texture2D (sampler, vec2 (coord.s / coord.q, coord.t / coord.q));
-}
-//
-// Use the texture coordinate coord to do a texture lookup in the 3D texture currently bound
-// to sampler. For the projective ("Proj") versions, the texture coordinate is divided by coord.q.
-//
-// XXX
-vec4 texture3D (sampler3D sampler, vec3 coord) {
+vec4 shadow2D (sampler2DShadow sampler, vec3 coord) {
+ // XXX:
return vec4 (0.0);
-}
-vec4 texture3DProj (sampler3D sampler, vec4 coord) {
- return texture3D (sampler, vec3 (coord.s / coord.q, coord.t / coord.q, coord.p / coord.q));
-}
+}
-//
-// Use the texture coordinate coord to do a texture lookup in the cube map texture currently bound
-// to sampler. The direction of coord is used to select which face to do a 2-dimensional texture
-// lookup in, as described in section 3.8.6 in version 1.4 of the OpenGL specification.
-//
-// XXX
-vec4 textureCube (samplerCube sampler, vec3 coord) {
- return vec4 (0.0);
-}
+vec4 shadow1DProj (sampler1DShadow sampler, vec4 coord) {
+ vec3 u;
+ u.s = coord.s / coord.q;
+ u.t = 0.0;
+ u.p = coord.p / coord.q;
+ return shadow1D (sampler, u);
+}
-//
-// Use texture coordinate coord to do a depth comparison lookup on the depth texture bound
-// to sampler, as described in section 3.8.14 of version 1.4 of the OpenGL specification. The 3rd
-// component of coord (coord.p) is used as the R value. The texture bound to sampler must be a
-// depth texture, or results are undefined. For the projective ("Proj") version of each built-in,
-// the texture coordinate is divide by coord.q, giving a depth value R of coord.p/coord.q. The
-// second component of coord is ignored for the "1D" variants.
-//
-// XXX
-vec4 shadow1D (sampler1DShadow sampler, vec3 coord) {
- return vec4 (0.0);
-}
-// XXX
-vec4 shadow2D (sampler2DShadow sampler, vec3 coord) {
- return vec4 (0.0);
-}
-vec4 shadow1DProj (sampler1DShadow sampler, vec4 coord) {
- return shadow1D (sampler, vec3 (coord.s / coord.q, 0.0, coord.p / coord.q));
-}
-vec4 shadow2DProj (sampler2DShadow sampler, vec4 coord) {
- return shadow2D (sampler, vec3 (coord.s / coord.q, coord.t / coord.q, coord.p / coord.q));
+vec4 shadow2DProj (sampler2DShadow sampler, vec4 coord) {
+ vec3 u;
+ u.s = coord.s / coord.q;
+ u.t = coord.t / coord.q;
+ u.p = coord.p / coord.q;
+ return shadow2D (sampler, u);
}
-//
+//
// 8.9 Noise Functions
-//
-// Noise functions are available to both fragment and vertex shaders. They are stochastic functions
-// that can be used to increase visual complexity. Values returned by the following noise functions
-// give the appearance of randomness, but are not truly random. The noise functions below are
-// defined to have the following characteristics:
-//
-// - The return value(s) are always in the range [-1,1], and cover at least the range [-0.6, 0.6],
-// with a gaussian-like distribution.
-// * The return value(s) have an overall average of 0.0
-// * They are repeatable, in that a particular input value will always produce the same return value
-// * They are statistically invariant under rotation (i.e., no matter how the domain is rotated, it
-// has the same statistical character)
-// * They have a statistical invariance under translation (i.e., no matter how the domain is
-// translated, it has the same statistical character)
-// * They typically give different results under translation.
-// - The spatial frequency is narrowly concentrated, centered somewhere between 0.5 to 1.0.
-//
-
-//
-// Returns a 1D noise value based on the input value x.
-//
-// XXX
-float noise1 (float x) {
+//
+
+float noise1 (float x) {
+ // XXX:
return 0.0;
}
-// XXX
-float noise1 (vec2 x) {
+
+float noise1 (vec2 x) {
+ // XXX:
return 0.0;
}
-// XXX
-float noise1 (vec3 x) {
+
+float noise1 (vec3 x) {
+ // XXX:
return 0.0;
}
-// XXX
-float noise1 (vec4 x) {
+
+float noise1 (vec4 x) {
+ // XXX:
return 0.0;
}
-//
-// Returns a 2D noise value based on the input value x.
-//
-// XXX
-vec2 noise2 (float x) {
+vec2 noise2 (float x) {
+ // XXX:
return vec2 (0.0);
}
-// XXX
-vec2 noise2 (vec2 x) {
+
+vec2 noise2 (vec2 x) {
+ // XXX:
return vec2 (0.0);
}
-// XXX
-vec2 noise2 (vec3 x) {
+
+vec2 noise2 (vec3 x) {
+ // XXX:
return vec2 (0.0);
}
-// XXX
-vec2 noise2 (vec4 x) {
+
+vec2 noise2 (vec4 x) {
+ // XXX:
return vec2 (0.0);
}
-//
-// Returns a 3D noise value based on the input value x.
-//
-// XXX
-vec3 noise3 (float x) {
+vec3 noise3 (float x) {
+ // XXX:
return vec3 (0.0);
}
-// XXX
-vec3 noise3 (vec2 x) {
+
+vec3 noise3 (vec2 x) {
+ // XXX:
return vec3 (0.0);
}
-// XXX
-vec3 noise3 (vec3 x) {
+
+vec3 noise3 (vec3 x) {
+ // XXX:
return vec3 (0.0);
}
-// XXX
-vec3 noise3 (vec4 x) {
+
+vec3 noise3 (vec4 x) {
+ // XXX:
return vec3 (0.0);
}
-//
-// Returns a 4D noise value based on the input value x.
-//
-// XXX
-vec4 noise4 (float x) {
+vec4 noise4 (float x) {
+ // XXX:
return vec4 (0.0);
}
-// XXX
-vec4 noise4 (vec2 x) {
+
+vec4 noise4 (vec2 x) {
+ // XXX:
return vec4 (0.0);
}
-// XXX
-vec4 noise4 (vec3 x) {
+
+vec4 noise4 (vec3 x) {
+ // XXX:
return vec4 (0.0);
}
-// XXX
-vec4 noise4 (vec4 x) {
+
+vec4 noise4 (vec4 x) {
+ // XXX:
return vec4 (0.0);
}
-
+