summaryrefslogtreecommitdiff
path: root/src/mesa
diff options
context:
space:
mode:
authorNicolai Haehnle <nhaehnle@gmail.com>2008-06-13 23:46:04 +0200
committerNicolai Haehnle <nhaehnle@gmail.com>2008-06-14 04:14:05 +0200
commitb5170bc9d32530ec93dae4b543d3552e83d6b4a1 (patch)
tree543131515ec859f224af9b8b16fe46eddfede514 /src/mesa
parente2aa45c2f9584ff76151a99b4fcd0ecb56260473 (diff)
r300: Add radeon_program and trivial refactoring of r300_fragprog to use it
The idea/hope is that radeon_program will serve as an intermediate representation for r3xx up to r6xx fragment and vertex programs. Right now, it is nothing more than a simplistic wrapper around Mesa's prog_instruction, together with the notion of clauses, taken from r6xx docs. The clauses will eventually be used to represent the nodes that are used in r300 family fragment programs.
Diffstat (limited to 'src/mesa')
-rw-r--r--src/mesa/drivers/dri/r300/Makefile2
-rw-r--r--src/mesa/drivers/dri/r300/r300_fragprog.c2251
-rw-r--r--src/mesa/drivers/dri/r300/r300_fragprog.h20
-rw-r--r--src/mesa/drivers/dri/r300/r300_fragprog_emit.c2232
-rw-r--r--src/mesa/drivers/dri/r300/radeon_program.c151
-rw-r--r--src/mesa/drivers/dri/r300/radeon_program.h110
6 files changed, 2564 insertions, 2202 deletions
diff --git a/src/mesa/drivers/dri/r300/Makefile b/src/mesa/drivers/dri/r300/Makefile
index 5b2bd0bc2b..7cd5647064 100644
--- a/src/mesa/drivers/dri/r300/Makefile
+++ b/src/mesa/drivers/dri/r300/Makefile
@@ -37,8 +37,10 @@ DRIVER_SOURCES = \
r300_texmem.c \
r300_tex.c \
r300_texstate.c \
+ radeon_program.c \
r300_vertprog.c \
r300_fragprog.c \
+ r300_fragprog_emit.c \
r500_fragprog.c \
r300_shader.c \
r300_emit.c \
diff --git a/src/mesa/drivers/dri/r300/r300_fragprog.c b/src/mesa/drivers/dri/r300/r300_fragprog.c
index 9d7a8c6570..94cb11afec 100644
--- a/src/mesa/drivers/dri/r300/r300_fragprog.c
+++ b/src/mesa/drivers/dri/r300/r300_fragprog.c
@@ -28,16 +28,14 @@
/**
* \file
*
- * \author Ben Skeggs <darktama@iinet.net.au>
+ * Fragment program compiler. Perform transformations on the intermediate
+ * \ref radeon_program representation (which is essentially the Mesa
+ * program representation plus the notion of clauses) until the program
+ * is in a form where we can translate it more or less directly into
+ * machine-readable form.
*
+ * \author Ben Skeggs <darktama@iinet.net.au>
* \author Jerome Glisse <j.glisse@gmail.com>
- *
- * \todo Depth write, WPOS/FOGC inputs
- *
- * \todo FogOption
- *
- * \todo Verify results of opcodes for accuracy, I've only checked them in
- * specific cases.
*/
#include "glheader.h"
@@ -49,2047 +47,46 @@
#include "r300_context.h"
#include "r300_fragprog.h"
-#include "r300_reg.h"
#include "r300_state.h"
-/* Mapping Mesa registers to R300 temporaries */
-struct reg_acc {
- int reg; /* Assigned hw temp */
- unsigned int refcount; /* Number of uses by mesa program */
-};
-
-/**
- * Describe the current lifetime information for an R300 temporary
- */
-struct reg_lifetime {
- /* Index of the first slot where this register is free in the sense
- that it can be used as a new destination register.
- This is -1 if the register has been assigned to a Mesa register
- and the last access to the register has not yet been emitted */
- int free;
-
- /* Index of the first slot where this register is currently reserved.
- This is used to stop e.g. a scalar operation from being moved
- before the allocation time of a register that was first allocated
- for a vector operation. */
- int reserved;
-
- /* Index of the first slot in which the register can be used as a
- source without losing the value that is written by the last
- emitted instruction that writes to the register */
- int vector_valid;
- int scalar_valid;
-
- /* Index to the slot where the register was last read.
- This is also the first slot in which the register may be written again */
- int vector_lastread;
- int scalar_lastread;
-};
-
-/**
- * Store usage information about an ALU instruction slot during the
- * compilation of a fragment program.
- */
-#define SLOT_SRC_VECTOR (1<<0)
-#define SLOT_SRC_SCALAR (1<<3)
-#define SLOT_SRC_BOTH (SLOT_SRC_VECTOR | SLOT_SRC_SCALAR)
-#define SLOT_OP_VECTOR (1<<16)
-#define SLOT_OP_SCALAR (1<<17)
-#define SLOT_OP_BOTH (SLOT_OP_VECTOR | SLOT_OP_SCALAR)
-
-struct r300_pfs_compile_slot {
- /* Bitmask indicating which parts of the slot are used, using SLOT_ constants
- defined above */
- unsigned int used;
-
- /* Selected sources */
- int vsrc[3];
- int ssrc[3];
-};
-
-/**
- * Store information during compilation of fragment programs.
- */
-struct r300_pfs_compile_state {
- r300ContextPtr r300;
- struct r300_fragment_program *fp;
-
- int nrslots; /* number of ALU slots used so far */
-
- /* Track which (parts of) slots are already filled with instructions */
- struct r300_pfs_compile_slot slot[PFS_MAX_ALU_INST];
-
- /* Track the validity of R300 temporaries */
- struct reg_lifetime hwtemps[PFS_NUM_TEMP_REGS];
-
- /* Used to map Mesa's inputs/temps onto hardware temps */
- int temp_in_use;
- struct reg_acc temps[PFS_NUM_TEMP_REGS];
- struct reg_acc inputs[32]; /* don't actually need 32... */
-
- /* Track usage of hardware temps, for register allocation,
- * indirection detection, etc. */
- GLuint used_in_node;
- GLuint dest_in_node;
-};
-
-
-/*
- * Usefull macros and values
- */
-#define ERROR(fmt, args...) do { \
- fprintf(stderr, "%s::%s(): " fmt "\n", \
- __FILE__, __FUNCTION__, ##args); \
- fp->error = GL_TRUE; \
- } while(0)
-
-#define PFS_INVAL 0xFFFFFFFF
-#define COMPILE_STATE \
- struct r300_fragment_program *fp = cs->fp; \
- struct r300_fragment_program_code *code = &fp->code; \
- (void)code
-
-#define SWIZZLE_XYZ 0
-#define SWIZZLE_XXX 1
-#define SWIZZLE_YYY 2
-#define SWIZZLE_ZZZ 3
-#define SWIZZLE_WWW 4
-#define SWIZZLE_YZX 5
-#define SWIZZLE_ZXY 6
-#define SWIZZLE_WZY 7
-#define SWIZZLE_111 8
-#define SWIZZLE_000 9
-#define SWIZZLE_HHH 10
-
-#define swizzle(r, x, y, z, w) do_swizzle(cs, r, \
- ((SWIZZLE_##x<<0)| \
- (SWIZZLE_##y<<3)| \
- (SWIZZLE_##z<<6)| \
- (SWIZZLE_##w<<9)), \
- 0)
-
-#define REG_TYPE_INPUT 0
-#define REG_TYPE_OUTPUT 1
-#define REG_TYPE_TEMP 2
-#define REG_TYPE_CONST 3
-
-#define REG_TYPE_SHIFT 0
-#define REG_INDEX_SHIFT 2
-#define REG_VSWZ_SHIFT 8
-#define REG_SSWZ_SHIFT 13
-#define REG_NEGV_SHIFT 18
-#define REG_NEGS_SHIFT 19
-#define REG_ABS_SHIFT 20
-#define REG_NO_USE_SHIFT 21 // Hack for refcounting
-#define REG_VALID_SHIFT 22 // Does the register contain a defined value?
-#define REG_BUILTIN_SHIFT 23 // Is it a builtin (like all zero/all one)?
-
-#define REG_TYPE_MASK (0x03 << REG_TYPE_SHIFT)
-#define REG_INDEX_MASK (0x3F << REG_INDEX_SHIFT)
-#define REG_VSWZ_MASK (0x1F << REG_VSWZ_SHIFT)
-#define REG_SSWZ_MASK (0x1F << REG_SSWZ_SHIFT)
-#define REG_NEGV_MASK (0x01 << REG_NEGV_SHIFT)
-#define REG_NEGS_MASK (0x01 << REG_NEGS_SHIFT)
-#define REG_ABS_MASK (0x01 << REG_ABS_SHIFT)
-#define REG_NO_USE_MASK (0x01 << REG_NO_USE_SHIFT)
-#define REG_VALID_MASK (0x01 << REG_VALID_SHIFT)
-#define REG_BUILTIN_MASK (0x01 << REG_BUILTIN_SHIFT)
-
-#define REG(type, index, vswz, sswz, nouse, valid, builtin) \
- (((type << REG_TYPE_SHIFT) & REG_TYPE_MASK) | \
- ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK) | \
- ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK) | \
- ((valid << REG_VALID_SHIFT) & REG_VALID_MASK) | \
- ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK) | \
- ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK) | \
- ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
-#define REG_GET_TYPE(reg) \
- ((reg & REG_TYPE_MASK) >> REG_TYPE_SHIFT)
-#define REG_GET_INDEX(reg) \
- ((reg & REG_INDEX_MASK) >> REG_INDEX_SHIFT)
-#define REG_GET_VSWZ(reg) \
- ((reg & REG_VSWZ_MASK) >> REG_VSWZ_SHIFT)
-#define REG_GET_SSWZ(reg) \
- ((reg & REG_SSWZ_MASK) >> REG_SSWZ_SHIFT)
-#define REG_GET_NO_USE(reg) \
- ((reg & REG_NO_USE_MASK) >> REG_NO_USE_SHIFT)
-#define REG_GET_VALID(reg) \
- ((reg & REG_VALID_MASK) >> REG_VALID_SHIFT)
-#define REG_GET_BUILTIN(reg) \
- ((reg & REG_BUILTIN_MASK) >> REG_BUILTIN_SHIFT)
-#define REG_SET_TYPE(reg, type) \
- reg = ((reg & ~REG_TYPE_MASK) | \
- ((type << REG_TYPE_SHIFT) & REG_TYPE_MASK))
-#define REG_SET_INDEX(reg, index) \
- reg = ((reg & ~REG_INDEX_MASK) | \
- ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK))
-#define REG_SET_VSWZ(reg, vswz) \
- reg = ((reg & ~REG_VSWZ_MASK) | \
- ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK))
-#define REG_SET_SSWZ(reg, sswz) \
- reg = ((reg & ~REG_SSWZ_MASK) | \
- ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
-#define REG_SET_NO_USE(reg, nouse) \
- reg = ((reg & ~REG_NO_USE_MASK) | \
- ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK))
-#define REG_SET_VALID(reg, valid) \
- reg = ((reg & ~REG_VALID_MASK) | \
- ((valid << REG_VALID_SHIFT) & REG_VALID_MASK))
-#define REG_SET_BUILTIN(reg, builtin) \
- reg = ((reg & ~REG_BUILTIN_MASK) | \
- ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK))
-#define REG_ABS(reg) \
- reg = (reg | REG_ABS_MASK)
-#define REG_NEGV(reg) \
- reg = (reg | REG_NEGV_MASK)
-#define REG_NEGS(reg) \
- reg = (reg | REG_NEGS_MASK)
-
-#define NOP_INST0 ( \
- (R300_ALU_OUTC_MAD) | \
- (R300_ALU_ARGC_ZERO << R300_ALU_ARG0C_SHIFT) | \
- (R300_ALU_ARGC_ZERO << R300_ALU_ARG1C_SHIFT) | \
- (R300_ALU_ARGC_ZERO << R300_ALU_ARG2C_SHIFT))
-#define NOP_INST1 ( \
- ((0 | SRC_CONST) << R300_ALU_SRC0C_SHIFT) | \
- ((0 | SRC_CONST) << R300_ALU_SRC1C_SHIFT) | \
- ((0 | SRC_CONST) << R300_ALU_SRC2C_SHIFT))
-#define NOP_INST2 ( \
- (R300_ALU_OUTA_MAD) | \
- (R300_ALU_ARGA_ZERO << R300_ALU_ARG0A_SHIFT) | \
- (R300_ALU_ARGA_ZERO << R300_ALU_ARG1A_SHIFT) | \
- (R300_ALU_ARGA_ZERO << R300_ALU_ARG2A_SHIFT))
-#define NOP_INST3 ( \
- ((0 | SRC_CONST) << R300_ALU_SRC0A_SHIFT) | \
- ((0 | SRC_CONST) << R300_ALU_SRC1A_SHIFT) | \
- ((0 | SRC_CONST) << R300_ALU_SRC2A_SHIFT))
-
-
-/*
- * Datas structures for fragment program generation
- */
-
-/* description of r300 native hw instructions */
-static const struct {
- const char *name;
- int argc;
- int v_op;
- int s_op;
-} r300_fpop[] = {
- /* *INDENT-OFF* */
- {"MAD", 3, R300_ALU_OUTC_MAD, R300_ALU_OUTA_MAD},
- {"DP3", 2, R300_ALU_OUTC_DP3, R300_ALU_OUTA_DP4},
- {"DP4", 2, R300_ALU_OUTC_DP4, R300_ALU_OUTA_DP4},
- {"MIN", 2, R300_ALU_OUTC_MIN, R300_ALU_OUTA_MIN},
- {"MAX", 2, R300_ALU_OUTC_MAX, R300_ALU_OUTA_MAX},
- {"CMP", 3, R300_ALU_OUTC_CMP, R300_ALU_OUTA_CMP},
- {"FRC", 1, R300_ALU_OUTC_FRC, R300_ALU_OUTA_FRC},
- {"EX2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_EX2},
- {"LG2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_LG2},
- {"RCP", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RCP},
- {"RSQ", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RSQ},
- {"REPL_ALPHA", 1, R300_ALU_OUTC_REPL_ALPHA, PFS_INVAL},
- {"CMPH", 3, R300_ALU_OUTC_CMPH, PFS_INVAL},
- /* *INDENT-ON* */
-};
-
-/* vector swizzles r300 can support natively, with a couple of
- * cases we handle specially
- *
- * REG_VSWZ/REG_SSWZ is an index into this table
- */
-
-/* mapping from SWIZZLE_* to r300 native values for scalar insns */
-#define SWIZZLE_HALF 6
-
-#define MAKE_SWZ3(x, y, z) (MAKE_SWIZZLE4(SWIZZLE_##x, \
- SWIZZLE_##y, \
- SWIZZLE_##z, \
- SWIZZLE_ZERO))
-/* native swizzles */
-static const struct r300_pfs_swizzle {
- GLuint hash; /* swizzle value this matches */
- GLuint base; /* base value for hw swizzle */
- GLuint stride; /* difference in base between arg0/1/2 */
- GLuint flags;
-} v_swiz[] = {
- /* *INDENT-OFF* */
- {MAKE_SWZ3(X, Y, Z), R300_ALU_ARGC_SRC0C_XYZ, 4, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(X, X, X), R300_ALU_ARGC_SRC0C_XXX, 4, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(Y, Y, Y), R300_ALU_ARGC_SRC0C_YYY, 4, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(Z, Z, Z), R300_ALU_ARGC_SRC0C_ZZZ, 4, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(W, W, W), R300_ALU_ARGC_SRC0A, 1, SLOT_SRC_SCALAR},
- {MAKE_SWZ3(Y, Z, X), R300_ALU_ARGC_SRC0C_YZX, 1, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(Z, X, Y), R300_ALU_ARGC_SRC0C_ZXY, 1, SLOT_SRC_VECTOR},
- {MAKE_SWZ3(W, Z, Y), R300_ALU_ARGC_SRC0CA_WZY, 1, SLOT_SRC_BOTH},
- {MAKE_SWZ3(ONE, ONE, ONE), R300_ALU_ARGC_ONE, 0, 0},
- {MAKE_SWZ3(ZERO, ZERO, ZERO), R300_ALU_ARGC_ZERO, 0, 0},
- {MAKE_SWZ3(HALF, HALF, HALF), R300_ALU_ARGC_HALF, 0, 0},
- {PFS_INVAL, 0, 0, 0},
- /* *INDENT-ON* */
-};
-
-/* used during matching of non-native swizzles */
-#define SWZ_X_MASK (7 << 0)
-#define SWZ_Y_MASK (7 << 3)
-#define SWZ_Z_MASK (7 << 6)
-#define SWZ_W_MASK (7 << 9)
-static const struct {
- GLuint hash; /* used to mask matching swizzle components */
- int mask; /* actual outmask */
- int count; /* count of components matched */
-} s_mask[] = {
- /* *INDENT-OFF* */
- {SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK, 1 | 2 | 4, 3},
- {SWZ_X_MASK | SWZ_Y_MASK, 1 | 2, 2},
- {SWZ_X_MASK | SWZ_Z_MASK, 1 | 4, 2},
- {SWZ_Y_MASK | SWZ_Z_MASK, 2 | 4, 2},
- {SWZ_X_MASK, 1, 1},
- {SWZ_Y_MASK, 2, 1},
- {SWZ_Z_MASK, 4, 1},
- {PFS_INVAL, PFS_INVAL, PFS_INVAL}
- /* *INDENT-ON* */
-};
-
-static const struct {
- int base; /* hw value of swizzle */
- int stride; /* difference between SRC0/1/2 */
- GLuint flags;
-} s_swiz[] = {
- /* *INDENT-OFF* */
- {R300_ALU_ARGA_SRC0C_X, 3, SLOT_SRC_VECTOR},
- {R300_ALU_ARGA_SRC0C_Y, 3, SLOT_SRC_VECTOR},
- {R300_ALU_ARGA_SRC0C_Z, 3, SLOT_SRC_VECTOR},
- {R300_ALU_ARGA_SRC0A, 1, SLOT_SRC_SCALAR},
- {R300_ALU_ARGA_ZERO, 0, 0},
- {R300_ALU_ARGA_ONE, 0, 0},
- {R300_ALU_ARGA_HALF, 0, 0}
- /* *INDENT-ON* */
-};
-
-/* boiler-plate reg, for convenience */
-static const GLuint undef = REG(REG_TYPE_TEMP,
- 0,
- SWIZZLE_XYZ,
- SWIZZLE_W,
- GL_FALSE,
- GL_FALSE,
- GL_FALSE);
-
-/* constant one source */
-static const GLuint pfs_one = REG(REG_TYPE_CONST,
- 0,
- SWIZZLE_111,
- SWIZZLE_ONE,
- GL_FALSE,
- GL_TRUE,
- GL_TRUE);
-
-/* constant half source */
-static const GLuint pfs_half = REG(REG_TYPE_CONST,
- 0,
- SWIZZLE_HHH,
- SWIZZLE_HALF,
- GL_FALSE,
- GL_TRUE,
- GL_TRUE);
-
-/* constant zero source */
-static const GLuint pfs_zero = REG(REG_TYPE_CONST,
- 0,
- SWIZZLE_000,
- SWIZZLE_ZERO,
- GL_FALSE,
- GL_TRUE,
- GL_TRUE);
-
-/*
- * Common functions prototypes
- */
-static void dump_program(struct r300_fragment_program *fp,
- struct r300_fragment_program_code *code);
-static void emit_arith(struct r300_pfs_compile_state *cs, int op,
- GLuint dest, int mask,
- GLuint src0, GLuint src1, GLuint src2, int flags);
-
-/**
- * Get an R300 temporary that can be written to in the given slot.
- */
-static int get_hw_temp(struct r300_pfs_compile_state *cs, int slot)
-{
- COMPILE_STATE;
- int r;
-
- for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
- if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= slot)
- break;
- }
-
- if (r >= PFS_NUM_TEMP_REGS) {
- ERROR("Out of hardware temps\n");
- return 0;
- }
- // Reserved is used to avoid the following scenario:
- // R300 temporary X is first assigned to Mesa temporary Y during vector ops
- // R300 temporary X is then assigned to Mesa temporary Z for further vector ops
- // Then scalar ops on Mesa temporary Z are emitted and move back in time
- // to overwrite the value of temporary Y.
- // End scenario.
- cs->hwtemps[r].reserved = cs->hwtemps[r].free;
- cs->hwtemps[r].free = -1;
-
- // Reset to some value that won't mess things up when the user
- // tries to read from a temporary that hasn't been assigned a value yet.
- // In the normal case, vector_valid and scalar_valid should be set to
- // a sane value by the first emit that writes to this temporary.
- cs->hwtemps[r].vector_valid = 0;
- cs->hwtemps[r].scalar_valid = 0;
-
- if (r > code->max_temp_idx)
- code->max_temp_idx = r;
-
- return r;
-}
-
-/**
- * Get an R300 temporary that will act as a TEX destination register.
- */
-static int get_hw_temp_tex(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- int r;
-
- for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
- if (cs->used_in_node & (1 << r))
- continue;
-
- // Note: Be very careful here
- if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= 0)
- break;
- }
-
- if (r >= PFS_NUM_TEMP_REGS)
- return get_hw_temp(cs, 0); /* Will cause an indirection */
-
- cs->hwtemps[r].reserved = cs->hwtemps[r].free;
- cs->hwtemps[r].free = -1;
-
- // Reset to some value that won't mess things up when the user
- // tries to read from a temporary that hasn't been assigned a value yet.
- // In the normal case, vector_valid and scalar_valid should be set to
- // a sane value by the first emit that writes to this temporary.
- cs->hwtemps[r].vector_valid = cs->nrslots;
- cs->hwtemps[r].scalar_valid = cs->nrslots;
-
- if (r > code->max_temp_idx)
- code->max_temp_idx = r;
-
- return r;
-}
-
-/**
- * Mark the given hardware register as free.
- */
-static void free_hw_temp(struct r300_pfs_compile_state *cs, int idx)
-{
- // Be very careful here. Consider sequences like
- // MAD r0, r1,r2,r3
- // TEX r4, ...
- // The TEX instruction may be moved in front of the MAD instruction
- // due to the way nodes work. We don't want to alias r1 and r4 in
- // this case.
- // I'm certain the register allocation could be further sanitized,
- // but it's tricky because of stuff that can happen inside emit_tex
- // and emit_arith.
- cs->hwtemps[idx].free = cs->nrslots + 1;
-}
-
-/**
- * Create a new Mesa temporary register.
- */
-static GLuint get_temp_reg(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- GLuint r = undef;
- GLuint index;
-
- index = ffs(~cs->temp_in_use);
- if (!index) {
- ERROR("Out of program temps\n");
- return r;
- }
-
- cs->temp_in_use |= (1 << --index);
- cs->temps[index].refcount = 0xFFFFFFFF;
- cs->temps[index].reg = -1;
-
- REG_SET_TYPE(r, REG_TYPE_TEMP);
- REG_SET_INDEX(r, index);
- REG_SET_VALID(r, GL_TRUE);
- return r;
-}
-
-/**
- * Create a new Mesa temporary register that will act as the destination
- * register for a texture read.
- */
-static GLuint get_temp_reg_tex(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- GLuint r = undef;
- GLuint index;
-
- index = ffs(~cs->temp_in_use);
- if (!index) {
- ERROR("Out of program temps\n");
- return r;
- }
-
- cs->temp_in_use |= (1 << --index);
- cs->temps[index].refcount = 0xFFFFFFFF;
- cs->temps[index].reg = get_hw_temp_tex(cs);
-
- REG_SET_TYPE(r, REG_TYPE_TEMP);
- REG_SET_INDEX(r, index);
- REG_SET_VALID(r, GL_TRUE);
- return r;
-}
-
-/**
- * Free a Mesa temporary and the associated R300 temporary.
- */
-static void free_temp(struct r300_pfs_compile_state *cs, GLuint r)
-{
- GLuint index = REG_GET_INDEX(r);
-
- if (!(cs->temp_in_use & (1 << index)))
- return;
-
- if (REG_GET_TYPE(r) == REG_TYPE_TEMP) {
- free_hw_temp(cs, cs->temps[index].reg);
- cs->temps[index].reg = -1;
- cs->temp_in_use &= ~(1 << index);
- } else if (REG_GET_TYPE(r) == REG_TYPE_INPUT) {
- free_hw_temp(cs, cs->inputs[index].reg);
- cs->inputs[index].reg = -1;
- }
-}
-
-/**
- * Emit a hardware constant/parameter.
- *
- * \p cp Stable pointer to an array of 4 floats.
- * The pointer must be stable in the sense that it remains to be valid
- * and hold the contents of the constant/parameter throughout the lifetime
- * of the fragment program (actually, up until the next time the fragment
- * program is translated).
- */
-static GLuint emit_const4fv(struct r300_pfs_compile_state *cs,
- const GLfloat * cp)
-{
- COMPILE_STATE;
- GLuint reg = undef;
- int index;
- for (index = 0; index < code->const_nr; ++index) {
- if (code->constant[index] == cp)
- break;
- }
-
- if (index >= code->const_nr) {
- if (index >= PFS_NUM_CONST_REGS) {
- ERROR("Out of hw constants!\n");
- return reg;
- }
-
- code->const_nr++;
- code->constant[index] = cp;
- }
-
- REG_SET_TYPE(reg, REG_TYPE_CONST);
- REG_SET_INDEX(reg, index);
- REG_SET_VALID(reg, GL_TRUE);
- return reg;
-}
-
-static inline GLuint negate(GLuint r)
-{
- REG_NEGS(r);
- REG_NEGV(r);
- return r;
-}
-
-/* Hack, to prevent clobbering sources used multiple times when
- * emulating non-native instructions
- */
-static inline GLuint keep(GLuint r)
-{
- REG_SET_NO_USE(r, GL_TRUE);
- return r;
-}
-
-static inline GLuint absolute(GLuint r)
-{
- REG_ABS(r);
- return r;
-}
-
-static int swz_native(struct r300_pfs_compile_state *cs,
- GLuint src, GLuint * r, GLuint arbneg)
-{
- COMPILE_STATE;
-
- /* Native swizzle, handle negation */
- src = (src & ~REG_NEGS_MASK) | (((arbneg >> 3) & 1) << REG_NEGS_SHIFT);
-
- if ((arbneg & 0x7) == 0x0) {
- src = src & ~REG_NEGV_MASK;
- *r = src;
- } else if ((arbneg & 0x7) == 0x7) {
- src |= REG_NEGV_MASK;
- *r = src;
- } else {
- if (!REG_GET_VALID(*r))
- *r = get_temp_reg(cs);
- src |= REG_NEGV_MASK;
- emit_arith(cs,
- PFS_OP_MAD,
- *r, arbneg & 0x7, keep(src), pfs_one, pfs_zero, 0);
- src = src & ~REG_NEGV_MASK;
- emit_arith(cs,
- PFS_OP_MAD,
- *r,
- (arbneg ^ 0x7) | WRITEMASK_W,
- src, pfs_one, pfs_zero, 0);
- }
-
- return 3;
-}
-
-static int swz_emit_partial(struct r300_pfs_compile_state *cs,
- GLuint src,
- GLuint * r, int mask, int mc, GLuint arbneg)
-{
- COMPILE_STATE;
- GLuint tmp;
- GLuint wmask = 0;
-
- if (!REG_GET_VALID(*r))
- *r = get_temp_reg(cs);
-
- /* A partial match, VSWZ/mask define what parts of the
- * desired swizzle we match
- */
- if (mc + s_mask[mask].count == 3) {
- wmask = WRITEMASK_W;
- src |= ((arbneg >> 3) & 1) << REG_NEGS_SHIFT;
- }
-
- tmp = arbneg & s_mask[mask].mask;
- if (tmp) {
- tmp = tmp ^ s_mask[mask].mask;
- if (tmp) {
- emit_arith(cs,
- PFS_OP_MAD,
- *r,
- arbneg & s_mask[mask].mask,
- keep(src) | REG_NEGV_MASK,
- pfs_one, pfs_zero, 0);
- if (!wmask) {
- REG_SET_NO_USE(src, GL_TRUE);
- } else {
- REG_SET_NO_USE(src, GL_FALSE);
- }
- emit_arith(cs,
- PFS_OP_MAD,
- *r, tmp | wmask, src, pfs_one, pfs_zero, 0);
- } else {
- if (!wmask) {
- REG_SET_NO_USE(src, GL_TRUE);
- } else {
- REG_SET_NO_USE(src, GL_FALSE);
- }
- emit_arith(cs,
- PFS_OP_MAD,
- *r,
- (arbneg & s_mask[mask].mask) | wmask,
- src | REG_NEGV_MASK, pfs_one, pfs_zero, 0);
- }
- } else {
- if (!wmask) {
- REG_SET_NO_USE(src, GL_TRUE);
- } else {
- REG_SET_NO_USE(src, GL_FALSE);
- }
- emit_arith(cs, PFS_OP_MAD,
- *r,
- s_mask[mask].mask | wmask,
- src, pfs_one, pfs_zero, 0);
- }
-
- return s_mask[mask].count;
-}
-
-static GLuint do_swizzle(struct r300_pfs_compile_state *cs,
- GLuint src, GLuint arbswz, GLuint arbneg)
-{
- COMPILE_STATE;
- GLuint r = undef;
- GLuint vswz;
- int c_mask = 0;
- int v_match = 0;
-
- /* If swizzling from something without an XYZW native swizzle,
- * emit result to a temp, and do new swizzle from the temp.
- */
-#if 0
- if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
- GLuint temp = get_temp_reg(fp);
- emit_arith(fp,
- PFS_OP_MAD,
- temp, WRITEMASK_XYZW, src, pfs_one, pfs_zero, 0);
- src = temp;
- }
-#endif
-
- if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
- GLuint vsrcswz =
- (v_swiz[REG_GET_VSWZ(src)].
- hash & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK)) |
- REG_GET_SSWZ(src) << 9;
- GLint i;
-
- GLuint newswz = 0;
- GLuint offset;
- for (i = 0; i < 4; ++i) {
- offset = GET_SWZ(arbswz, i);
-
- newswz |=
- (offset <= 3) ? GET_SWZ(vsrcswz,
- offset) << i *
- 3 : offset << i * 3;
- }
-
- arbswz = newswz & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK);
- REG_SET_SSWZ(src, GET_SWZ(newswz, 3));
- } else {
- /* set scalar swizzling */
- REG_SET_SSWZ(src, GET_SWZ(arbswz, 3));
-
- }
- do {
- vswz = REG_GET_VSWZ(src);
- do {
- int chash;
-
- REG_SET_VSWZ(src, vswz);
- chash = v_swiz[REG_GET_VSWZ(src)].hash &
- s_mask[c_mask].hash;
-
- if (chash == (arbswz & s_mask[c_mask].hash)) {
- if (s_mask[c_mask].count == 3) {
- v_match += swz_native(cs,
- src, &r, arbneg);
- } else {
- v_match += swz_emit_partial(cs,
- src,
- &r,
- c_mask,
- v_match,
- arbneg);
- }
-
- if (v_match == 3)
- return r;
-
- /* Fill with something invalid.. all 0's was
- * wrong before, matched SWIZZLE_X. So all
- * 1's will be okay for now
- */
- arbswz |= (PFS_INVAL & s_mask[c_mask].hash);
- }
- } while (v_swiz[++vswz].hash != PFS_INVAL);
- REG_SET_VSWZ(src, SWIZZLE_XYZ);
- } while (s_mask[++c_mask].hash != PFS_INVAL);
-
- ERROR("should NEVER get here\n");
- return r;
-}
-
-static GLuint t_src(struct r300_pfs_compile_state *cs,
- struct prog_src_register fpsrc)
-{
- COMPILE_STATE;
- GLuint r = undef;
-
- switch (fpsrc.File) {
- case PROGRAM_TEMPORARY:
- REG_SET_INDEX(r, fpsrc.Index);
- REG_SET_VALID(r, GL_TRUE);
- REG_SET_TYPE(r, REG_TYPE_TEMP);
- break;
- case PROGRAM_INPUT:
- REG_SET_INDEX(r, fpsrc.Index);
- REG_SET_VALID(r, GL_TRUE);
- REG_SET_TYPE(r, REG_TYPE_INPUT);
- break;
- case PROGRAM_LOCAL_PARAM:
- r = emit_const4fv(cs,
- fp->mesa_program.Base.LocalParams[fpsrc.
- Index]);
- break;
- case PROGRAM_ENV_PARAM:
- r = emit_const4fv(cs,
- cs->r300->radeon.glCtx->FragmentProgram.Parameters[fpsrc.Index]);
- break;
- case PROGRAM_STATE_VAR:
- case PROGRAM_NAMED_PARAM:
- case PROGRAM_CONSTANT:
- r = emit_const4fv(cs,
- fp->mesa_program.Base.Parameters->
- ParameterValues[fpsrc.Index]);
- break;
- default:
- ERROR("unknown SrcReg->File %x\n", fpsrc.File);
- return r;
- }
-
- /* no point swizzling ONE/ZERO/HALF constants... */
- if (REG_GET_VSWZ(r) < SWIZZLE_111 || REG_GET_SSWZ(r) < SWIZZLE_ZERO)
- r = do_swizzle(cs, r, fpsrc.Swizzle, fpsrc.NegateBase);
- return r;
-}
-
-static GLuint t_scalar_src(struct r300_pfs_compile_state *cs,
- struct prog_src_register fpsrc)
-{
- struct prog_src_register src = fpsrc;
- int sc = GET_SWZ(fpsrc.Swizzle, 0); /* X */
-
- src.Swizzle = ((sc << 0) | (sc << 3) | (sc << 6) | (sc << 9));
-
- return t_src(cs, src);
-}
-
-static GLuint t_dst(struct r300_pfs_compile_state *cs,
- struct prog_dst_register dest)
-{
- COMPILE_STATE;
- GLuint r = undef;
-
- switch (dest.File) {
- case PROGRAM_TEMPORARY:
- REG_SET_INDEX(r, dest.Index);
- REG_SET_VALID(r, GL_TRUE);
- REG_SET_TYPE(r, REG_TYPE_TEMP);
- return r;
- case PROGRAM_OUTPUT:
- REG_SET_TYPE(r, REG_TYPE_OUTPUT);
- switch (dest.Index) {
- case FRAG_RESULT_COLR:
- case FRAG_RESULT_DEPR:
- REG_SET_INDEX(r, dest.Index);
- REG_SET_VALID(r, GL_TRUE);
- return r;
- default:
- ERROR("Bad DstReg->Index 0x%x\n", dest.Index);
- return r;
- }
- default:
- ERROR("Bad DstReg->File 0x%x\n", dest.File);
- return r;
- }
-}
-
-static int t_hw_src(struct r300_pfs_compile_state *cs, GLuint src, GLboolean tex)
-{
- COMPILE_STATE;
- int idx;
- int index = REG_GET_INDEX(src);
-
- switch (REG_GET_TYPE(src)) {
- case REG_TYPE_TEMP:
- /* NOTE: if reg==-1 here, a source is being read that
- * hasn't been written to. Undefined results.
- */
- if (cs->temps[index].reg == -1)
- cs->temps[index].reg = get_hw_temp(cs, cs->nrslots);
-
- idx = cs->temps[index].reg;
-
- if (!REG_GET_NO_USE(src) && (--cs->temps[index].refcount == 0))
- free_temp(cs, src);
- break;
- case REG_TYPE_INPUT:
- idx = cs->inputs[index].reg;
-
- if (!REG_GET_NO_USE(src) && (--cs->inputs[index].refcount == 0))
- free_hw_temp(cs, cs->inputs[index].reg);
- break;
- case REG_TYPE_CONST:
- return (index | SRC_CONST);
- default:
- ERROR("Invalid type for source reg\n");
- return (0 | SRC_CONST);
- }
-
- if (!tex)
- cs->used_in_node |= (1 << idx);
-
- return idx;
-}
-
-static int t_hw_dst(struct r300_pfs_compile_state *cs,
- GLuint dest, GLboolean tex, int slot)
-{
- COMPILE_STATE;
- int idx;
- GLuint index = REG_GET_INDEX(dest);
- assert(REG_GET_VALID(dest));
-
- switch (REG_GET_TYPE(dest)) {
- case REG_TYPE_TEMP:
- if (cs->temps[REG_GET_INDEX(dest)].reg == -1) {
- if (!tex) {
- cs->temps[index].reg = get_hw_temp(cs, slot);
- } else {
- cs->temps[index].reg = get_hw_temp_tex(cs);
- }
- }
- idx = cs->temps[index].reg;
-
- if (!REG_GET_NO_USE(dest) && (--cs->temps[index].refcount == 0))
- free_temp(cs, dest);
-
- cs->dest_in_node |= (1 << idx);
- cs->used_in_node |= (1 << idx);
- break;
- case REG_TYPE_OUTPUT:
- switch (index) {
- case FRAG_RESULT_COLR:
- code->node[code->cur_node].flags |= R300_RGBA_OUT;
- break;
- case FRAG_RESULT_DEPR:
- fp->WritesDepth = GL_TRUE;
- code->node[code->cur_node].flags |= R300_W_OUT;
- break;
- }
- return index;
- break;
- default:
- ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
- return 0;
- }
-
- return idx;
-}
-
-static void emit_nop(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
-
- if (cs->nrslots >= PFS_MAX_ALU_INST) {
- ERROR("Out of ALU instruction slots\n");
- return;
- }
-
- code->alu.inst[cs->nrslots].inst0 = NOP_INST0;
- code->alu.inst[cs->nrslots].inst1 = NOP_INST1;
- code->alu.inst[cs->nrslots].inst2 = NOP_INST2;
- code->alu.inst[cs->nrslots].inst3 = NOP_INST3;
- cs->nrslots++;
-}
-
-static void emit_tex(struct r300_pfs_compile_state *cs,
- struct prog_instruction *fpi, int opcode)
+static void update_params(r300ContextPtr r300, struct r300_fragment_program *fp)
{
- COMPILE_STATE;
- GLuint coord = t_src(cs, fpi->SrcReg[0]);
- GLuint dest = undef, rdest = undef;
- GLuint din, uin;
- int unit = fpi->TexSrcUnit;
- int hwsrc, hwdest;
- GLuint tempreg = 0;
-
- /**
- * Hardware uses [0..1]x[0..1] range for rectangle textures
- * instead of [0..Width]x[0..Height].
- * Add a scaling instruction.
- *
- * \todo Refactor this once we have proper rewriting/optimization
- * support for programs.
- */
- if (opcode != R300_TEX_OP_KIL && fpi->TexSrcTarget == TEXTURE_RECT_INDEX) {
- gl_state_index tokens[STATE_LENGTH] = {
- STATE_INTERNAL, STATE_R300_TEXRECT_FACTOR, 0, 0,
- 0
- };
- int factor_index;
- GLuint factorreg;
-
- tokens[2] = unit;
- factor_index =
- _mesa_add_state_reference(fp->mesa_program.Base.
- Parameters, tokens);
- factorreg =
- emit_const4fv(cs,
- fp->mesa_program.Base.Parameters->
- ParameterValues[factor_index]);
- tempreg = keep(get_temp_reg(cs));
-
- emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
- coord, factorreg, pfs_zero, 0);
-
- coord = tempreg;
- }
-
- /* Texture operations do not support swizzles etc. in hardware,
- * so emit an additional arithmetic operation if necessary.
- */
- if (REG_GET_VSWZ(coord) != SWIZZLE_XYZ ||
- REG_GET_SSWZ(coord) != SWIZZLE_W ||
- coord & (REG_NEGV_MASK | REG_NEGS_MASK | REG_ABS_MASK)) {
- assert(tempreg == 0);
- tempreg = keep(get_temp_reg(cs));
- emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
- coord, pfs_one, pfs_zero, 0);
- coord = tempreg;
- }
-
- /* Ensure correct node indirection */
- uin = cs->used_in_node;
- din = cs->dest_in_node;
-
- /* Resolve source/dest to hardware registers */
- hwsrc = t_hw_src(cs, coord, GL_TRUE);
-
- if (opcode != R300_TEX_OP_KIL) {
- dest = t_dst(cs, fpi->DstReg);
-
- /* r300 doesn't seem to be able to do TEX->output reg */
- if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
- rdest = dest;
- dest = get_temp_reg_tex(cs);
- } else if (fpi->DstReg.WriteMask != WRITEMASK_XYZW) {
- /* in case write mask isn't XYZW */
- rdest = dest;
- dest = get_temp_reg_tex(cs);
- }
- hwdest =
- t_hw_dst(cs, dest, GL_TRUE,
- code->node[code->cur_node].alu_offset);
-
- /* Use a temp that hasn't been used in this node, rather
- * than causing an indirection
- */
- if (uin & (1 << hwdest)) {
- free_hw_temp(cs, hwdest);
- hwdest = get_hw_temp_tex(cs);
- cs->temps[REG_GET_INDEX(dest)].reg = hwdest;
- }
- } else {
- hwdest = 0;
- unit = 0;
- }
-
- /* Indirection if source has been written in this node, or if the
- * dest has been read/written in this node
- */
- if ((REG_GET_TYPE(coord) != REG_TYPE_CONST &&
- (din & (1 << hwsrc))) || (uin & (1 << hwdest))) {
-
- /* Finish off current node */
- if (code->node[code->cur_node].alu_offset == cs->nrslots)
- emit_nop(cs);
-
- code->node[code->cur_node].alu_end =
- cs->nrslots - code->node[code->cur_node].alu_offset - 1;
- assert(code->node[code->cur_node].alu_end >= 0);
-
- if (++code->cur_node >= PFS_MAX_TEX_INDIRECT) {
- ERROR("too many levels of texture indirection\n");
- return;
- }
-
- /* Start new node */
- code->node[code->cur_node].tex_offset = code->tex.length;
- code->node[code->cur_node].alu_offset = cs->nrslots;
- code->node[code->cur_node].tex_end = -1;
- code->node[code->cur_node].alu_end = -1;
- code->node[code->cur_node].flags = 0;
- cs->used_in_node = 0;
- cs->dest_in_node = 0;
- }
-
- if (code->cur_node == 0)
- code->first_node_has_tex = 1;
-
- code->tex.inst[code->tex.length++] = 0 | (hwsrc << R300_SRC_ADDR_SHIFT)
- | (hwdest << R300_DST_ADDR_SHIFT)
- | (unit << R300_TEX_ID_SHIFT)
- | (opcode << R300_TEX_INST_SHIFT);
-
- cs->dest_in_node |= (1 << hwdest);
- if (REG_GET_TYPE(coord) != REG_TYPE_CONST)
- cs->used_in_node |= (1 << hwsrc);
-
- code->node[code->cur_node].tex_end++;
-
- /* Copy from temp to output if needed */
- if (REG_GET_VALID(rdest)) {
- emit_arith(cs, PFS_OP_MAD, rdest, fpi->DstReg.WriteMask, dest,
- pfs_one, pfs_zero, 0);
- free_temp(cs, dest);
- }
+ struct gl_fragment_program *mp = &fp->mesa_program;
- /* Free temp register */
- if (tempreg != 0)
- free_temp(cs, tempreg);
+ /* Ask Mesa nicely to fill in ParameterValues for us */
+ if (mp->Base.Parameters)
+ _mesa_load_state_parameters(r300->radeon.glCtx, mp->Base.Parameters);
}
-/**
- * Returns the first slot where we could possibly allow writing to dest,
- * according to register allocation.
- */
-static int get_earliest_allowed_write(struct r300_pfs_compile_state *cs,
- GLuint dest, int mask)
-{
- COMPILE_STATE;
- int idx;
- int pos;
- GLuint index = REG_GET_INDEX(dest);
- assert(REG_GET_VALID(dest));
-
- switch (REG_GET_TYPE(dest)) {
- case REG_TYPE_TEMP:
- if (cs->temps[index].reg == -1)
- return 0;
-
- idx = cs->temps[index].reg;
- break;
- case REG_TYPE_OUTPUT:
- return 0;
- default:
- ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
- return 0;
- }
-
- pos = cs->hwtemps[idx].reserved;
- if (mask & WRITEMASK_XYZ) {
- if (pos < cs->hwtemps[idx].vector_lastread)
- pos = cs->hwtemps[idx].vector_lastread;
- }
- if (mask & WRITEMASK_W) {
- if (pos < cs->hwtemps[idx].scalar_lastread)
- pos = cs->hwtemps[idx].scalar_lastread;
- }
-
- return pos;
-}
/**
- * Allocates a slot for an ALU instruction that can consist of
- * a vertex part or a scalar part or both.
+ * Transform the program to support fragment.position.
*
- * Sources from src (src[0] to src[argc-1]) are added to the slot in the
- * appropriate position (vector and/or scalar), and their positions are
- * recorded in the srcpos array.
+ * Introduce a small fragment at the start of the program that will be
+ * the only code that directly reads the FRAG_ATTRIB_WPOS input.
+ * All other code pieces that reference that input will be rewritten
+ * to read from a newly allocated temporary.
*
- * This function emits instruction code for the source fetch and the
- * argument selection. It does not emit instruction code for the
- * opcode or the destination selection.
- *
- * @return the index of the slot
- */
-static int find_and_prepare_slot(struct r300_pfs_compile_state *cs,
- GLboolean emit_vop,
- GLboolean emit_sop,
- int argc, GLuint * src, GLuint dest, int mask)
-{
- COMPILE_STATE;
- int hwsrc[3];
- int srcpos[3];
- unsigned int used;
- int tempused;
- int tempvsrc[3];
- int tempssrc[3];
- int pos;
- int regnr;
- int i, j;
-
- // Determine instruction slots, whether sources are required on
- // vector or scalar side, and the smallest slot number where
- // all source registers are available
- used = 0;
- if (emit_vop)
- used |= SLOT_OP_VECTOR;
- if (emit_sop)
- used |= SLOT_OP_SCALAR;
-
- pos = get_earliest_allowed_write(cs, dest, mask);
-
- if (code->node[code->cur_node].alu_offset > pos)
- pos = code->node[code->cur_node].alu_offset;
- for (i = 0; i < argc; ++i) {
- if (!REG_GET_BUILTIN(src[i])) {
- if (emit_vop)
- used |= v_swiz[REG_GET_VSWZ(src[i])].flags << i;
- if (emit_sop)
- used |= s_swiz[REG_GET_SSWZ(src[i])].flags << i;
- }
-
- hwsrc[i] = t_hw_src(cs, src[i], GL_FALSE); /* Note: sideeffects wrt refcounting! */
- regnr = hwsrc[i] & 31;
-
- if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
- if (used & (SLOT_SRC_VECTOR << i)) {
- if (cs->hwtemps[regnr].vector_valid > pos)
- pos = cs->hwtemps[regnr].vector_valid;
- }
- if (used & (SLOT_SRC_SCALAR << i)) {
- if (cs->hwtemps[regnr].scalar_valid > pos)
- pos = cs->hwtemps[regnr].scalar_valid;
- }
- }
- }
-
- // Find a slot that fits
- for (;; ++pos) {
- if (cs->slot[pos].used & used & SLOT_OP_BOTH)
- continue;
-
- if (pos >= cs->nrslots) {
- if (cs->nrslots >= PFS_MAX_ALU_INST) {
- ERROR("Out of ALU instruction slots\n");
- return -1;
- }
-
- code->alu.inst[pos].inst0 = NOP_INST0;
- code->alu.inst[pos].inst1 = NOP_INST1;
- code->alu.inst[pos].inst2 = NOP_INST2;
- code->alu.inst[pos].inst3 = NOP_INST3;
-
- cs->nrslots++;
- }
- // Note: When we need both parts (vector and scalar) of a source,
- // we always try to put them into the same position. This makes the
- // code easier to read, and it is optimal (i.e. one doesn't gain
- // anything by splitting the parts).
- // It also avoids headaches with swizzles that access both parts (i.e WXY)
- tempused = cs->slot[pos].used;
- for (i = 0; i < 3; ++i) {
- tempvsrc[i] = cs->slot[pos].vsrc[i];
- tempssrc[i] = cs->slot[pos].ssrc[i];
- }
-
- for (i = 0; i < argc; ++i) {
- int flags = (used >> i) & SLOT_SRC_BOTH;
-
- if (!flags) {
- srcpos[i] = 0;
- continue;
- }
-
- for (j = 0; j < 3; ++j) {
- if ((tempused >> j) & flags & SLOT_SRC_VECTOR) {
- if (tempvsrc[j] != hwsrc[i])
- continue;
- }
-
- if ((tempused >> j) & flags & SLOT_SRC_SCALAR) {
- if (tempssrc[j] != hwsrc[i])
- continue;
- }
-
- break;
- }
-
- if (j == 3)
- break;
-
- srcpos[i] = j;
- tempused |= flags << j;
- if (flags & SLOT_SRC_VECTOR)
- tempvsrc[j] = hwsrc[i];
- if (flags & SLOT_SRC_SCALAR)
- tempssrc[j] = hwsrc[i];
- }
-
- if (i == argc)
- break;
- }
-
- // Found a slot, reserve it
- cs->slot[pos].used = tempused | (used & SLOT_OP_BOTH);
- for (i = 0; i < 3; ++i) {
- cs->slot[pos].vsrc[i] = tempvsrc[i];
- cs->slot[pos].ssrc[i] = tempssrc[i];
- }
-
- for (i = 0; i < argc; ++i) {
- if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
- int regnr = hwsrc[i] & 31;
-
- if (used & (SLOT_SRC_VECTOR << i)) {
- if (cs->hwtemps[regnr].vector_lastread < pos)
- cs->hwtemps[regnr].vector_lastread =
- pos;
- }
- if (used & (SLOT_SRC_SCALAR << i)) {
- if (cs->hwtemps[regnr].scalar_lastread < pos)
- cs->hwtemps[regnr].scalar_lastread =
- pos;
- }
- }
- }
-
- // Emit the source fetch code
- code->alu.inst[pos].inst1 &= ~R300_ALU_SRC_MASK;
- code->alu.inst[pos].inst1 |=
- ((cs->slot[pos].vsrc[0] << R300_ALU_SRC0C_SHIFT) |
- (cs->slot[pos].vsrc[1] << R300_ALU_SRC1C_SHIFT) |
- (cs->slot[pos].vsrc[2] << R300_ALU_SRC2C_SHIFT));
-
- code->alu.inst[pos].inst3 &= ~R300_ALU_SRC_MASK;
- code->alu.inst[pos].inst3 |=
- ((cs->slot[pos].ssrc[0] << R300_ALU_SRC0A_SHIFT) |
- (cs->slot[pos].ssrc[1] << R300_ALU_SRC1A_SHIFT) |
- (cs->slot[pos].ssrc[2] << R300_ALU_SRC2A_SHIFT));
-
- // Emit the argument selection code
- if (emit_vop) {
- int swz[3];
-
- for (i = 0; i < 3; ++i) {
- if (i < argc) {
- swz[i] = (v_swiz[REG_GET_VSWZ(src[i])].base +
- (srcpos[i] *
- v_swiz[REG_GET_VSWZ(src[i])].
- stride)) | ((src[i] & REG_NEGV_MASK)
- ? ARG_NEG : 0) | ((src[i]
- &
- REG_ABS_MASK)
- ?
- ARG_ABS
- : 0);
- } else {
- swz[i] = R300_ALU_ARGC_ZERO;
- }
- }
-
- code->alu.inst[pos].inst0 &=
- ~(R300_ALU_ARG0C_MASK | R300_ALU_ARG1C_MASK |
- R300_ALU_ARG2C_MASK);
- code->alu.inst[pos].inst0 |=
- (swz[0] << R300_ALU_ARG0C_SHIFT) | (swz[1] <<
- R300_ALU_ARG1C_SHIFT)
- | (swz[2] << R300_ALU_ARG2C_SHIFT);
- }
-
- if (emit_sop) {
- int swz[3];
-
- for (i = 0; i < 3; ++i) {
- if (i < argc) {
- swz[i] = (s_swiz[REG_GET_SSWZ(src[i])].base +
- (srcpos[i] *
- s_swiz[REG_GET_SSWZ(src[i])].
- stride)) | ((src[i] & REG_NEGV_MASK)
- ? ARG_NEG : 0) | ((src[i]
- &
- REG_ABS_MASK)
- ?
- ARG_ABS
- : 0);
- } else {
- swz[i] = R300_ALU_ARGA_ZERO;
- }
- }
-
- code->alu.inst[pos].inst2 &=
- ~(R300_ALU_ARG0A_MASK | R300_ALU_ARG1A_MASK |
- R300_ALU_ARG2A_MASK);
- code->alu.inst[pos].inst2 |=
- (swz[0] << R300_ALU_ARG0A_SHIFT) | (swz[1] <<
- R300_ALU_ARG1A_SHIFT)
- | (swz[2] << R300_ALU_ARG2A_SHIFT);
- }
-
- return pos;
-}
-
-/**
- * Append an ALU instruction to the instruction list.
+ * \todo if/when r5xx supports the radeon_program architecture, this is a
+ * likely candidate for code sharing.
*/
-static void emit_arith(struct r300_pfs_compile_state *cs,
- int op,
- GLuint dest,
- int mask,
- GLuint src0, GLuint src1, GLuint src2, int flags)
+static void insert_WPOS_trailer(struct r300_fragment_program_compiler *compiler)
{
- COMPILE_STATE;
- GLuint src[3] = { src0, src1, src2 };
- int hwdest;
- GLboolean emit_vop, emit_sop;
- int vop, sop, argc;
- int pos;
-
- vop = r300_fpop[op].v_op;
- sop = r300_fpop[op].s_op;
- argc = r300_fpop[op].argc;
+ GLuint InputsRead = compiler->fp->mesa_program.Base.InputsRead;
- if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT &&
- REG_GET_INDEX(dest) == FRAG_RESULT_DEPR) {
- if (mask & WRITEMASK_Z) {
- mask = WRITEMASK_W;
- } else {
- return;
- }
- }
-
- emit_vop = GL_FALSE;
- emit_sop = GL_FALSE;
- if ((mask & WRITEMASK_XYZ) || vop == R300_ALU_OUTC_DP3)
- emit_vop = GL_TRUE;
- if ((mask & WRITEMASK_W) || vop == R300_ALU_OUTC_REPL_ALPHA)
- emit_sop = GL_TRUE;
-
- pos =
- find_and_prepare_slot(cs, emit_vop, emit_sop, argc, src, dest,
- mask);
- if (pos < 0)
+ if (!(InputsRead & FRAG_BIT_WPOS))
return;
- hwdest = t_hw_dst(cs, dest, GL_FALSE, pos); /* Note: Side effects wrt register allocation */
-
- if (flags & PFS_FLAG_SAT) {
- vop |= R300_ALU_OUTC_CLAMP;
- sop |= R300_ALU_OUTA_CLAMP;
- }
-
- /* Throw the pieces together and get ALU/1 */
- if (emit_vop) {
- code->alu.inst[pos].inst0 |= vop;
-
- code->alu.inst[pos].inst1 |= hwdest << R300_ALU_DSTC_SHIFT;
-
- if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
- if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
- code->alu.inst[pos].inst1 |=
- (mask & WRITEMASK_XYZ) <<
- R300_ALU_DSTC_OUTPUT_MASK_SHIFT;
- } else
- assert(0);
- } else {
- code->alu.inst[pos].inst1 |=
- (mask & WRITEMASK_XYZ) <<
- R300_ALU_DSTC_REG_MASK_SHIFT;
-
- cs->hwtemps[hwdest].vector_valid = pos + 1;
- }
- }
-
- /* And now ALU/3 */
- if (emit_sop) {
- code->alu.inst[pos].inst2 |= sop;
-
- if (mask & WRITEMASK_W) {
- if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
- if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
- code->alu.inst[pos].inst3 |=
- (hwdest << R300_ALU_DSTA_SHIFT) |
- R300_ALU_DSTA_OUTPUT;
- } else if (REG_GET_INDEX(dest) ==
- FRAG_RESULT_DEPR) {
- code->alu.inst[pos].inst3 |=
- R300_ALU_DSTA_DEPTH;
- } else
- assert(0);
- } else {
- code->alu.inst[pos].inst3 |=
- (hwdest << R300_ALU_DSTA_SHIFT) |
- R300_ALU_DSTA_REG;
-
- cs->hwtemps[hwdest].scalar_valid = pos + 1;
- }
- }
- }
-
- return;
-}
-
-static GLfloat SinCosConsts[2][4] = {
- {
- 1.273239545, // 4/PI
- -0.405284735, // -4/(PI*PI)
- 3.141592654, // PI
- 0.2225 // weight
- },
- {
- 0.75,
- 0.0,
- 0.159154943, // 1/(2*PI)
- 6.283185307 // 2*PI
- }
-};
-
-/**
- * Emit a LIT instruction.
- * \p flags may be PFS_FLAG_SAT
- *
- * Definition of LIT (from ARB_fragment_program):
- * tmp = VectorLoad(op0);
- * if (tmp.x < 0) tmp.x = 0;
- * if (tmp.y < 0) tmp.y = 0;
- * if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
- * else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
- * result.x = 1.0;
- * result.y = tmp.x;
- * result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0;
- * result.w = 1.0;
- *
- * The longest path of computation is the one leading to result.z,
- * consisting of 5 operations. This implementation of LIT takes
- * 5 slots. So unless there's some special undocumented opcode,
- * this implementation is potentially optimal. Unfortunately,
- * emit_arith is a bit too conservative because it doesn't understand
- * partial writes to the vector component.
- */
-static const GLfloat LitConst[4] =
- { 127.999999, 127.999999, 127.999999, -127.999999 };
-
-static void emit_lit(struct r300_pfs_compile_state *cs,
- GLuint dest, int mask, GLuint src, int flags)
-{
- COMPILE_STATE;
- GLuint cnst;
- int needTemporary;
- GLuint temp;
-
- cnst = emit_const4fv(cs, LitConst);
-
- needTemporary = 0;
- if ((mask & WRITEMASK_XYZW) != WRITEMASK_XYZW) {
- needTemporary = 1;
- } else if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
- // LIT is typically followed by DP3/DP4, so there's no point
- // in creating special code for this case
- needTemporary = 1;
- }
-
- if (needTemporary) {
- temp = keep(get_temp_reg(cs));
- } else {
- temp = keep(dest);
- }
-
- // Note: The order of emit_arith inside the slots is relevant,
- // because emit_arith only looks at scalar vs. vector when resolving
- // dependencies, and it does not consider individual vector components,
- // so swizzling between the two parts can create fake dependencies.
-
- // First slot
- emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_XY,
- keep(src), pfs_zero, undef, 0);
- emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_W, src, cnst, undef, 0);
-
- // Second slot
- emit_arith(cs, PFS_OP_MIN, temp, WRITEMASK_Z,
- swizzle(temp, W, W, W, W), cnst, undef, 0);
- emit_arith(cs, PFS_OP_LG2, temp, WRITEMASK_W,
- swizzle(temp, Y, Y, Y, Y), undef, undef, 0);
-
- // Third slot
- // If desired, we saturate the y result here.
- // This does not affect the use as a condition variable in the CMP later
- emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W,
- temp, swizzle(temp, Z, Z, Z, Z), pfs_zero, 0);
- emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_Y,
- swizzle(temp, X, X, X, X), pfs_one, pfs_zero, flags);
-
- // Fourth slot
- emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_X,
- pfs_one, pfs_one, pfs_zero, 0);
- emit_arith(cs, PFS_OP_EX2, temp, WRITEMASK_W, temp, undef, undef, 0);
-
- // Fifth slot
- emit_arith(cs, PFS_OP_CMP, temp, WRITEMASK_Z,
- pfs_zero, swizzle(temp, W, W, W, W),
- negate(swizzle(temp, Y, Y, Y, Y)), flags);
- emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W, pfs_one, pfs_one,
- pfs_zero, 0);
-
- if (needTemporary) {
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- temp, pfs_one, pfs_zero, flags);
- free_temp(cs, temp);
- } else {
- // Decrease refcount of the destination
- t_hw_dst(cs, dest, GL_FALSE, cs->nrslots);
- }
-}
-
-static GLboolean parse_program(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- struct gl_fragment_program *mp = &fp->mesa_program;
- const struct prog_instruction *inst = mp->Base.Instructions;
- struct prog_instruction *fpi;
- GLuint src[3], dest, temp[2];
- int flags, mask = 0;
- int const_sin[2];
-
- if (!inst || inst[0].Opcode == OPCODE_END) {
- ERROR("empty program?\n");
- return GL_FALSE;
- }
-
- for (fpi = mp->Base.Instructions; fpi->Opcode != OPCODE_END; fpi++) {
- if (fpi->SaturateMode == SATURATE_ZERO_ONE)
- flags = PFS_FLAG_SAT;
- else
- flags = 0;
-
- if (fpi->Opcode != OPCODE_KIL) {
- dest = t_dst(cs, fpi->DstReg);
- mask = fpi->DstReg.WriteMask;
- }
-
- switch (fpi->Opcode) {
- case OPCODE_ABS:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- absolute(src[0]), pfs_one, pfs_zero, flags);
- break;
- case OPCODE_ADD:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], pfs_one, src[1], flags);
- break;
- case OPCODE_CMP:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- src[2] = t_src(cs, fpi->SrcReg[2]);
- /* ARB_f_p - if src0.c < 0.0 ? src1.c : src2.c
- * r300 - if src2.c < 0.0 ? src1.c : src0.c
- */
- emit_arith(cs, PFS_OP_CMP, dest, mask,
- src[2], src[1], src[0], flags);
- break;
- case OPCODE_COS:
- /*
- * cos using a parabola (see SIN):
- * cos(x):
- * x = (x/(2*PI))+0.75
- * x = frac(x)
- * x = (x*2*PI)-PI
- * result = sin(x)
- */
- temp[0] = get_temp_reg(cs);
- const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
- const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
- /* add 0.5*PI and do range reduction */
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
- swizzle(src[0], X, X, X, X),
- swizzle(const_sin[1], Z, Z, Z, Z),
- swizzle(const_sin[1], X, X, X, X), 0);
-
- emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
- swizzle(temp[0], X, X, X, X),
- undef, undef, 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W), //2*PI
- negate(swizzle(const_sin[0], Z, Z, Z, Z)), //-PI
- 0);
-
- /* SIN */
-
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
- Z, Z, Z,
- Z),
- const_sin[0], pfs_zero, 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
- swizzle(temp[0], Y, Y, Y, Y),
- absolute(swizzle(temp[0], Z, Z, Z, Z)),
- swizzle(temp[0], X, X, X, X), 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
- swizzle(temp[0], X, X, X, X),
- absolute(swizzle(temp[0], X, X, X, X)),
- negate(swizzle(temp[0], X, X, X, X)), 0);
-
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- swizzle(temp[0], Y, Y, Y, Y),
- swizzle(const_sin[0], W, W, W, W),
- swizzle(temp[0], X, X, X, X), flags);
-
- free_temp(cs, temp[0]);
- break;
- case OPCODE_DP3:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_DP3, dest, mask,
- src[0], src[1], undef, flags);
- break;
- case OPCODE_DP4:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_DP4, dest, mask,
- src[0], src[1], undef, flags);
- break;
- case OPCODE_DPH:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- /* src0.xyz1 -> temp
- * DP4 dest, temp, src1
- */
- emit_arith(cs, PFS_OP_DP4, dest, mask,
- swizzle(src[0], X, Y, Z, ONE), src[1],
- undef, flags);
- break;
- case OPCODE_DST:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- /* dest.y = src0.y * src1.y */
- if (mask & WRITEMASK_Y)
- emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Y,
- keep(src[0]), keep(src[1]),
- pfs_zero, flags);
- /* dest.z = src0.z */
- if (mask & WRITEMASK_Z)
- emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Z,
- src[0], pfs_one, pfs_zero, flags);
- /* result.x = 1.0
- * result.w = src1.w */
- if (mask & WRITEMASK_XW) {
- REG_SET_VSWZ(src[1], SWIZZLE_111); /*Cheat */
- emit_arith(cs, PFS_OP_MAD, dest,
- mask & WRITEMASK_XW,
- src[1], pfs_one, pfs_zero, flags);
- }
- break;
- case OPCODE_EX2:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_EX2, dest, mask,
- src[0], undef, undef, flags);
- break;
- case OPCODE_FLR:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- temp[0] = get_temp_reg(cs);
- /* FRC temp, src0
- * MAD dest, src0, 1.0, -temp
- */
- emit_arith(cs, PFS_OP_FRC, temp[0], mask,
- keep(src[0]), undef, undef, 0);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], pfs_one, negate(temp[0]), flags);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_FRC:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_FRC, dest, mask,
- src[0], undef, undef, flags);
- break;
- case OPCODE_KIL:
- emit_tex(cs, fpi, R300_TEX_OP_KIL);
- break;
- case OPCODE_LG2:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_LG2, dest, mask,
- src[0], undef, undef, flags);
- break;
- case OPCODE_LIT:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- emit_lit(cs, dest, mask, src[0], flags);
- break;
- case OPCODE_LRP:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- src[2] = t_src(cs, fpi->SrcReg[2]);
- /* result = tmp0tmp1 + (1 - tmp0)tmp2
- * = tmp0tmp1 + tmp2 + (-tmp0)tmp2
- * MAD temp, -tmp0, tmp2, tmp2
- * MAD result, tmp0, tmp1, temp
- */
- temp[0] = get_temp_reg(cs);
- emit_arith(cs, PFS_OP_MAD, temp[0], mask,
- negate(keep(src[0])), keep(src[2]), src[2],
- 0);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], src[1], temp[0], flags);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_MAD:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- src[2] = t_src(cs, fpi->SrcReg[2]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], src[1], src[2], flags);
- break;
- case OPCODE_MAX:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MAX, dest, mask,
- src[0], src[1], undef, flags);
- break;
- case OPCODE_MIN:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MIN, dest, mask,
- src[0], src[1], undef, flags);
- break;
- case OPCODE_MOV:
- case OPCODE_SWZ:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], pfs_one, pfs_zero, flags);
- break;
- case OPCODE_MUL:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], src[1], pfs_zero, flags);
- break;
- case OPCODE_POW:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- src[1] = t_scalar_src(cs, fpi->SrcReg[1]);
- temp[0] = get_temp_reg(cs);
- emit_arith(cs, PFS_OP_LG2, temp[0], WRITEMASK_W,
- src[0], undef, undef, 0);
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
- temp[0], src[1], pfs_zero, 0);
- emit_arith(cs, PFS_OP_EX2, dest, fpi->DstReg.WriteMask,
- temp[0], undef, undef, 0);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_RCP:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_RCP, dest, mask,
- src[0], undef, undef, flags);
- break;
- case OPCODE_RSQ:
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
- emit_arith(cs, PFS_OP_RSQ, dest, mask,
- absolute(src[0]), pfs_zero, pfs_zero, flags);
- break;
- case OPCODE_SCS:
- /*
- * scs using a parabola :
- * scs(x):
- * result.x = sin(-abs(x)+0.5*PI) (cos)
- * result.y = sin(x) (sin)
- *
- */
- temp[0] = get_temp_reg(cs);
- temp[1] = get_temp_reg(cs);
- const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
- const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
- /* x = -abs(x)+0.5*PI */
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(const_sin[0], Z, Z, Z, Z), //PI
- pfs_half,
- negate(abs
- (swizzle(keep(src[0]), X, X, X, X))),
- 0);
-
- /* C*x (sin) */
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
- swizzle(const_sin[0], Y, Y, Y, Y),
- swizzle(keep(src[0]), X, X, X, X),
- pfs_zero, 0);
-
- /* B*x, C*x (cos) */
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
- Z, Z, Z,
- Z),
- const_sin[0], pfs_zero, 0);
-
- /* B*x (sin) */
- emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
- swizzle(const_sin[0], X, X, X, X),
- keep(src[0]), pfs_zero, 0);
-
- /* y = B*x + C*x*abs(x) (sin) */
- emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_Z,
- absolute(src[0]),
- swizzle(temp[0], W, W, W, W),
- swizzle(temp[1], W, W, W, W), 0);
-
- /* y = B*x + C*x*abs(x) (cos) */
- emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
- swizzle(temp[0], Y, Y, Y, Y),
- absolute(swizzle(temp[0], Z, Z, Z, Z)),
- swizzle(temp[0], X, X, X, X), 0);
-
- /* y*abs(y) - y (cos), y*abs(y) - y (sin) */
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_X | WRITEMASK_Y, swizzle(temp[1],
- W, Z, Y,
- X),
- absolute(swizzle(temp[1], W, Z, Y, X)),
- negate(swizzle(temp[1], W, Z, Y, X)), 0);
-
- /* dest.xy = mad(temp.xy, P, temp2.wz) */
- emit_arith(cs, PFS_OP_MAD, dest,
- mask & (WRITEMASK_X | WRITEMASK_Y), temp[0],
- swizzle(const_sin[0], W, W, W, W),
- swizzle(temp[1], W, Z, Y, X), flags);
-
- free_temp(cs, temp[0]);
- free_temp(cs, temp[1]);
- break;
- case OPCODE_SGE:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- temp[0] = get_temp_reg(cs);
- /* temp = src0 - src1
- * dest.c = (temp.c < 0.0) ? 0 : 1
- */
- emit_arith(cs, PFS_OP_MAD, temp[0], mask,
- src[0], pfs_one, negate(src[1]), 0);
- emit_arith(cs, PFS_OP_CMP, dest, mask,
- pfs_one, pfs_zero, temp[0], 0);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_SIN:
- /*
- * using a parabola:
- * sin(x) = 4/pi * x + -4/(pi*pi) * x * abs(x)
- * extra precision is obtained by weighting against
- * itself squared.
- */
-
- temp[0] = get_temp_reg(cs);
- const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
- const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
- src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
-
- /* do range reduction */
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
- swizzle(keep(src[0]), X, X, X, X),
- swizzle(const_sin[1], Z, Z, Z, Z),
- pfs_half, 0);
-
- emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
- swizzle(temp[0], X, X, X, X),
- undef, undef, 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W), //2*PI
- negate(swizzle(const_sin[0], Z, Z, Z, Z)), //PI
- 0);
-
- /* SIN */
-
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
- Z, Z, Z,
- Z),
- const_sin[0], pfs_zero, 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
- swizzle(temp[0], Y, Y, Y, Y),
- absolute(swizzle(temp[0], Z, Z, Z, Z)),
- swizzle(temp[0], X, X, X, X), 0);
-
- emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
- swizzle(temp[0], X, X, X, X),
- absolute(swizzle(temp[0], X, X, X, X)),
- negate(swizzle(temp[0], X, X, X, X)), 0);
-
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- swizzle(temp[0], Y, Y, Y, Y),
- swizzle(const_sin[0], W, W, W, W),
- swizzle(temp[0], X, X, X, X), flags);
-
- free_temp(cs, temp[0]);
- break;
- case OPCODE_SLT:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- temp[0] = get_temp_reg(cs);
- /* temp = src0 - src1
- * dest.c = (temp.c < 0.0) ? 1 : 0
- */
- emit_arith(cs, PFS_OP_MAD, temp[0], mask,
- src[0], pfs_one, negate(src[1]), 0);
- emit_arith(cs, PFS_OP_CMP, dest, mask,
- pfs_zero, pfs_one, temp[0], 0);
- free_temp(cs, temp[0]);
- break;
- case OPCODE_SUB:
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- emit_arith(cs, PFS_OP_MAD, dest, mask,
- src[0], pfs_one, negate(src[1]), flags);
- break;
- case OPCODE_TEX:
- emit_tex(cs, fpi, R300_TEX_OP_LD);
- break;
- case OPCODE_TXB:
- emit_tex(cs, fpi, R300_TEX_OP_TXB);
- break;
- case OPCODE_TXP:
- emit_tex(cs, fpi, R300_TEX_OP_TXP);
- break;
- case OPCODE_XPD:{
- src[0] = t_src(cs, fpi->SrcReg[0]);
- src[1] = t_src(cs, fpi->SrcReg[1]);
- temp[0] = get_temp_reg(cs);
- /* temp = src0.zxy * src1.yzx */
- emit_arith(cs, PFS_OP_MAD, temp[0],
- WRITEMASK_XYZ, swizzle(keep(src[0]),
- Z, X, Y, W),
- swizzle(keep(src[1]), Y, Z, X, W),
- pfs_zero, 0);
- /* dest.xyz = src0.yzx * src1.zxy - temp
- * dest.w = undefined
- * */
- emit_arith(cs, PFS_OP_MAD, dest,
- mask & WRITEMASK_XYZ, swizzle(src[0],
- Y, Z,
- X, W),
- swizzle(src[1], Z, X, Y, W),
- negate(temp[0]), flags);
- /* cleanup */
- free_temp(cs, temp[0]);
- break;
- }
- default:
- ERROR("unknown fpi->Opcode %d\n", fpi->Opcode);
- break;
- }
-
- if (fp->error)
- return GL_FALSE;
-
- }
-
- return GL_TRUE;
-}
-
-static void insert_wpos(struct gl_program *prog)
-{
static gl_state_index tokens[STATE_LENGTH] = {
STATE_INTERNAL, STATE_R300_WINDOW_DIMENSION, 0, 0, 0
};
struct prog_instruction *fpi;
GLuint window_index;
int i = 0;
- GLuint tempregi = prog->NumTemporaries;
- /* should do something else if no temps left... */
- prog->NumTemporaries++;
+ GLuint tempregi = radeonCompilerAllocateTemporary(&compiler->compiler);
- fpi = _mesa_alloc_instructions(prog->NumInstructions + 3);
- _mesa_init_instructions(fpi, prog->NumInstructions + 3);
+ fpi = radeonClauseInsertInstructions(&compiler->compiler, &compiler->compiler.Clauses[0], 0, 3);
/* perspective divide */
fpi[i].Opcode = OPCODE_RCP;
@@ -2121,7 +118,7 @@ static void insert_wpos(struct gl_program *prog)
i++;
/* viewport transformation */
- window_index = _mesa_add_state_reference(prog->Parameters, tokens);
+ window_index = _mesa_add_state_reference(compiler->fp->mesa_program.Base.Parameters, tokens);
fpi[i].Opcode = OPCODE_MAD;
@@ -2146,193 +143,42 @@ static void insert_wpos(struct gl_program *prog)
MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_ZERO);
i++;
- _mesa_copy_instructions(&fpi[i], prog->Instructions,
- prog->NumInstructions);
-
- free(prog->Instructions);
-
- prog->Instructions = fpi;
-
- prog->NumInstructions += i;
- fpi = &prog->Instructions[prog->NumInstructions - 1];
-
- assert(fpi->Opcode == OPCODE_END);
-
- for (fpi = &prog->Instructions[3]; fpi->Opcode != OPCODE_END; fpi++) {
- for (i = 0; i < 3; i++)
- if (fpi->SrcReg[i].File == PROGRAM_INPUT &&
- fpi->SrcReg[i].Index == FRAG_ATTRIB_WPOS) {
- fpi->SrcReg[i].File = PROGRAM_TEMPORARY;
- fpi->SrcReg[i].Index = tempregi;
- }
- }
-}
-
-/* - Init structures
- * - Determine what hwregs each input corresponds to
- */
-static void init_program(struct r300_pfs_compile_state *cs)
-{
- COMPILE_STATE;
- struct gl_fragment_program *mp = &fp->mesa_program;
- struct prog_instruction *fpi;
- GLuint InputsRead = mp->Base.InputsRead;
- GLuint temps_used = 0; /* for fp->temps[] */
- int i, j;
-
- /* New compile, reset tracking data */
- fp->optimization =
- driQueryOptioni(&cs->r300->radeon.optionCache, "fp_optimization");
- fp->translated = GL_FALSE;
- fp->error = GL_FALSE;
- fp->WritesDepth = GL_FALSE;
- code->tex.length = 0;
- code->cur_node = 0;
- code->first_node_has_tex = 0;
- code->const_nr = 0;
- code->max_temp_idx = 0;
- code->node[0].alu_end = -1;
- code->node[0].tex_end = -1;
-
- for (i = 0; i < PFS_MAX_ALU_INST; i++) {
- for (j = 0; j < 3; j++) {
- cs->slot[i].vsrc[j] = SRC_CONST;
- cs->slot[i].ssrc[j] = SRC_CONST;
- }
- }
-
- /* Work out what temps the Mesa inputs correspond to, this must match
- * what setup_rs_unit does, which shouldn't be a problem as rs_unit
- * configures itself based on the fragprog's InputsRead
- *
- * NOTE: this depends on get_hw_temp() allocating registers in order,
- * starting from register 0.
- */
-
- /* Texcoords come first */
- for (i = 0; i < cs->r300->radeon.glCtx->Const.MaxTextureUnits; i++) {
- if (InputsRead & (FRAG_BIT_TEX0 << i)) {
- cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0;
- cs->inputs[FRAG_ATTRIB_TEX0 + i].reg =
- get_hw_temp(cs, 0);
- }
- }
- InputsRead &= ~FRAG_BITS_TEX_ANY;
-
- /* fragment position treated as a texcoord */
- if (InputsRead & FRAG_BIT_WPOS) {
- cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0;
- cs->inputs[FRAG_ATTRIB_WPOS].reg = get_hw_temp(cs, 0);
- insert_wpos(&mp->Base);
- }
- InputsRead &= ~FRAG_BIT_WPOS;
-
- /* Then primary colour */
- if (InputsRead & FRAG_BIT_COL0) {
- cs->inputs[FRAG_ATTRIB_COL0].refcount = 0;
- cs->inputs[FRAG_ATTRIB_COL0].reg = get_hw_temp(cs, 0);
- }
- InputsRead &= ~FRAG_BIT_COL0;
-
- /* Secondary color */
- if (InputsRead & FRAG_BIT_COL1) {
- cs->inputs[FRAG_ATTRIB_COL1].refcount = 0;
- cs->inputs[FRAG_ATTRIB_COL1].reg = get_hw_temp(cs, 0);
- }
- InputsRead &= ~FRAG_BIT_COL1;
-
- /* Anything else */
- if (InputsRead) {
- WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead);
- /* force read from hwreg 0 for now */
- for (i = 0; i < 32; i++)
- if (InputsRead & (1 << i))
- cs->inputs[i].reg = 0;
- }
-
- /* Pre-parse the mesa program, grabbing refcounts on input/temp regs.
- * That way, we can free up the reg when it's no longer needed
- */
- if (!mp->Base.Instructions) {
- ERROR("No instructions found in program\n");
- return;
- }
-
- for (fpi = mp->Base.Instructions; fpi->Opcode != OPCODE_END; fpi++) {
- int idx;
-
- for (i = 0; i < 3; i++) {
- idx = fpi->SrcReg[i].Index;
- switch (fpi->SrcReg[i].File) {
- case PROGRAM_TEMPORARY:
- if (!(temps_used & (1 << idx))) {
- cs->temps[idx].reg = -1;
- cs->temps[idx].refcount = 1;
- temps_used |= (1 << idx);
- } else
- cs->temps[idx].refcount++;
- break;
- case PROGRAM_INPUT:
- cs->inputs[idx].refcount++;
- break;
- default:
- break;
+ for (; i < compiler->compiler.Clauses[0].NumInstructions; ++i) {
+ int reg;
+ for (reg = 0; reg < 3; reg++) {
+ if (fpi[i].SrcReg[reg].File == PROGRAM_INPUT &&
+ fpi[i].SrcReg[reg].Index == FRAG_ATTRIB_WPOS) {
+ fpi[i].SrcReg[reg].File = PROGRAM_TEMPORARY;
+ fpi[i].SrcReg[reg].Index = tempregi;
}
}
-
- idx = fpi->DstReg.Index;
- if (fpi->DstReg.File == PROGRAM_TEMPORARY) {
- if (!(temps_used & (1 << idx))) {
- cs->temps[idx].reg = -1;
- cs->temps[idx].refcount = 1;
- temps_used |= (1 << idx);
- } else
- cs->temps[idx].refcount++;
- }
}
- cs->temp_in_use = temps_used;
}
-static void update_params(r300ContextPtr r300, struct r300_fragment_program *fp)
-{
- struct gl_fragment_program *mp = &fp->mesa_program;
-
- /* Ask Mesa nicely to fill in ParameterValues for us */
- if (mp->Base.Parameters)
- _mesa_load_state_parameters(r300->radeon.glCtx, mp->Base.Parameters);
-}
void r300TranslateFragmentShader(r300ContextPtr r300,
struct r300_fragment_program *fp)
{
if (!fp->translated) {
- struct r300_pfs_compile_state cs;
+ struct r300_fragment_program_compiler compiler;
- _mesa_memset(&cs, 0, sizeof(cs));
- cs.r300 = r300;
- cs.fp = fp;
- init_program(&cs);
+ compiler.r300 = r300;
+ compiler.fp = fp;
+ compiler.code = &fp->code;
- if (parse_program(&cs) == GL_FALSE) {
- dump_program(fp, &fp->code);
- return;
- }
+ radeonCompilerInit(&compiler.compiler, r300->radeon.glCtx, &fp->mesa_program.Base);
+
+ insert_WPOS_trailer(&compiler);
+
+ if (!r300FragmentProgramEmit(&compiler))
+ fp->error = GL_TRUE;
- /* Finish off */
- fp->code.node[fp->code.cur_node].alu_end =
- cs.nrslots - fp->code.node[fp->code.cur_node].alu_offset - 1;
- if (fp->code.node[fp->code.cur_node].tex_end < 0)
- fp->code.node[fp->code.cur_node].tex_end = 0;
- fp->code.alu_offset = 0;
- fp->code.alu_end = cs.nrslots - 1;
- fp->code.tex_offset = 0;
- fp->code.tex_end = fp->code.tex.length ? fp->code.tex.length - 1 : 0;
- assert(fp->code.node[fp->code.cur_node].alu_end >= 0);
- assert(fp->code.alu_end >= 0);
+ radeonCompilerCleanup(&compiler.compiler);
- fp->translated = GL_TRUE;
- if (RADEON_DEBUG & DEBUG_PIXEL)
- dump_program(fp, &fp->code);
+ if (!fp->error)
+ fp->translated = GL_TRUE;
+ if (fp->error || (RADEON_DEBUG & DEBUG_PIXEL))
+ r300FragmentProgramDump(fp, &fp->code);
r300UpdateStateParameters(r300->radeon.glCtx, _NEW_PROGRAM);
}
@@ -2340,8 +186,9 @@ void r300TranslateFragmentShader(r300ContextPtr r300,
}
/* just some random things... */
-static void dump_program(struct r300_fragment_program *fp,
- struct r300_fragment_program_code *code)
+void r300FragmentProgramDump(
+ struct r300_fragment_program *fp,
+ struct r300_fragment_program_code *code)
{
int n, i, j;
static int pc = 0;
diff --git a/src/mesa/drivers/dri/r300/r300_fragprog.h b/src/mesa/drivers/dri/r300/r300_fragprog.h
index 561d7c6423..8c836c4bda 100644
--- a/src/mesa/drivers/dri/r300/r300_fragprog.h
+++ b/src/mesa/drivers/dri/r300/r300_fragprog.h
@@ -40,6 +40,7 @@
#include "shader/prog_instruction.h"
#include "r300_context.h"
+#include "radeon_program.h"
/* supported hw opcodes */
#define PFS_OP_MAD 0
@@ -136,4 +137,23 @@ struct r300_fragment_program;
extern void r300TranslateFragmentShader(r300ContextPtr r300,
struct r300_fragment_program *fp);
+
+/**
+ * Used internally by the r300 fragment program code to store compile-time
+ * only data.
+ */
+struct r300_fragment_program_compiler {
+ r300ContextPtr r300;
+ struct r300_fragment_program *fp;
+ struct r300_fragment_program_code *code;
+ struct radeon_compiler compiler;
+};
+
+extern GLboolean r300FragmentProgramEmit(struct r300_fragment_program_compiler *compiler);
+
+
+extern void r300FragmentProgramDump(
+ struct r300_fragment_program *fp,
+ struct r300_fragment_program_code *code);
+
#endif
diff --git a/src/mesa/drivers/dri/r300/r300_fragprog_emit.c b/src/mesa/drivers/dri/r300/r300_fragprog_emit.c
new file mode 100644
index 0000000000..fe8a347a62
--- /dev/null
+++ b/src/mesa/drivers/dri/r300/r300_fragprog_emit.c
@@ -0,0 +1,2232 @@
+/*
+ * Copyright (C) 2005 Ben Skeggs.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+/**
+ * \file
+ *
+ * Emit the r300_fragment_program_code that can be understood by the hardware.
+ * Input is a pre-transformed radeon_program.
+ *
+ * \author Ben Skeggs <darktama@iinet.net.au>
+ *
+ * \author Jerome Glisse <j.glisse@gmail.com>
+ *
+ * \todo FogOption
+ *
+ * \todo Verify results of opcodes for accuracy, I've only checked them in
+ * specific cases.
+ */
+
+#include "glheader.h"
+#include "macros.h"
+#include "enums.h"
+#include "shader/prog_instruction.h"
+#include "shader/prog_parameter.h"
+#include "shader/prog_print.h"
+
+#include "r300_context.h"
+#include "r300_fragprog.h"
+#include "r300_reg.h"
+#include "r300_state.h"
+
+/* Mapping Mesa registers to R300 temporaries */
+struct reg_acc {
+ int reg; /* Assigned hw temp */
+ unsigned int refcount; /* Number of uses by mesa program */
+};
+
+/**
+ * Describe the current lifetime information for an R300 temporary
+ */
+struct reg_lifetime {
+ /* Index of the first slot where this register is free in the sense
+ that it can be used as a new destination register.
+ This is -1 if the register has been assigned to a Mesa register
+ and the last access to the register has not yet been emitted */
+ int free;
+
+ /* Index of the first slot where this register is currently reserved.
+ This is used to stop e.g. a scalar operation from being moved
+ before the allocation time of a register that was first allocated
+ for a vector operation. */
+ int reserved;
+
+ /* Index of the first slot in which the register can be used as a
+ source without losing the value that is written by the last
+ emitted instruction that writes to the register */
+ int vector_valid;
+ int scalar_valid;
+
+ /* Index to the slot where the register was last read.
+ This is also the first slot in which the register may be written again */
+ int vector_lastread;
+ int scalar_lastread;
+};
+
+/**
+ * Store usage information about an ALU instruction slot during the
+ * compilation of a fragment program.
+ */
+#define SLOT_SRC_VECTOR (1<<0)
+#define SLOT_SRC_SCALAR (1<<3)
+#define SLOT_SRC_BOTH (SLOT_SRC_VECTOR | SLOT_SRC_SCALAR)
+#define SLOT_OP_VECTOR (1<<16)
+#define SLOT_OP_SCALAR (1<<17)
+#define SLOT_OP_BOTH (SLOT_OP_VECTOR | SLOT_OP_SCALAR)
+
+struct r300_pfs_compile_slot {
+ /* Bitmask indicating which parts of the slot are used, using SLOT_ constants
+ defined above */
+ unsigned int used;
+
+ /* Selected sources */
+ int vsrc[3];
+ int ssrc[3];
+};
+
+/**
+ * Store information during compilation of fragment programs.
+ */
+struct r300_pfs_compile_state {
+ struct r300_fragment_program_compiler *compiler;
+
+ int nrslots; /* number of ALU slots used so far */
+
+ /* Track which (parts of) slots are already filled with instructions */
+ struct r300_pfs_compile_slot slot[PFS_MAX_ALU_INST];
+
+ /* Track the validity of R300 temporaries */
+ struct reg_lifetime hwtemps[PFS_NUM_TEMP_REGS];
+
+ /* Used to map Mesa's inputs/temps onto hardware temps */
+ int temp_in_use;
+ struct reg_acc temps[PFS_NUM_TEMP_REGS];
+ struct reg_acc inputs[32]; /* don't actually need 32... */
+
+ /* Track usage of hardware temps, for register allocation,
+ * indirection detection, etc. */
+ GLuint used_in_node;
+ GLuint dest_in_node;
+};
+
+
+/*
+ * Usefull macros and values
+ */
+#define ERROR(fmt, args...) do { \
+ fprintf(stderr, "%s::%s(): " fmt "\n", \
+ __FILE__, __FUNCTION__, ##args); \
+ fp->error = GL_TRUE; \
+ } while(0)
+
+#define PFS_INVAL 0xFFFFFFFF
+#define COMPILE_STATE \
+ struct r300_fragment_program *fp = cs->compiler->fp; \
+ struct r300_fragment_program_code *code = cs->compiler->code; \
+ (void)code; (void)fp
+
+#define SWIZZLE_XYZ 0
+#define SWIZZLE_XXX 1
+#define SWIZZLE_YYY 2
+#define SWIZZLE_ZZZ 3
+#define SWIZZLE_WWW 4
+#define SWIZZLE_YZX 5
+#define SWIZZLE_ZXY 6
+#define SWIZZLE_WZY 7
+#define SWIZZLE_111 8
+#define SWIZZLE_000 9
+#define SWIZZLE_HHH 10
+
+#define swizzle(r, x, y, z, w) do_swizzle(cs, r, \
+ ((SWIZZLE_##x<<0)| \
+ (SWIZZLE_##y<<3)| \
+ (SWIZZLE_##z<<6)| \
+ (SWIZZLE_##w<<9)), \
+ 0)
+
+#define REG_TYPE_INPUT 0
+#define REG_TYPE_OUTPUT 1
+#define REG_TYPE_TEMP 2
+#define REG_TYPE_CONST 3
+
+#define REG_TYPE_SHIFT 0
+#define REG_INDEX_SHIFT 2
+#define REG_VSWZ_SHIFT 8
+#define REG_SSWZ_SHIFT 13
+#define REG_NEGV_SHIFT 18
+#define REG_NEGS_SHIFT 19
+#define REG_ABS_SHIFT 20
+#define REG_NO_USE_SHIFT 21 // Hack for refcounting
+#define REG_VALID_SHIFT 22 // Does the register contain a defined value?
+#define REG_BUILTIN_SHIFT 23 // Is it a builtin (like all zero/all one)?
+
+#define REG_TYPE_MASK (0x03 << REG_TYPE_SHIFT)
+#define REG_INDEX_MASK (0x3F << REG_INDEX_SHIFT)
+#define REG_VSWZ_MASK (0x1F << REG_VSWZ_SHIFT)
+#define REG_SSWZ_MASK (0x1F << REG_SSWZ_SHIFT)
+#define REG_NEGV_MASK (0x01 << REG_NEGV_SHIFT)
+#define REG_NEGS_MASK (0x01 << REG_NEGS_SHIFT)
+#define REG_ABS_MASK (0x01 << REG_ABS_SHIFT)
+#define REG_NO_USE_MASK (0x01 << REG_NO_USE_SHIFT)
+#define REG_VALID_MASK (0x01 << REG_VALID_SHIFT)
+#define REG_BUILTIN_MASK (0x01 << REG_BUILTIN_SHIFT)
+
+#define REG(type, index, vswz, sswz, nouse, valid, builtin) \
+ (((type << REG_TYPE_SHIFT) & REG_TYPE_MASK) | \
+ ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK) | \
+ ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK) | \
+ ((valid << REG_VALID_SHIFT) & REG_VALID_MASK) | \
+ ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK) | \
+ ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK) | \
+ ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
+#define REG_GET_TYPE(reg) \
+ ((reg & REG_TYPE_MASK) >> REG_TYPE_SHIFT)
+#define REG_GET_INDEX(reg) \
+ ((reg & REG_INDEX_MASK) >> REG_INDEX_SHIFT)
+#define REG_GET_VSWZ(reg) \
+ ((reg & REG_VSWZ_MASK) >> REG_VSWZ_SHIFT)
+#define REG_GET_SSWZ(reg) \
+ ((reg & REG_SSWZ_MASK) >> REG_SSWZ_SHIFT)
+#define REG_GET_NO_USE(reg) \
+ ((reg & REG_NO_USE_MASK) >> REG_NO_USE_SHIFT)
+#define REG_GET_VALID(reg) \
+ ((reg & REG_VALID_MASK) >> REG_VALID_SHIFT)
+#define REG_GET_BUILTIN(reg) \
+ ((reg & REG_BUILTIN_MASK) >> REG_BUILTIN_SHIFT)
+#define REG_SET_TYPE(reg, type) \
+ reg = ((reg & ~REG_TYPE_MASK) | \
+ ((type << REG_TYPE_SHIFT) & REG_TYPE_MASK))
+#define REG_SET_INDEX(reg, index) \
+ reg = ((reg & ~REG_INDEX_MASK) | \
+ ((index << REG_INDEX_SHIFT) & REG_INDEX_MASK))
+#define REG_SET_VSWZ(reg, vswz) \
+ reg = ((reg & ~REG_VSWZ_MASK) | \
+ ((vswz << REG_VSWZ_SHIFT) & REG_VSWZ_MASK))
+#define REG_SET_SSWZ(reg, sswz) \
+ reg = ((reg & ~REG_SSWZ_MASK) | \
+ ((sswz << REG_SSWZ_SHIFT) & REG_SSWZ_MASK))
+#define REG_SET_NO_USE(reg, nouse) \
+ reg = ((reg & ~REG_NO_USE_MASK) | \
+ ((nouse << REG_NO_USE_SHIFT) & REG_NO_USE_MASK))
+#define REG_SET_VALID(reg, valid) \
+ reg = ((reg & ~REG_VALID_MASK) | \
+ ((valid << REG_VALID_SHIFT) & REG_VALID_MASK))
+#define REG_SET_BUILTIN(reg, builtin) \
+ reg = ((reg & ~REG_BUILTIN_MASK) | \
+ ((builtin << REG_BUILTIN_SHIFT) & REG_BUILTIN_MASK))
+#define REG_ABS(reg) \
+ reg = (reg | REG_ABS_MASK)
+#define REG_NEGV(reg) \
+ reg = (reg | REG_NEGV_MASK)
+#define REG_NEGS(reg) \
+ reg = (reg | REG_NEGS_MASK)
+
+#define NOP_INST0 ( \
+ (R300_ALU_OUTC_MAD) | \
+ (R300_ALU_ARGC_ZERO << R300_ALU_ARG0C_SHIFT) | \
+ (R300_ALU_ARGC_ZERO << R300_ALU_ARG1C_SHIFT) | \
+ (R300_ALU_ARGC_ZERO << R300_ALU_ARG2C_SHIFT))
+#define NOP_INST1 ( \
+ ((0 | SRC_CONST) << R300_ALU_SRC0C_SHIFT) | \
+ ((0 | SRC_CONST) << R300_ALU_SRC1C_SHIFT) | \
+ ((0 | SRC_CONST) << R300_ALU_SRC2C_SHIFT))
+#define NOP_INST2 ( \
+ (R300_ALU_OUTA_MAD) | \
+ (R300_ALU_ARGA_ZERO << R300_ALU_ARG0A_SHIFT) | \
+ (R300_ALU_ARGA_ZERO << R300_ALU_ARG1A_SHIFT) | \
+ (R300_ALU_ARGA_ZERO << R300_ALU_ARG2A_SHIFT))
+#define NOP_INST3 ( \
+ ((0 | SRC_CONST) << R300_ALU_SRC0A_SHIFT) | \
+ ((0 | SRC_CONST) << R300_ALU_SRC1A_SHIFT) | \
+ ((0 | SRC_CONST) << R300_ALU_SRC2A_SHIFT))
+
+
+/*
+ * Datas structures for fragment program generation
+ */
+
+/* description of r300 native hw instructions */
+static const struct {
+ const char *name;
+ int argc;
+ int v_op;
+ int s_op;
+} r300_fpop[] = {
+ /* *INDENT-OFF* */
+ {"MAD", 3, R300_ALU_OUTC_MAD, R300_ALU_OUTA_MAD},
+ {"DP3", 2, R300_ALU_OUTC_DP3, R300_ALU_OUTA_DP4},
+ {"DP4", 2, R300_ALU_OUTC_DP4, R300_ALU_OUTA_DP4},
+ {"MIN", 2, R300_ALU_OUTC_MIN, R300_ALU_OUTA_MIN},
+ {"MAX", 2, R300_ALU_OUTC_MAX, R300_ALU_OUTA_MAX},
+ {"CMP", 3, R300_ALU_OUTC_CMP, R300_ALU_OUTA_CMP},
+ {"FRC", 1, R300_ALU_OUTC_FRC, R300_ALU_OUTA_FRC},
+ {"EX2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_EX2},
+ {"LG2", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_LG2},
+ {"RCP", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RCP},
+ {"RSQ", 1, R300_ALU_OUTC_REPL_ALPHA, R300_ALU_OUTA_RSQ},
+ {"REPL_ALPHA", 1, R300_ALU_OUTC_REPL_ALPHA, PFS_INVAL},
+ {"CMPH", 3, R300_ALU_OUTC_CMPH, PFS_INVAL},
+ /* *INDENT-ON* */
+};
+
+/* vector swizzles r300 can support natively, with a couple of
+ * cases we handle specially
+ *
+ * REG_VSWZ/REG_SSWZ is an index into this table
+ */
+
+/* mapping from SWIZZLE_* to r300 native values for scalar insns */
+#define SWIZZLE_HALF 6
+
+#define MAKE_SWZ3(x, y, z) (MAKE_SWIZZLE4(SWIZZLE_##x, \
+ SWIZZLE_##y, \
+ SWIZZLE_##z, \
+ SWIZZLE_ZERO))
+/* native swizzles */
+static const struct r300_pfs_swizzle {
+ GLuint hash; /* swizzle value this matches */
+ GLuint base; /* base value for hw swizzle */
+ GLuint stride; /* difference in base between arg0/1/2 */
+ GLuint flags;
+} v_swiz[] = {
+ /* *INDENT-OFF* */
+ {MAKE_SWZ3(X, Y, Z), R300_ALU_ARGC_SRC0C_XYZ, 4, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(X, X, X), R300_ALU_ARGC_SRC0C_XXX, 4, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(Y, Y, Y), R300_ALU_ARGC_SRC0C_YYY, 4, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(Z, Z, Z), R300_ALU_ARGC_SRC0C_ZZZ, 4, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(W, W, W), R300_ALU_ARGC_SRC0A, 1, SLOT_SRC_SCALAR},
+ {MAKE_SWZ3(Y, Z, X), R300_ALU_ARGC_SRC0C_YZX, 1, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(Z, X, Y), R300_ALU_ARGC_SRC0C_ZXY, 1, SLOT_SRC_VECTOR},
+ {MAKE_SWZ3(W, Z, Y), R300_ALU_ARGC_SRC0CA_WZY, 1, SLOT_SRC_BOTH},
+ {MAKE_SWZ3(ONE, ONE, ONE), R300_ALU_ARGC_ONE, 0, 0},
+ {MAKE_SWZ3(ZERO, ZERO, ZERO), R300_ALU_ARGC_ZERO, 0, 0},
+ {MAKE_SWZ3(HALF, HALF, HALF), R300_ALU_ARGC_HALF, 0, 0},
+ {PFS_INVAL, 0, 0, 0},
+ /* *INDENT-ON* */
+};
+
+/* used during matching of non-native swizzles */
+#define SWZ_X_MASK (7 << 0)
+#define SWZ_Y_MASK (7 << 3)
+#define SWZ_Z_MASK (7 << 6)
+#define SWZ_W_MASK (7 << 9)
+static const struct {
+ GLuint hash; /* used to mask matching swizzle components */
+ int mask; /* actual outmask */
+ int count; /* count of components matched */
+} s_mask[] = {
+ /* *INDENT-OFF* */
+ {SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK, 1 | 2 | 4, 3},
+ {SWZ_X_MASK | SWZ_Y_MASK, 1 | 2, 2},
+ {SWZ_X_MASK | SWZ_Z_MASK, 1 | 4, 2},
+ {SWZ_Y_MASK | SWZ_Z_MASK, 2 | 4, 2},
+ {SWZ_X_MASK, 1, 1},
+ {SWZ_Y_MASK, 2, 1},
+ {SWZ_Z_MASK, 4, 1},
+ {PFS_INVAL, PFS_INVAL, PFS_INVAL}
+ /* *INDENT-ON* */
+};
+
+static const struct {
+ int base; /* hw value of swizzle */
+ int stride; /* difference between SRC0/1/2 */
+ GLuint flags;
+} s_swiz[] = {
+ /* *INDENT-OFF* */
+ {R300_ALU_ARGA_SRC0C_X, 3, SLOT_SRC_VECTOR},
+ {R300_ALU_ARGA_SRC0C_Y, 3, SLOT_SRC_VECTOR},
+ {R300_ALU_ARGA_SRC0C_Z, 3, SLOT_SRC_VECTOR},
+ {R300_ALU_ARGA_SRC0A, 1, SLOT_SRC_SCALAR},
+ {R300_ALU_ARGA_ZERO, 0, 0},
+ {R300_ALU_ARGA_ONE, 0, 0},
+ {R300_ALU_ARGA_HALF, 0, 0}
+ /* *INDENT-ON* */
+};
+
+/* boiler-plate reg, for convenience */
+static const GLuint undef = REG(REG_TYPE_TEMP,
+ 0,
+ SWIZZLE_XYZ,
+ SWIZZLE_W,
+ GL_FALSE,
+ GL_FALSE,
+ GL_FALSE);
+
+/* constant one source */
+static const GLuint pfs_one = REG(REG_TYPE_CONST,
+ 0,
+ SWIZZLE_111,
+ SWIZZLE_ONE,
+ GL_FALSE,
+ GL_TRUE,
+ GL_TRUE);
+
+/* constant half source */
+static const GLuint pfs_half = REG(REG_TYPE_CONST,
+ 0,
+ SWIZZLE_HHH,
+ SWIZZLE_HALF,
+ GL_FALSE,
+ GL_TRUE,
+ GL_TRUE);
+
+/* constant zero source */
+static const GLuint pfs_zero = REG(REG_TYPE_CONST,
+ 0,
+ SWIZZLE_000,
+ SWIZZLE_ZERO,
+ GL_FALSE,
+ GL_TRUE,
+ GL_TRUE);
+
+/*
+ * Common functions prototypes
+ */
+static void emit_arith(struct r300_pfs_compile_state *cs, int op,
+ GLuint dest, int mask,
+ GLuint src0, GLuint src1, GLuint src2, int flags);
+
+/**
+ * Get an R300 temporary that can be written to in the given slot.
+ */
+static int get_hw_temp(struct r300_pfs_compile_state *cs, int slot)
+{
+ COMPILE_STATE;
+ int r;
+
+ for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
+ if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= slot)
+ break;
+ }
+
+ if (r >= PFS_NUM_TEMP_REGS) {
+ ERROR("Out of hardware temps\n");
+ return 0;
+ }
+ // Reserved is used to avoid the following scenario:
+ // R300 temporary X is first assigned to Mesa temporary Y during vector ops
+ // R300 temporary X is then assigned to Mesa temporary Z for further vector ops
+ // Then scalar ops on Mesa temporary Z are emitted and move back in time
+ // to overwrite the value of temporary Y.
+ // End scenario.
+ cs->hwtemps[r].reserved = cs->hwtemps[r].free;
+ cs->hwtemps[r].free = -1;
+
+ // Reset to some value that won't mess things up when the user
+ // tries to read from a temporary that hasn't been assigned a value yet.
+ // In the normal case, vector_valid and scalar_valid should be set to
+ // a sane value by the first emit that writes to this temporary.
+ cs->hwtemps[r].vector_valid = 0;
+ cs->hwtemps[r].scalar_valid = 0;
+
+ if (r > code->max_temp_idx)
+ code->max_temp_idx = r;
+
+ return r;
+}
+
+/**
+ * Get an R300 temporary that will act as a TEX destination register.
+ */
+static int get_hw_temp_tex(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ int r;
+
+ for (r = 0; r < PFS_NUM_TEMP_REGS; ++r) {
+ if (cs->used_in_node & (1 << r))
+ continue;
+
+ // Note: Be very careful here
+ if (cs->hwtemps[r].free >= 0 && cs->hwtemps[r].free <= 0)
+ break;
+ }
+
+ if (r >= PFS_NUM_TEMP_REGS)
+ return get_hw_temp(cs, 0); /* Will cause an indirection */
+
+ cs->hwtemps[r].reserved = cs->hwtemps[r].free;
+ cs->hwtemps[r].free = -1;
+
+ // Reset to some value that won't mess things up when the user
+ // tries to read from a temporary that hasn't been assigned a value yet.
+ // In the normal case, vector_valid and scalar_valid should be set to
+ // a sane value by the first emit that writes to this temporary.
+ cs->hwtemps[r].vector_valid = cs->nrslots;
+ cs->hwtemps[r].scalar_valid = cs->nrslots;
+
+ if (r > code->max_temp_idx)
+ code->max_temp_idx = r;
+
+ return r;
+}
+
+/**
+ * Mark the given hardware register as free.
+ */
+static void free_hw_temp(struct r300_pfs_compile_state *cs, int idx)
+{
+ // Be very careful here. Consider sequences like
+ // MAD r0, r1,r2,r3
+ // TEX r4, ...
+ // The TEX instruction may be moved in front of the MAD instruction
+ // due to the way nodes work. We don't want to alias r1 and r4 in
+ // this case.
+ // I'm certain the register allocation could be further sanitized,
+ // but it's tricky because of stuff that can happen inside emit_tex
+ // and emit_arith.
+ cs->hwtemps[idx].free = cs->nrslots + 1;
+}
+
+/**
+ * Create a new Mesa temporary register.
+ */
+static GLuint get_temp_reg(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+ GLuint index;
+
+ index = ffs(~cs->temp_in_use);
+ if (!index) {
+ ERROR("Out of program temps\n");
+ return r;
+ }
+
+ cs->temp_in_use |= (1 << --index);
+ cs->temps[index].refcount = 0xFFFFFFFF;
+ cs->temps[index].reg = -1;
+
+ REG_SET_TYPE(r, REG_TYPE_TEMP);
+ REG_SET_INDEX(r, index);
+ REG_SET_VALID(r, GL_TRUE);
+ return r;
+}
+
+/**
+ * Create a new Mesa temporary register that will act as the destination
+ * register for a texture read.
+ */
+static GLuint get_temp_reg_tex(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+ GLuint index;
+
+ index = ffs(~cs->temp_in_use);
+ if (!index) {
+ ERROR("Out of program temps\n");
+ return r;
+ }
+
+ cs->temp_in_use |= (1 << --index);
+ cs->temps[index].refcount = 0xFFFFFFFF;
+ cs->temps[index].reg = get_hw_temp_tex(cs);
+
+ REG_SET_TYPE(r, REG_TYPE_TEMP);
+ REG_SET_INDEX(r, index);
+ REG_SET_VALID(r, GL_TRUE);
+ return r;
+}
+
+/**
+ * Free a Mesa temporary and the associated R300 temporary.
+ */
+static void free_temp(struct r300_pfs_compile_state *cs, GLuint r)
+{
+ GLuint index = REG_GET_INDEX(r);
+
+ if (!(cs->temp_in_use & (1 << index)))
+ return;
+
+ if (REG_GET_TYPE(r) == REG_TYPE_TEMP) {
+ free_hw_temp(cs, cs->temps[index].reg);
+ cs->temps[index].reg = -1;
+ cs->temp_in_use &= ~(1 << index);
+ } else if (REG_GET_TYPE(r) == REG_TYPE_INPUT) {
+ free_hw_temp(cs, cs->inputs[index].reg);
+ cs->inputs[index].reg = -1;
+ }
+}
+
+/**
+ * Emit a hardware constant/parameter.
+ *
+ * \p cp Stable pointer to an array of 4 floats.
+ * The pointer must be stable in the sense that it remains to be valid
+ * and hold the contents of the constant/parameter throughout the lifetime
+ * of the fragment program (actually, up until the next time the fragment
+ * program is translated).
+ */
+static GLuint emit_const4fv(struct r300_pfs_compile_state *cs,
+ const GLfloat * cp)
+{
+ COMPILE_STATE;
+ GLuint reg = undef;
+ int index;
+
+ for (index = 0; index < code->const_nr; ++index) {
+ if (code->constant[index] == cp)
+ break;
+ }
+
+ if (index >= code->const_nr) {
+ if (index >= PFS_NUM_CONST_REGS) {
+ ERROR("Out of hw constants!\n");
+ return reg;
+ }
+
+ code->const_nr++;
+ code->constant[index] = cp;
+ }
+
+ REG_SET_TYPE(reg, REG_TYPE_CONST);
+ REG_SET_INDEX(reg, index);
+ REG_SET_VALID(reg, GL_TRUE);
+ return reg;
+}
+
+static inline GLuint negate(GLuint r)
+{
+ REG_NEGS(r);
+ REG_NEGV(r);
+ return r;
+}
+
+/* Hack, to prevent clobbering sources used multiple times when
+ * emulating non-native instructions
+ */
+static inline GLuint keep(GLuint r)
+{
+ REG_SET_NO_USE(r, GL_TRUE);
+ return r;
+}
+
+static inline GLuint absolute(GLuint r)
+{
+ REG_ABS(r);
+ return r;
+}
+
+static int swz_native(struct r300_pfs_compile_state *cs,
+ GLuint src, GLuint * r, GLuint arbneg)
+{
+ COMPILE_STATE;
+
+ /* Native swizzle, handle negation */
+ src = (src & ~REG_NEGS_MASK) | (((arbneg >> 3) & 1) << REG_NEGS_SHIFT);
+
+ if ((arbneg & 0x7) == 0x0) {
+ src = src & ~REG_NEGV_MASK;
+ *r = src;
+ } else if ((arbneg & 0x7) == 0x7) {
+ src |= REG_NEGV_MASK;
+ *r = src;
+ } else {
+ if (!REG_GET_VALID(*r))
+ *r = get_temp_reg(cs);
+ src |= REG_NEGV_MASK;
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r, arbneg & 0x7, keep(src), pfs_one, pfs_zero, 0);
+ src = src & ~REG_NEGV_MASK;
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r,
+ (arbneg ^ 0x7) | WRITEMASK_W,
+ src, pfs_one, pfs_zero, 0);
+ }
+
+ return 3;
+}
+
+static int swz_emit_partial(struct r300_pfs_compile_state *cs,
+ GLuint src,
+ GLuint * r, int mask, int mc, GLuint arbneg)
+{
+ COMPILE_STATE;
+ GLuint tmp;
+ GLuint wmask = 0;
+
+ if (!REG_GET_VALID(*r))
+ *r = get_temp_reg(cs);
+
+ /* A partial match, VSWZ/mask define what parts of the
+ * desired swizzle we match
+ */
+ if (mc + s_mask[mask].count == 3) {
+ wmask = WRITEMASK_W;
+ src |= ((arbneg >> 3) & 1) << REG_NEGS_SHIFT;
+ }
+
+ tmp = arbneg & s_mask[mask].mask;
+ if (tmp) {
+ tmp = tmp ^ s_mask[mask].mask;
+ if (tmp) {
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r,
+ arbneg & s_mask[mask].mask,
+ keep(src) | REG_NEGV_MASK,
+ pfs_one, pfs_zero, 0);
+ if (!wmask) {
+ REG_SET_NO_USE(src, GL_TRUE);
+ } else {
+ REG_SET_NO_USE(src, GL_FALSE);
+ }
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r, tmp | wmask, src, pfs_one, pfs_zero, 0);
+ } else {
+ if (!wmask) {
+ REG_SET_NO_USE(src, GL_TRUE);
+ } else {
+ REG_SET_NO_USE(src, GL_FALSE);
+ }
+ emit_arith(cs,
+ PFS_OP_MAD,
+ *r,
+ (arbneg & s_mask[mask].mask) | wmask,
+ src | REG_NEGV_MASK, pfs_one, pfs_zero, 0);
+ }
+ } else {
+ if (!wmask) {
+ REG_SET_NO_USE(src, GL_TRUE);
+ } else {
+ REG_SET_NO_USE(src, GL_FALSE);
+ }
+ emit_arith(cs, PFS_OP_MAD,
+ *r,
+ s_mask[mask].mask | wmask,
+ src, pfs_one, pfs_zero, 0);
+ }
+
+ return s_mask[mask].count;
+}
+
+static GLuint do_swizzle(struct r300_pfs_compile_state *cs,
+ GLuint src, GLuint arbswz, GLuint arbneg)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+ GLuint vswz;
+ int c_mask = 0;
+ int v_match = 0;
+
+ /* If swizzling from something without an XYZW native swizzle,
+ * emit result to a temp, and do new swizzle from the temp.
+ */
+#if 0
+ if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
+ GLuint temp = get_temp_reg(fp);
+ emit_arith(fp,
+ PFS_OP_MAD,
+ temp, WRITEMASK_XYZW, src, pfs_one, pfs_zero, 0);
+ src = temp;
+ }
+#endif
+
+ if (REG_GET_VSWZ(src) != SWIZZLE_XYZ || REG_GET_SSWZ(src) != SWIZZLE_W) {
+ GLuint vsrcswz =
+ (v_swiz[REG_GET_VSWZ(src)].
+ hash & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK)) |
+ REG_GET_SSWZ(src) << 9;
+ GLint i;
+
+ GLuint newswz = 0;
+ GLuint offset;
+ for (i = 0; i < 4; ++i) {
+ offset = GET_SWZ(arbswz, i);
+
+ newswz |=
+ (offset <= 3) ? GET_SWZ(vsrcswz,
+ offset) << i *
+ 3 : offset << i * 3;
+ }
+
+ arbswz = newswz & (SWZ_X_MASK | SWZ_Y_MASK | SWZ_Z_MASK);
+ REG_SET_SSWZ(src, GET_SWZ(newswz, 3));
+ } else {
+ /* set scalar swizzling */
+ REG_SET_SSWZ(src, GET_SWZ(arbswz, 3));
+
+ }
+ do {
+ vswz = REG_GET_VSWZ(src);
+ do {
+ int chash;
+
+ REG_SET_VSWZ(src, vswz);
+ chash = v_swiz[REG_GET_VSWZ(src)].hash &
+ s_mask[c_mask].hash;
+
+ if (chash == (arbswz & s_mask[c_mask].hash)) {
+ if (s_mask[c_mask].count == 3) {
+ v_match += swz_native(cs,
+ src, &r, arbneg);
+ } else {
+ v_match += swz_emit_partial(cs,
+ src,
+ &r,
+ c_mask,
+ v_match,
+ arbneg);
+ }
+
+ if (v_match == 3)
+ return r;
+
+ /* Fill with something invalid.. all 0's was
+ * wrong before, matched SWIZZLE_X. So all
+ * 1's will be okay for now
+ */
+ arbswz |= (PFS_INVAL & s_mask[c_mask].hash);
+ }
+ } while (v_swiz[++vswz].hash != PFS_INVAL);
+ REG_SET_VSWZ(src, SWIZZLE_XYZ);
+ } while (s_mask[++c_mask].hash != PFS_INVAL);
+
+ ERROR("should NEVER get here\n");
+ return r;
+}
+
+static GLuint t_src(struct r300_pfs_compile_state *cs,
+ struct prog_src_register fpsrc)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+
+ switch (fpsrc.File) {
+ case PROGRAM_TEMPORARY:
+ REG_SET_INDEX(r, fpsrc.Index);
+ REG_SET_VALID(r, GL_TRUE);
+ REG_SET_TYPE(r, REG_TYPE_TEMP);
+ break;
+ case PROGRAM_INPUT:
+ REG_SET_INDEX(r, fpsrc.Index);
+ REG_SET_VALID(r, GL_TRUE);
+ REG_SET_TYPE(r, REG_TYPE_INPUT);
+ break;
+ case PROGRAM_LOCAL_PARAM:
+ r = emit_const4fv(cs,
+ fp->mesa_program.Base.LocalParams[fpsrc.
+ Index]);
+ break;
+ case PROGRAM_ENV_PARAM:
+ r = emit_const4fv(cs,
+ cs->compiler->r300->radeon.glCtx->FragmentProgram.Parameters[fpsrc.Index]);
+ break;
+ case PROGRAM_STATE_VAR:
+ case PROGRAM_NAMED_PARAM:
+ case PROGRAM_CONSTANT:
+ r = emit_const4fv(cs,
+ fp->mesa_program.Base.Parameters->
+ ParameterValues[fpsrc.Index]);
+ break;
+ default:
+ ERROR("unknown SrcReg->File %x\n", fpsrc.File);
+ return r;
+ }
+
+ /* no point swizzling ONE/ZERO/HALF constants... */
+ if (REG_GET_VSWZ(r) < SWIZZLE_111 || REG_GET_SSWZ(r) < SWIZZLE_ZERO)
+ r = do_swizzle(cs, r, fpsrc.Swizzle, fpsrc.NegateBase);
+ return r;
+}
+
+static GLuint t_scalar_src(struct r300_pfs_compile_state *cs,
+ struct prog_src_register fpsrc)
+{
+ struct prog_src_register src = fpsrc;
+ int sc = GET_SWZ(fpsrc.Swizzle, 0); /* X */
+
+ src.Swizzle = ((sc << 0) | (sc << 3) | (sc << 6) | (sc << 9));
+
+ return t_src(cs, src);
+}
+
+static GLuint t_dst(struct r300_pfs_compile_state *cs,
+ struct prog_dst_register dest)
+{
+ COMPILE_STATE;
+ GLuint r = undef;
+
+ switch (dest.File) {
+ case PROGRAM_TEMPORARY:
+ REG_SET_INDEX(r, dest.Index);
+ REG_SET_VALID(r, GL_TRUE);
+ REG_SET_TYPE(r, REG_TYPE_TEMP);
+ return r;
+ case PROGRAM_OUTPUT:
+ REG_SET_TYPE(r, REG_TYPE_OUTPUT);
+ switch (dest.Index) {
+ case FRAG_RESULT_COLR:
+ case FRAG_RESULT_DEPR:
+ REG_SET_INDEX(r, dest.Index);
+ REG_SET_VALID(r, GL_TRUE);
+ return r;
+ default:
+ ERROR("Bad DstReg->Index 0x%x\n", dest.Index);
+ return r;
+ }
+ default:
+ ERROR("Bad DstReg->File 0x%x\n", dest.File);
+ return r;
+ }
+}
+
+static int t_hw_src(struct r300_pfs_compile_state *cs, GLuint src, GLboolean tex)
+{
+ COMPILE_STATE;
+ int idx;
+ int index = REG_GET_INDEX(src);
+
+ switch (REG_GET_TYPE(src)) {
+ case REG_TYPE_TEMP:
+ /* NOTE: if reg==-1 here, a source is being read that
+ * hasn't been written to. Undefined results.
+ */
+ if (cs->temps[index].reg == -1)
+ cs->temps[index].reg = get_hw_temp(cs, cs->nrslots);
+
+ idx = cs->temps[index].reg;
+
+ if (!REG_GET_NO_USE(src) && (--cs->temps[index].refcount == 0))
+ free_temp(cs, src);
+ break;
+ case REG_TYPE_INPUT:
+ idx = cs->inputs[index].reg;
+
+ if (!REG_GET_NO_USE(src) && (--cs->inputs[index].refcount == 0))
+ free_hw_temp(cs, cs->inputs[index].reg);
+ break;
+ case REG_TYPE_CONST:
+ return (index | SRC_CONST);
+ default:
+ ERROR("Invalid type for source reg\n");
+ return (0 | SRC_CONST);
+ }
+
+ if (!tex)
+ cs->used_in_node |= (1 << idx);
+
+ return idx;
+}
+
+static int t_hw_dst(struct r300_pfs_compile_state *cs,
+ GLuint dest, GLboolean tex, int slot)
+{
+ COMPILE_STATE;
+ int idx;
+ GLuint index = REG_GET_INDEX(dest);
+ assert(REG_GET_VALID(dest));
+
+ switch (REG_GET_TYPE(dest)) {
+ case REG_TYPE_TEMP:
+ if (cs->temps[REG_GET_INDEX(dest)].reg == -1) {
+ if (!tex) {
+ cs->temps[index].reg = get_hw_temp(cs, slot);
+ } else {
+ cs->temps[index].reg = get_hw_temp_tex(cs);
+ }
+ }
+ idx = cs->temps[index].reg;
+
+ if (!REG_GET_NO_USE(dest) && (--cs->temps[index].refcount == 0))
+ free_temp(cs, dest);
+
+ cs->dest_in_node |= (1 << idx);
+ cs->used_in_node |= (1 << idx);
+ break;
+ case REG_TYPE_OUTPUT:
+ switch (index) {
+ case FRAG_RESULT_COLR:
+ code->node[code->cur_node].flags |= R300_RGBA_OUT;
+ break;
+ case FRAG_RESULT_DEPR:
+ fp->WritesDepth = GL_TRUE;
+ code->node[code->cur_node].flags |= R300_W_OUT;
+ break;
+ }
+ return index;
+ break;
+ default:
+ ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
+ return 0;
+ }
+
+ return idx;
+}
+
+static void emit_nop(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+
+ if (cs->nrslots >= PFS_MAX_ALU_INST) {
+ ERROR("Out of ALU instruction slots\n");
+ return;
+ }
+
+ code->alu.inst[cs->nrslots].inst0 = NOP_INST0;
+ code->alu.inst[cs->nrslots].inst1 = NOP_INST1;
+ code->alu.inst[cs->nrslots].inst2 = NOP_INST2;
+ code->alu.inst[cs->nrslots].inst3 = NOP_INST3;
+ cs->nrslots++;
+}
+
+static void emit_tex(struct r300_pfs_compile_state *cs,
+ struct prog_instruction *fpi, int opcode)
+{
+ COMPILE_STATE;
+ GLuint coord = t_src(cs, fpi->SrcReg[0]);
+ GLuint dest = undef, rdest = undef;
+ GLuint din, uin;
+ int unit = fpi->TexSrcUnit;
+ int hwsrc, hwdest;
+ GLuint tempreg = 0;
+
+ /**
+ * Hardware uses [0..1]x[0..1] range for rectangle textures
+ * instead of [0..Width]x[0..Height].
+ * Add a scaling instruction.
+ *
+ * \todo Refactor this once we have proper rewriting/optimization
+ * support for programs.
+ */
+ if (opcode != R300_TEX_OP_KIL && fpi->TexSrcTarget == TEXTURE_RECT_INDEX) {
+ gl_state_index tokens[STATE_LENGTH] = {
+ STATE_INTERNAL, STATE_R300_TEXRECT_FACTOR, 0, 0,
+ 0
+ };
+ int factor_index;
+ GLuint factorreg;
+
+ tokens[2] = unit;
+ factor_index =
+ _mesa_add_state_reference(fp->mesa_program.Base.
+ Parameters, tokens);
+ factorreg =
+ emit_const4fv(cs,
+ fp->mesa_program.Base.Parameters->
+ ParameterValues[factor_index]);
+ tempreg = keep(get_temp_reg(cs));
+
+ emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
+ coord, factorreg, pfs_zero, 0);
+
+ coord = tempreg;
+ }
+
+ /* Texture operations do not support swizzles etc. in hardware,
+ * so emit an additional arithmetic operation if necessary.
+ */
+ if (REG_GET_VSWZ(coord) != SWIZZLE_XYZ ||
+ REG_GET_SSWZ(coord) != SWIZZLE_W ||
+ coord & (REG_NEGV_MASK | REG_NEGS_MASK | REG_ABS_MASK)) {
+ assert(tempreg == 0);
+ tempreg = keep(get_temp_reg(cs));
+ emit_arith(cs, PFS_OP_MAD, tempreg, WRITEMASK_XYZW,
+ coord, pfs_one, pfs_zero, 0);
+ coord = tempreg;
+ }
+
+ /* Ensure correct node indirection */
+ uin = cs->used_in_node;
+ din = cs->dest_in_node;
+
+ /* Resolve source/dest to hardware registers */
+ hwsrc = t_hw_src(cs, coord, GL_TRUE);
+
+ if (opcode != R300_TEX_OP_KIL) {
+ dest = t_dst(cs, fpi->DstReg);
+
+ /* r300 doesn't seem to be able to do TEX->output reg */
+ if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+ rdest = dest;
+ dest = get_temp_reg_tex(cs);
+ } else if (fpi->DstReg.WriteMask != WRITEMASK_XYZW) {
+ /* in case write mask isn't XYZW */
+ rdest = dest;
+ dest = get_temp_reg_tex(cs);
+ }
+ hwdest =
+ t_hw_dst(cs, dest, GL_TRUE,
+ code->node[code->cur_node].alu_offset);
+
+ /* Use a temp that hasn't been used in this node, rather
+ * than causing an indirection
+ */
+ if (uin & (1 << hwdest)) {
+ free_hw_temp(cs, hwdest);
+ hwdest = get_hw_temp_tex(cs);
+ cs->temps[REG_GET_INDEX(dest)].reg = hwdest;
+ }
+ } else {
+ hwdest = 0;
+ unit = 0;
+ }
+
+ /* Indirection if source has been written in this node, or if the
+ * dest has been read/written in this node
+ */
+ if ((REG_GET_TYPE(coord) != REG_TYPE_CONST &&
+ (din & (1 << hwsrc))) || (uin & (1 << hwdest))) {
+
+ /* Finish off current node */
+ if (code->node[code->cur_node].alu_offset == cs->nrslots)
+ emit_nop(cs);
+
+ code->node[code->cur_node].alu_end =
+ cs->nrslots - code->node[code->cur_node].alu_offset - 1;
+ assert(code->node[code->cur_node].alu_end >= 0);
+
+ if (++code->cur_node >= PFS_MAX_TEX_INDIRECT) {
+ ERROR("too many levels of texture indirection\n");
+ return;
+ }
+
+ /* Start new node */
+ code->node[code->cur_node].tex_offset = code->tex.length;
+ code->node[code->cur_node].alu_offset = cs->nrslots;
+ code->node[code->cur_node].tex_end = -1;
+ code->node[code->cur_node].alu_end = -1;
+ code->node[code->cur_node].flags = 0;
+ cs->used_in_node = 0;
+ cs->dest_in_node = 0;
+ }
+
+ if (code->cur_node == 0)
+ code->first_node_has_tex = 1;
+
+ code->tex.inst[code->tex.length++] = 0 | (hwsrc << R300_SRC_ADDR_SHIFT)
+ | (hwdest << R300_DST_ADDR_SHIFT)
+ | (unit << R300_TEX_ID_SHIFT)
+ | (opcode << R300_TEX_INST_SHIFT);
+
+ cs->dest_in_node |= (1 << hwdest);
+ if (REG_GET_TYPE(coord) != REG_TYPE_CONST)
+ cs->used_in_node |= (1 << hwsrc);
+
+ code->node[code->cur_node].tex_end++;
+
+ /* Copy from temp to output if needed */
+ if (REG_GET_VALID(rdest)) {
+ emit_arith(cs, PFS_OP_MAD, rdest, fpi->DstReg.WriteMask, dest,
+ pfs_one, pfs_zero, 0);
+ free_temp(cs, dest);
+ }
+
+ /* Free temp register */
+ if (tempreg != 0)
+ free_temp(cs, tempreg);
+}
+
+/**
+ * Returns the first slot where we could possibly allow writing to dest,
+ * according to register allocation.
+ */
+static int get_earliest_allowed_write(struct r300_pfs_compile_state *cs,
+ GLuint dest, int mask)
+{
+ COMPILE_STATE;
+ int idx;
+ int pos;
+ GLuint index = REG_GET_INDEX(dest);
+ assert(REG_GET_VALID(dest));
+
+ switch (REG_GET_TYPE(dest)) {
+ case REG_TYPE_TEMP:
+ if (cs->temps[index].reg == -1)
+ return 0;
+
+ idx = cs->temps[index].reg;
+ break;
+ case REG_TYPE_OUTPUT:
+ return 0;
+ default:
+ ERROR("invalid dest reg type %d\n", REG_GET_TYPE(dest));
+ return 0;
+ }
+
+ pos = cs->hwtemps[idx].reserved;
+ if (mask & WRITEMASK_XYZ) {
+ if (pos < cs->hwtemps[idx].vector_lastread)
+ pos = cs->hwtemps[idx].vector_lastread;
+ }
+ if (mask & WRITEMASK_W) {
+ if (pos < cs->hwtemps[idx].scalar_lastread)
+ pos = cs->hwtemps[idx].scalar_lastread;
+ }
+
+ return pos;
+}
+
+/**
+ * Allocates a slot for an ALU instruction that can consist of
+ * a vertex part or a scalar part or both.
+ *
+ * Sources from src (src[0] to src[argc-1]) are added to the slot in the
+ * appropriate position (vector and/or scalar), and their positions are
+ * recorded in the srcpos array.
+ *
+ * This function emits instruction code for the source fetch and the
+ * argument selection. It does not emit instruction code for the
+ * opcode or the destination selection.
+ *
+ * @return the index of the slot
+ */
+static int find_and_prepare_slot(struct r300_pfs_compile_state *cs,
+ GLboolean emit_vop,
+ GLboolean emit_sop,
+ int argc, GLuint * src, GLuint dest, int mask)
+{
+ COMPILE_STATE;
+ int hwsrc[3];
+ int srcpos[3];
+ unsigned int used;
+ int tempused;
+ int tempvsrc[3];
+ int tempssrc[3];
+ int pos;
+ int regnr;
+ int i, j;
+
+ // Determine instruction slots, whether sources are required on
+ // vector or scalar side, and the smallest slot number where
+ // all source registers are available
+ used = 0;
+ if (emit_vop)
+ used |= SLOT_OP_VECTOR;
+ if (emit_sop)
+ used |= SLOT_OP_SCALAR;
+
+ pos = get_earliest_allowed_write(cs, dest, mask);
+
+ if (code->node[code->cur_node].alu_offset > pos)
+ pos = code->node[code->cur_node].alu_offset;
+ for (i = 0; i < argc; ++i) {
+ if (!REG_GET_BUILTIN(src[i])) {
+ if (emit_vop)
+ used |= v_swiz[REG_GET_VSWZ(src[i])].flags << i;
+ if (emit_sop)
+ used |= s_swiz[REG_GET_SSWZ(src[i])].flags << i;
+ }
+
+ hwsrc[i] = t_hw_src(cs, src[i], GL_FALSE); /* Note: sideeffects wrt refcounting! */
+ regnr = hwsrc[i] & 31;
+
+ if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
+ if (used & (SLOT_SRC_VECTOR << i)) {
+ if (cs->hwtemps[regnr].vector_valid > pos)
+ pos = cs->hwtemps[regnr].vector_valid;
+ }
+ if (used & (SLOT_SRC_SCALAR << i)) {
+ if (cs->hwtemps[regnr].scalar_valid > pos)
+ pos = cs->hwtemps[regnr].scalar_valid;
+ }
+ }
+ }
+
+ // Find a slot that fits
+ for (;; ++pos) {
+ if (cs->slot[pos].used & used & SLOT_OP_BOTH)
+ continue;
+
+ if (pos >= cs->nrslots) {
+ if (cs->nrslots >= PFS_MAX_ALU_INST) {
+ ERROR("Out of ALU instruction slots\n");
+ return -1;
+ }
+
+ code->alu.inst[pos].inst0 = NOP_INST0;
+ code->alu.inst[pos].inst1 = NOP_INST1;
+ code->alu.inst[pos].inst2 = NOP_INST2;
+ code->alu.inst[pos].inst3 = NOP_INST3;
+
+ cs->nrslots++;
+ }
+ // Note: When we need both parts (vector and scalar) of a source,
+ // we always try to put them into the same position. This makes the
+ // code easier to read, and it is optimal (i.e. one doesn't gain
+ // anything by splitting the parts).
+ // It also avoids headaches with swizzles that access both parts (i.e WXY)
+ tempused = cs->slot[pos].used;
+ for (i = 0; i < 3; ++i) {
+ tempvsrc[i] = cs->slot[pos].vsrc[i];
+ tempssrc[i] = cs->slot[pos].ssrc[i];
+ }
+
+ for (i = 0; i < argc; ++i) {
+ int flags = (used >> i) & SLOT_SRC_BOTH;
+
+ if (!flags) {
+ srcpos[i] = 0;
+ continue;
+ }
+
+ for (j = 0; j < 3; ++j) {
+ if ((tempused >> j) & flags & SLOT_SRC_VECTOR) {
+ if (tempvsrc[j] != hwsrc[i])
+ continue;
+ }
+
+ if ((tempused >> j) & flags & SLOT_SRC_SCALAR) {
+ if (tempssrc[j] != hwsrc[i])
+ continue;
+ }
+
+ break;
+ }
+
+ if (j == 3)
+ break;
+
+ srcpos[i] = j;
+ tempused |= flags << j;
+ if (flags & SLOT_SRC_VECTOR)
+ tempvsrc[j] = hwsrc[i];
+ if (flags & SLOT_SRC_SCALAR)
+ tempssrc[j] = hwsrc[i];
+ }
+
+ if (i == argc)
+ break;
+ }
+
+ // Found a slot, reserve it
+ cs->slot[pos].used = tempused | (used & SLOT_OP_BOTH);
+ for (i = 0; i < 3; ++i) {
+ cs->slot[pos].vsrc[i] = tempvsrc[i];
+ cs->slot[pos].ssrc[i] = tempssrc[i];
+ }
+
+ for (i = 0; i < argc; ++i) {
+ if (REG_GET_TYPE(src[i]) == REG_TYPE_TEMP) {
+ int regnr = hwsrc[i] & 31;
+
+ if (used & (SLOT_SRC_VECTOR << i)) {
+ if (cs->hwtemps[regnr].vector_lastread < pos)
+ cs->hwtemps[regnr].vector_lastread =
+ pos;
+ }
+ if (used & (SLOT_SRC_SCALAR << i)) {
+ if (cs->hwtemps[regnr].scalar_lastread < pos)
+ cs->hwtemps[regnr].scalar_lastread =
+ pos;
+ }
+ }
+ }
+
+ // Emit the source fetch code
+ code->alu.inst[pos].inst1 &= ~R300_ALU_SRC_MASK;
+ code->alu.inst[pos].inst1 |=
+ ((cs->slot[pos].vsrc[0] << R300_ALU_SRC0C_SHIFT) |
+ (cs->slot[pos].vsrc[1] << R300_ALU_SRC1C_SHIFT) |
+ (cs->slot[pos].vsrc[2] << R300_ALU_SRC2C_SHIFT));
+
+ code->alu.inst[pos].inst3 &= ~R300_ALU_SRC_MASK;
+ code->alu.inst[pos].inst3 |=
+ ((cs->slot[pos].ssrc[0] << R300_ALU_SRC0A_SHIFT) |
+ (cs->slot[pos].ssrc[1] << R300_ALU_SRC1A_SHIFT) |
+ (cs->slot[pos].ssrc[2] << R300_ALU_SRC2A_SHIFT));
+
+ // Emit the argument selection code
+ if (emit_vop) {
+ int swz[3];
+
+ for (i = 0; i < 3; ++i) {
+ if (i < argc) {
+ swz[i] = (v_swiz[REG_GET_VSWZ(src[i])].base +
+ (srcpos[i] *
+ v_swiz[REG_GET_VSWZ(src[i])].
+ stride)) | ((src[i] & REG_NEGV_MASK)
+ ? ARG_NEG : 0) | ((src[i]
+ &
+ REG_ABS_MASK)
+ ?
+ ARG_ABS
+ : 0);
+ } else {
+ swz[i] = R300_ALU_ARGC_ZERO;
+ }
+ }
+
+ code->alu.inst[pos].inst0 &=
+ ~(R300_ALU_ARG0C_MASK | R300_ALU_ARG1C_MASK |
+ R300_ALU_ARG2C_MASK);
+ code->alu.inst[pos].inst0 |=
+ (swz[0] << R300_ALU_ARG0C_SHIFT) | (swz[1] <<
+ R300_ALU_ARG1C_SHIFT)
+ | (swz[2] << R300_ALU_ARG2C_SHIFT);
+ }
+
+ if (emit_sop) {
+ int swz[3];
+
+ for (i = 0; i < 3; ++i) {
+ if (i < argc) {
+ swz[i] = (s_swiz[REG_GET_SSWZ(src[i])].base +
+ (srcpos[i] *
+ s_swiz[REG_GET_SSWZ(src[i])].
+ stride)) | ((src[i] & REG_NEGV_MASK)
+ ? ARG_NEG : 0) | ((src[i]
+ &
+ REG_ABS_MASK)
+ ?
+ ARG_ABS
+ : 0);
+ } else {
+ swz[i] = R300_ALU_ARGA_ZERO;
+ }
+ }
+
+ code->alu.inst[pos].inst2 &=
+ ~(R300_ALU_ARG0A_MASK | R300_ALU_ARG1A_MASK |
+ R300_ALU_ARG2A_MASK);
+ code->alu.inst[pos].inst2 |=
+ (swz[0] << R300_ALU_ARG0A_SHIFT) | (swz[1] <<
+ R300_ALU_ARG1A_SHIFT)
+ | (swz[2] << R300_ALU_ARG2A_SHIFT);
+ }
+
+ return pos;
+}
+
+/**
+ * Append an ALU instruction to the instruction list.
+ */
+static void emit_arith(struct r300_pfs_compile_state *cs,
+ int op,
+ GLuint dest,
+ int mask,
+ GLuint src0, GLuint src1, GLuint src2, int flags)
+{
+ COMPILE_STATE;
+ GLuint src[3] = { src0, src1, src2 };
+ int hwdest;
+ GLboolean emit_vop, emit_sop;
+ int vop, sop, argc;
+ int pos;
+
+ vop = r300_fpop[op].v_op;
+ sop = r300_fpop[op].s_op;
+ argc = r300_fpop[op].argc;
+
+ if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT &&
+ REG_GET_INDEX(dest) == FRAG_RESULT_DEPR) {
+ if (mask & WRITEMASK_Z) {
+ mask = WRITEMASK_W;
+ } else {
+ return;
+ }
+ }
+
+ emit_vop = GL_FALSE;
+ emit_sop = GL_FALSE;
+ if ((mask & WRITEMASK_XYZ) || vop == R300_ALU_OUTC_DP3)
+ emit_vop = GL_TRUE;
+ if ((mask & WRITEMASK_W) || vop == R300_ALU_OUTC_REPL_ALPHA)
+ emit_sop = GL_TRUE;
+
+ pos =
+ find_and_prepare_slot(cs, emit_vop, emit_sop, argc, src, dest,
+ mask);
+ if (pos < 0)
+ return;
+
+ hwdest = t_hw_dst(cs, dest, GL_FALSE, pos); /* Note: Side effects wrt register allocation */
+
+ if (flags & PFS_FLAG_SAT) {
+ vop |= R300_ALU_OUTC_CLAMP;
+ sop |= R300_ALU_OUTA_CLAMP;
+ }
+
+ /* Throw the pieces together and get ALU/1 */
+ if (emit_vop) {
+ code->alu.inst[pos].inst0 |= vop;
+
+ code->alu.inst[pos].inst1 |= hwdest << R300_ALU_DSTC_SHIFT;
+
+ if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+ if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
+ code->alu.inst[pos].inst1 |=
+ (mask & WRITEMASK_XYZ) <<
+ R300_ALU_DSTC_OUTPUT_MASK_SHIFT;
+ } else
+ assert(0);
+ } else {
+ code->alu.inst[pos].inst1 |=
+ (mask & WRITEMASK_XYZ) <<
+ R300_ALU_DSTC_REG_MASK_SHIFT;
+
+ cs->hwtemps[hwdest].vector_valid = pos + 1;
+ }
+ }
+
+ /* And now ALU/3 */
+ if (emit_sop) {
+ code->alu.inst[pos].inst2 |= sop;
+
+ if (mask & WRITEMASK_W) {
+ if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+ if (REG_GET_INDEX(dest) == FRAG_RESULT_COLR) {
+ code->alu.inst[pos].inst3 |=
+ (hwdest << R300_ALU_DSTA_SHIFT) |
+ R300_ALU_DSTA_OUTPUT;
+ } else if (REG_GET_INDEX(dest) ==
+ FRAG_RESULT_DEPR) {
+ code->alu.inst[pos].inst3 |=
+ R300_ALU_DSTA_DEPTH;
+ } else
+ assert(0);
+ } else {
+ code->alu.inst[pos].inst3 |=
+ (hwdest << R300_ALU_DSTA_SHIFT) |
+ R300_ALU_DSTA_REG;
+
+ cs->hwtemps[hwdest].scalar_valid = pos + 1;
+ }
+ }
+ }
+
+ return;
+}
+
+static GLfloat SinCosConsts[2][4] = {
+ {
+ 1.273239545, // 4/PI
+ -0.405284735, // -4/(PI*PI)
+ 3.141592654, // PI
+ 0.2225 // weight
+ },
+ {
+ 0.75,
+ 0.0,
+ 0.159154943, // 1/(2*PI)
+ 6.283185307 // 2*PI
+ }
+};
+
+/**
+ * Emit a LIT instruction.
+ * \p flags may be PFS_FLAG_SAT
+ *
+ * Definition of LIT (from ARB_fragment_program):
+ * tmp = VectorLoad(op0);
+ * if (tmp.x < 0) tmp.x = 0;
+ * if (tmp.y < 0) tmp.y = 0;
+ * if (tmp.w < -(128.0-epsilon)) tmp.w = -(128.0-epsilon);
+ * else if (tmp.w > 128-epsilon) tmp.w = 128-epsilon;
+ * result.x = 1.0;
+ * result.y = tmp.x;
+ * result.z = (tmp.x > 0) ? RoughApproxPower(tmp.y, tmp.w) : 0.0;
+ * result.w = 1.0;
+ *
+ * The longest path of computation is the one leading to result.z,
+ * consisting of 5 operations. This implementation of LIT takes
+ * 5 slots. So unless there's some special undocumented opcode,
+ * this implementation is potentially optimal. Unfortunately,
+ * emit_arith is a bit too conservative because it doesn't understand
+ * partial writes to the vector component.
+ */
+static const GLfloat LitConst[4] =
+ { 127.999999, 127.999999, 127.999999, -127.999999 };
+
+static void emit_lit(struct r300_pfs_compile_state *cs,
+ GLuint dest, int mask, GLuint src, int flags)
+{
+ COMPILE_STATE;
+ GLuint cnst;
+ int needTemporary;
+ GLuint temp;
+
+ cnst = emit_const4fv(cs, LitConst);
+
+ needTemporary = 0;
+ if ((mask & WRITEMASK_XYZW) != WRITEMASK_XYZW) {
+ needTemporary = 1;
+ } else if (REG_GET_TYPE(dest) == REG_TYPE_OUTPUT) {
+ // LIT is typically followed by DP3/DP4, so there's no point
+ // in creating special code for this case
+ needTemporary = 1;
+ }
+
+ if (needTemporary) {
+ temp = keep(get_temp_reg(cs));
+ } else {
+ temp = keep(dest);
+ }
+
+ // Note: The order of emit_arith inside the slots is relevant,
+ // because emit_arith only looks at scalar vs. vector when resolving
+ // dependencies, and it does not consider individual vector components,
+ // so swizzling between the two parts can create fake dependencies.
+
+ // First slot
+ emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_XY,
+ keep(src), pfs_zero, undef, 0);
+ emit_arith(cs, PFS_OP_MAX, temp, WRITEMASK_W, src, cnst, undef, 0);
+
+ // Second slot
+ emit_arith(cs, PFS_OP_MIN, temp, WRITEMASK_Z,
+ swizzle(temp, W, W, W, W), cnst, undef, 0);
+ emit_arith(cs, PFS_OP_LG2, temp, WRITEMASK_W,
+ swizzle(temp, Y, Y, Y, Y), undef, undef, 0);
+
+ // Third slot
+ // If desired, we saturate the y result here.
+ // This does not affect the use as a condition variable in the CMP later
+ emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W,
+ temp, swizzle(temp, Z, Z, Z, Z), pfs_zero, 0);
+ emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_Y,
+ swizzle(temp, X, X, X, X), pfs_one, pfs_zero, flags);
+
+ // Fourth slot
+ emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_X,
+ pfs_one, pfs_one, pfs_zero, 0);
+ emit_arith(cs, PFS_OP_EX2, temp, WRITEMASK_W, temp, undef, undef, 0);
+
+ // Fifth slot
+ emit_arith(cs, PFS_OP_CMP, temp, WRITEMASK_Z,
+ pfs_zero, swizzle(temp, W, W, W, W),
+ negate(swizzle(temp, Y, Y, Y, Y)), flags);
+ emit_arith(cs, PFS_OP_MAD, temp, WRITEMASK_W, pfs_one, pfs_one,
+ pfs_zero, 0);
+
+ if (needTemporary) {
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ temp, pfs_one, pfs_zero, flags);
+ free_temp(cs, temp);
+ } else {
+ // Decrease refcount of the destination
+ t_hw_dst(cs, dest, GL_FALSE, cs->nrslots);
+ }
+}
+
+static void emit_instruction(struct r300_pfs_compile_state *cs, struct prog_instruction *fpi)
+{
+ COMPILE_STATE;
+ GLuint src[3], dest, temp[2];
+ int flags, mask = 0;
+ int const_sin[2];
+
+ if (fpi->SaturateMode == SATURATE_ZERO_ONE)
+ flags = PFS_FLAG_SAT;
+ else
+ flags = 0;
+
+ if (fpi->Opcode != OPCODE_KIL) {
+ dest = t_dst(cs, fpi->DstReg);
+ mask = fpi->DstReg.WriteMask;
+ }
+
+ switch (fpi->Opcode) {
+ case OPCODE_ABS:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ absolute(src[0]), pfs_one, pfs_zero, flags);
+ break;
+ case OPCODE_ADD:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], pfs_one, src[1], flags);
+ break;
+ case OPCODE_CMP:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ src[2] = t_src(cs, fpi->SrcReg[2]);
+ /* ARB_f_p - if src0.c < 0.0 ? src1.c : src2.c
+ * r300 - if src2.c < 0.0 ? src1.c : src0.c
+ */
+ emit_arith(cs, PFS_OP_CMP, dest, mask,
+ src[2], src[1], src[0], flags);
+ break;
+ case OPCODE_COS:
+ /*
+ * cos using a parabola (see SIN):
+ * cos(x):
+ * x = (x/(2*PI))+0.75
+ * x = frac(x)
+ * x = (x*2*PI)-PI
+ * result = sin(x)
+ */
+ temp[0] = get_temp_reg(cs);
+ const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+ const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+ /* add 0.5*PI and do range reduction */
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+ swizzle(src[0], X, X, X, X),
+ swizzle(const_sin[1], Z, Z, Z, Z),
+ swizzle(const_sin[1], X, X, X, X), 0);
+
+ emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
+ swizzle(temp[0], X, X, X, X),
+ undef, undef, 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W), //2*PI
+ negate(swizzle(const_sin[0], Z, Z, Z, Z)), //-PI
+ 0);
+
+ /* SIN */
+
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+ Z, Z, Z,
+ Z),
+ const_sin[0], pfs_zero, 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+ swizzle(temp[0], Y, Y, Y, Y),
+ absolute(swizzle(temp[0], Z, Z, Z, Z)),
+ swizzle(temp[0], X, X, X, X), 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
+ swizzle(temp[0], X, X, X, X),
+ absolute(swizzle(temp[0], X, X, X, X)),
+ negate(swizzle(temp[0], X, X, X, X)), 0);
+
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ swizzle(temp[0], Y, Y, Y, Y),
+ swizzle(const_sin[0], W, W, W, W),
+ swizzle(temp[0], X, X, X, X), flags);
+
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_DP3:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_DP3, dest, mask,
+ src[0], src[1], undef, flags);
+ break;
+ case OPCODE_DP4:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_DP4, dest, mask,
+ src[0], src[1], undef, flags);
+ break;
+ case OPCODE_DPH:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ /* src0.xyz1 -> temp
+ * DP4 dest, temp, src1
+ */
+ emit_arith(cs, PFS_OP_DP4, dest, mask,
+ swizzle(src[0], X, Y, Z, ONE), src[1],
+ undef, flags);
+ break;
+ case OPCODE_DST:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ /* dest.y = src0.y * src1.y */
+ if (mask & WRITEMASK_Y)
+ emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Y,
+ keep(src[0]), keep(src[1]),
+ pfs_zero, flags);
+ /* dest.z = src0.z */
+ if (mask & WRITEMASK_Z)
+ emit_arith(cs, PFS_OP_MAD, dest, WRITEMASK_Z,
+ src[0], pfs_one, pfs_zero, flags);
+ /* result.x = 1.0
+ * result.w = src1.w */
+ if (mask & WRITEMASK_XW) {
+ REG_SET_VSWZ(src[1], SWIZZLE_111); /*Cheat */
+ emit_arith(cs, PFS_OP_MAD, dest,
+ mask & WRITEMASK_XW,
+ src[1], pfs_one, pfs_zero, flags);
+ }
+ break;
+ case OPCODE_EX2:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_EX2, dest, mask,
+ src[0], undef, undef, flags);
+ break;
+ case OPCODE_FLR:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ temp[0] = get_temp_reg(cs);
+ /* FRC temp, src0
+ * MAD dest, src0, 1.0, -temp
+ */
+ emit_arith(cs, PFS_OP_FRC, temp[0], mask,
+ keep(src[0]), undef, undef, 0);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], pfs_one, negate(temp[0]), flags);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_FRC:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_FRC, dest, mask,
+ src[0], undef, undef, flags);
+ break;
+ case OPCODE_KIL:
+ emit_tex(cs, fpi, R300_TEX_OP_KIL);
+ break;
+ case OPCODE_LG2:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_LG2, dest, mask,
+ src[0], undef, undef, flags);
+ break;
+ case OPCODE_LIT:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ emit_lit(cs, dest, mask, src[0], flags);
+ break;
+ case OPCODE_LRP:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ src[2] = t_src(cs, fpi->SrcReg[2]);
+ /* result = tmp0tmp1 + (1 - tmp0)tmp2
+ * = tmp0tmp1 + tmp2 + (-tmp0)tmp2
+ * MAD temp, -tmp0, tmp2, tmp2
+ * MAD result, tmp0, tmp1, temp
+ */
+ temp[0] = get_temp_reg(cs);
+ emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+ negate(keep(src[0])), keep(src[2]), src[2],
+ 0);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], src[1], temp[0], flags);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_MAD:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ src[2] = t_src(cs, fpi->SrcReg[2]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], src[1], src[2], flags);
+ break;
+ case OPCODE_MAX:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MAX, dest, mask,
+ src[0], src[1], undef, flags);
+ break;
+ case OPCODE_MIN:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MIN, dest, mask,
+ src[0], src[1], undef, flags);
+ break;
+ case OPCODE_MOV:
+ case OPCODE_SWZ:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], pfs_one, pfs_zero, flags);
+ break;
+ case OPCODE_MUL:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], src[1], pfs_zero, flags);
+ break;
+ case OPCODE_POW:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ src[1] = t_scalar_src(cs, fpi->SrcReg[1]);
+ temp[0] = get_temp_reg(cs);
+ emit_arith(cs, PFS_OP_LG2, temp[0], WRITEMASK_W,
+ src[0], undef, undef, 0);
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
+ temp[0], src[1], pfs_zero, 0);
+ emit_arith(cs, PFS_OP_EX2, dest, fpi->DstReg.WriteMask,
+ temp[0], undef, undef, 0);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_RCP:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_RCP, dest, mask,
+ src[0], undef, undef, flags);
+ break;
+ case OPCODE_RSQ:
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+ emit_arith(cs, PFS_OP_RSQ, dest, mask,
+ absolute(src[0]), pfs_zero, pfs_zero, flags);
+ break;
+ case OPCODE_SCS:
+ /*
+ * scs using a parabola :
+ * scs(x):
+ * result.x = sin(-abs(x)+0.5*PI) (cos)
+ * result.y = sin(x) (sin)
+ *
+ */
+ temp[0] = get_temp_reg(cs);
+ temp[1] = get_temp_reg(cs);
+ const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+ const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+ /* x = -abs(x)+0.5*PI */
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(const_sin[0], Z, Z, Z, Z), //PI
+ pfs_half,
+ negate(abs
+ (swizzle(keep(src[0]), X, X, X, X))),
+ 0);
+
+ /* C*x (sin) */
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_W,
+ swizzle(const_sin[0], Y, Y, Y, Y),
+ swizzle(keep(src[0]), X, X, X, X),
+ pfs_zero, 0);
+
+ /* B*x, C*x (cos) */
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+ Z, Z, Z,
+ Z),
+ const_sin[0], pfs_zero, 0);
+
+ /* B*x (sin) */
+ emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
+ swizzle(const_sin[0], X, X, X, X),
+ keep(src[0]), pfs_zero, 0);
+
+ /* y = B*x + C*x*abs(x) (sin) */
+ emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_Z,
+ absolute(src[0]),
+ swizzle(temp[0], W, W, W, W),
+ swizzle(temp[1], W, W, W, W), 0);
+
+ /* y = B*x + C*x*abs(x) (cos) */
+ emit_arith(cs, PFS_OP_MAD, temp[1], WRITEMASK_W,
+ swizzle(temp[0], Y, Y, Y, Y),
+ absolute(swizzle(temp[0], Z, Z, Z, Z)),
+ swizzle(temp[0], X, X, X, X), 0);
+
+ /* y*abs(y) - y (cos), y*abs(y) - y (sin) */
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_X | WRITEMASK_Y, swizzle(temp[1],
+ W, Z, Y,
+ X),
+ absolute(swizzle(temp[1], W, Z, Y, X)),
+ negate(swizzle(temp[1], W, Z, Y, X)), 0);
+
+ /* dest.xy = mad(temp.xy, P, temp2.wz) */
+ emit_arith(cs, PFS_OP_MAD, dest,
+ mask & (WRITEMASK_X | WRITEMASK_Y), temp[0],
+ swizzle(const_sin[0], W, W, W, W),
+ swizzle(temp[1], W, Z, Y, X), flags);
+
+ free_temp(cs, temp[0]);
+ free_temp(cs, temp[1]);
+ break;
+ case OPCODE_SGE:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ temp[0] = get_temp_reg(cs);
+ /* temp = src0 - src1
+ * dest.c = (temp.c < 0.0) ? 0 : 1
+ */
+ emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+ src[0], pfs_one, negate(src[1]), 0);
+ emit_arith(cs, PFS_OP_CMP, dest, mask,
+ pfs_one, pfs_zero, temp[0], 0);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_SIN:
+ /*
+ * using a parabola:
+ * sin(x) = 4/pi * x + -4/(pi*pi) * x * abs(x)
+ * extra precision is obtained by weighting against
+ * itself squared.
+ */
+
+ temp[0] = get_temp_reg(cs);
+ const_sin[0] = emit_const4fv(cs, SinCosConsts[0]);
+ const_sin[1] = emit_const4fv(cs, SinCosConsts[1]);
+ src[0] = t_scalar_src(cs, fpi->SrcReg[0]);
+
+ /* do range reduction */
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+ swizzle(keep(src[0]), X, X, X, X),
+ swizzle(const_sin[1], Z, Z, Z, Z),
+ pfs_half, 0);
+
+ emit_arith(cs, PFS_OP_FRC, temp[0], WRITEMASK_X,
+ swizzle(temp[0], X, X, X, X),
+ undef, undef, 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Z, swizzle(temp[0], X, X, X, X), swizzle(const_sin[1], W, W, W, W), //2*PI
+ negate(swizzle(const_sin[0], Z, Z, Z, Z)), //PI
+ 0);
+
+ /* SIN */
+
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_X | WRITEMASK_Y, swizzle(temp[0],
+ Z, Z, Z,
+ Z),
+ const_sin[0], pfs_zero, 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_X,
+ swizzle(temp[0], Y, Y, Y, Y),
+ absolute(swizzle(temp[0], Z, Z, Z, Z)),
+ swizzle(temp[0], X, X, X, X), 0);
+
+ emit_arith(cs, PFS_OP_MAD, temp[0], WRITEMASK_Y,
+ swizzle(temp[0], X, X, X, X),
+ absolute(swizzle(temp[0], X, X, X, X)),
+ negate(swizzle(temp[0], X, X, X, X)), 0);
+
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ swizzle(temp[0], Y, Y, Y, Y),
+ swizzle(const_sin[0], W, W, W, W),
+ swizzle(temp[0], X, X, X, X), flags);
+
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_SLT:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ temp[0] = get_temp_reg(cs);
+ /* temp = src0 - src1
+ * dest.c = (temp.c < 0.0) ? 1 : 0
+ */
+ emit_arith(cs, PFS_OP_MAD, temp[0], mask,
+ src[0], pfs_one, negate(src[1]), 0);
+ emit_arith(cs, PFS_OP_CMP, dest, mask,
+ pfs_zero, pfs_one, temp[0], 0);
+ free_temp(cs, temp[0]);
+ break;
+ case OPCODE_SUB:
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ emit_arith(cs, PFS_OP_MAD, dest, mask,
+ src[0], pfs_one, negate(src[1]), flags);
+ break;
+ case OPCODE_TEX:
+ emit_tex(cs, fpi, R300_TEX_OP_LD);
+ break;
+ case OPCODE_TXB:
+ emit_tex(cs, fpi, R300_TEX_OP_TXB);
+ break;
+ case OPCODE_TXP:
+ emit_tex(cs, fpi, R300_TEX_OP_TXP);
+ break;
+ case OPCODE_XPD:{
+ src[0] = t_src(cs, fpi->SrcReg[0]);
+ src[1] = t_src(cs, fpi->SrcReg[1]);
+ temp[0] = get_temp_reg(cs);
+ /* temp = src0.zxy * src1.yzx */
+ emit_arith(cs, PFS_OP_MAD, temp[0],
+ WRITEMASK_XYZ, swizzle(keep(src[0]),
+ Z, X, Y, W),
+ swizzle(keep(src[1]), Y, Z, X, W),
+ pfs_zero, 0);
+ /* dest.xyz = src0.yzx * src1.zxy - temp
+ * dest.w = undefined
+ * */
+ emit_arith(cs, PFS_OP_MAD, dest,
+ mask & WRITEMASK_XYZ, swizzle(src[0],
+ Y, Z,
+ X, W),
+ swizzle(src[1], Z, X, Y, W),
+ negate(temp[0]), flags);
+ /* cleanup */
+ free_temp(cs, temp[0]);
+ break;
+ }
+ default:
+ ERROR("unknown fpi->Opcode %d\n", fpi->Opcode);
+ break;
+ }
+}
+
+static GLboolean parse_program(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ int clauseidx;
+
+ for (clauseidx = 0; clauseidx < cs->compiler->compiler.NumClauses; ++clauseidx) {
+ struct radeon_clause* clause = &cs->compiler->compiler.Clauses[clauseidx];
+ int ip;
+
+ for(ip = 0; ip < clause->NumInstructions; ++ip) {
+ emit_instruction(cs, clause->Instructions + ip);
+
+ if (fp->error)
+ return GL_FALSE;
+ }
+ }
+
+ return GL_TRUE;
+}
+
+
+/* - Init structures
+ * - Determine what hwregs each input corresponds to
+ */
+static void init_program(struct r300_pfs_compile_state *cs)
+{
+ COMPILE_STATE;
+ struct gl_fragment_program *mp = &fp->mesa_program;
+ GLuint InputsRead = mp->Base.InputsRead;
+ GLuint temps_used = 0; /* for fp->temps[] */
+ int i, j;
+
+ /* New compile, reset tracking data */
+ fp->optimization =
+ driQueryOptioni(&cs->compiler->r300->radeon.optionCache, "fp_optimization");
+ fp->translated = GL_FALSE;
+ fp->error = GL_FALSE;
+ fp->WritesDepth = GL_FALSE;
+ code->tex.length = 0;
+ code->cur_node = 0;
+ code->first_node_has_tex = 0;
+ code->const_nr = 0;
+ code->max_temp_idx = 0;
+ code->node[0].alu_end = -1;
+ code->node[0].tex_end = -1;
+
+ for (i = 0; i < PFS_MAX_ALU_INST; i++) {
+ for (j = 0; j < 3; j++) {
+ cs->slot[i].vsrc[j] = SRC_CONST;
+ cs->slot[i].ssrc[j] = SRC_CONST;
+ }
+ }
+
+ /* Work out what temps the Mesa inputs correspond to, this must match
+ * what setup_rs_unit does, which shouldn't be a problem as rs_unit
+ * configures itself based on the fragprog's InputsRead
+ *
+ * NOTE: this depends on get_hw_temp() allocating registers in order,
+ * starting from register 0.
+ */
+
+ /* Texcoords come first */
+ for (i = 0; i < cs->compiler->r300->radeon.glCtx->Const.MaxTextureUnits; i++) {
+ if (InputsRead & (FRAG_BIT_TEX0 << i)) {
+ cs->inputs[FRAG_ATTRIB_TEX0 + i].refcount = 0;
+ cs->inputs[FRAG_ATTRIB_TEX0 + i].reg =
+ get_hw_temp(cs, 0);
+ }
+ }
+ InputsRead &= ~FRAG_BITS_TEX_ANY;
+
+ /* fragment position treated as a texcoord */
+ if (InputsRead & FRAG_BIT_WPOS) {
+ cs->inputs[FRAG_ATTRIB_WPOS].refcount = 0;
+ cs->inputs[FRAG_ATTRIB_WPOS].reg = get_hw_temp(cs, 0);
+ }
+ InputsRead &= ~FRAG_BIT_WPOS;
+
+ /* Then primary colour */
+ if (InputsRead & FRAG_BIT_COL0) {
+ cs->inputs[FRAG_ATTRIB_COL0].refcount = 0;
+ cs->inputs[FRAG_ATTRIB_COL0].reg = get_hw_temp(cs, 0);
+ }
+ InputsRead &= ~FRAG_BIT_COL0;
+
+ /* Secondary color */
+ if (InputsRead & FRAG_BIT_COL1) {
+ cs->inputs[FRAG_ATTRIB_COL1].refcount = 0;
+ cs->inputs[FRAG_ATTRIB_COL1].reg = get_hw_temp(cs, 0);
+ }
+ InputsRead &= ~FRAG_BIT_COL1;
+
+ /* Anything else */
+ if (InputsRead) {
+ WARN_ONCE("Don't know how to handle inputs 0x%x\n", InputsRead);
+ /* force read from hwreg 0 for now */
+ for (i = 0; i < 32; i++)
+ if (InputsRead & (1 << i))
+ cs->inputs[i].reg = 0;
+ }
+
+ /* Pre-parse the program, grabbing refcounts on input/temp regs.
+ * That way, we can free up the reg when it's no longer needed
+ */
+ for (i = 0; i < cs->compiler->compiler.Clauses[0].NumInstructions; ++i) {
+ struct prog_instruction *fpi = cs->compiler->compiler.Clauses[0].Instructions + i;
+ int idx;
+
+ for (j = 0; j < 3; j++) {
+ idx = fpi->SrcReg[j].Index;
+ switch (fpi->SrcReg[j].File) {
+ case PROGRAM_TEMPORARY:
+ if (!(temps_used & (1 << idx))) {
+ cs->temps[idx].reg = -1;
+ cs->temps[idx].refcount = 1;
+ temps_used |= (1 << idx);
+ } else
+ cs->temps[idx].refcount++;
+ break;
+ case PROGRAM_INPUT:
+ cs->inputs[idx].refcount++;
+ break;
+ default:
+ break;
+ }
+ }
+
+ idx = fpi->DstReg.Index;
+ if (fpi->DstReg.File == PROGRAM_TEMPORARY) {
+ if (!(temps_used & (1 << idx))) {
+ cs->temps[idx].reg = -1;
+ cs->temps[idx].refcount = 1;
+ temps_used |= (1 << idx);
+ } else
+ cs->temps[idx].refcount++;
+ }
+ }
+ cs->temp_in_use = temps_used;
+}
+
+
+/**
+ * Final compilation step: Turn the intermediate radeon_program into
+ * machine-readable instructions.
+ */
+GLboolean r300FragmentProgramEmit(struct r300_fragment_program_compiler *compiler)
+{
+ struct r300_pfs_compile_state cs;
+ struct r300_fragment_program_code *code = compiler->code;
+
+ _mesa_memset(&cs, 0, sizeof(cs));
+ cs.compiler = compiler;
+ init_program(&cs);
+
+ if (!parse_program(&cs))
+ return GL_FALSE;
+
+ /* Finish off */
+ code->node[code->cur_node].alu_end =
+ cs.nrslots - code->node[code->cur_node].alu_offset - 1;
+ if (code->node[code->cur_node].tex_end < 0)
+ code->node[code->cur_node].tex_end = 0;
+ code->alu_offset = 0;
+ code->alu_end = cs.nrslots - 1;
+ code->tex_offset = 0;
+ code->tex_end = code->tex.length ? code->tex.length - 1 : 0;
+ assert(code->node[code->cur_node].alu_end >= 0);
+ assert(code->alu_end >= 0);
+
+ return GL_TRUE;
+}
+
diff --git a/src/mesa/drivers/dri/r300/radeon_program.c b/src/mesa/drivers/dri/r300/radeon_program.c
new file mode 100644
index 0000000000..7b03fa6523
--- /dev/null
+++ b/src/mesa/drivers/dri/r300/radeon_program.c
@@ -0,0 +1,151 @@
+/*
+ * Copyright (C) 2008 Nicolai Haehnle.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#include "radeon_program.h"
+
+
+/**
+ * Initialize a compiler structure with a single mixed clause
+ * containing all instructions from the source program.
+ */
+void radeonCompilerInit(
+ struct radeon_compiler *compiler,
+ GLcontext *ctx,
+ struct gl_program *source)
+{
+ struct radeon_clause* clause;
+
+ _mesa_memset(compiler, 0, sizeof(*compiler));
+ compiler->Source = source;
+ compiler->Ctx = ctx;
+
+ compiler->NumTemporaries = source->NumTemporaries;
+
+ clause = radeonCompilerInsertClause(compiler, 0, CLAUSE_MIXED);
+ clause->NumInstructions = 0;
+ while(source->Instructions[clause->NumInstructions].Opcode != OPCODE_END)
+ clause->NumInstructions++;
+ clause->ReservedInstructions = clause->NumInstructions;
+ clause->Instructions = _mesa_alloc_instructions(clause->NumInstructions);
+ _mesa_copy_instructions(clause->Instructions, source->Instructions, clause->NumInstructions);
+}
+
+
+/**
+ * Free all data that is referenced by the compiler structure.
+ * However, the compiler structure itself is not freed.
+ */
+void radeonCompilerCleanup(struct radeon_compiler *compiler)
+{
+ radeonCompilerEraseClauses(compiler, 0, compiler->NumClauses);
+}
+
+
+/**
+ * Allocate and return a unique temporary register.
+ */
+int radeonCompilerAllocateTemporary(struct radeon_compiler *compiler)
+{
+ if (compiler->NumTemporaries >= 256) {
+ _mesa_problem(compiler->Ctx, "radeonCompiler: Too many temporaries");
+ return 0;
+ }
+
+ return compiler->NumTemporaries++;
+}
+
+
+/**
+ * \p position index of the new clause; later clauses are moved
+ * \p type of the new clause; one of CLAUSE_XXX
+ * \return a pointer to the new clause
+ */
+struct radeon_clause* radeonCompilerInsertClause(
+ struct radeon_compiler *compiler,
+ int position, int type)
+{
+ struct radeon_clause* oldClauses = compiler->Clauses;
+ struct radeon_clause* clause;
+
+ assert(position >= 0 && position <= compiler->NumClauses);
+
+ compiler->Clauses = (struct radeon_clause *)
+ _mesa_malloc((compiler->NumClauses+1) * sizeof(struct radeon_clause));
+ if (oldClauses) {
+ _mesa_memcpy(compiler->Clauses, oldClauses,
+ position*sizeof(struct radeon_clause));
+ _mesa_memcpy(compiler->Clauses+position+1, oldClauses+position,
+ (compiler->NumClauses - position) * sizeof(struct radeon_clause));
+ _mesa_free(oldClauses);
+ }
+ compiler->NumClauses++;
+
+ clause = compiler->Clauses + position;
+ _mesa_memset(clause, 0, sizeof(*clause));
+ clause->Type = type;
+
+ return clause;
+}
+
+
+/**
+ * Remove clauses in the range [start, end)
+ */
+void radeonCompilerEraseClauses(
+ struct radeon_compiler *compiler,
+ int start, int end)
+{
+ struct radeon_clause* oldClauses = compiler->Clauses;
+ int i;
+
+ assert(0 <= start);
+ assert(start <= end);
+ assert(end <= compiler->NumClauses);
+
+ if (end == start)
+ return;
+
+ for(i = start; i < end; ++i) {
+ struct radeon_clause* clause = oldClauses + i;
+ _mesa_free_instructions(clause->Instructions, clause->NumInstructions);
+ }
+
+ if (start > 0 || end < compiler->NumClauses) {
+ compiler->Clauses = (struct radeon_clause*)
+ _mesa_malloc((compiler->NumClauses+start-end) * sizeof(struct radeon_clause));
+ _mesa_memcpy(compiler->Clauses, oldClauses,
+ start * sizeof(struct radeon_clause));
+ _mesa_memcpy(compiler->Clauses + start, oldClauses + end,
+ (compiler->NumClauses - end) * sizeof(struct radeon_clause));
+ compiler->NumClauses -= end - start;
+ } else {
+ compiler->Clauses = 0;
+ compiler->NumClauses = 0;
+ }
+
+ _mesa_free(oldClauses);
+}
diff --git a/src/mesa/drivers/dri/r300/radeon_program.h b/src/mesa/drivers/dri/r300/radeon_program.h
new file mode 100644
index 0000000000..18091ac02a
--- /dev/null
+++ b/src/mesa/drivers/dri/r300/radeon_program.h
@@ -0,0 +1,110 @@
+/*
+ * Copyright (C) 2008 Nicolai Haehnle.
+ *
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial
+ * portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
+ * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+ * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+ * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ */
+
+#ifndef __RADEON_PROGRAM_H_
+#define __RADEON_PROGRAM_H_
+
+#include "glheader.h"
+#include "macros.h"
+#include "enums.h"
+#include "shader/program.h"
+#include "shader/prog_instruction.h"
+
+
+enum {
+ CLAUSE_MIXED = 0,
+ CLAUSE_ALU,
+ CLAUSE_TEX
+};
+
+/**
+ * A clause is simply a sequence of instructions that are executed
+ * in order.
+ */
+struct radeon_clause {
+ /**
+ * Type of this clause, one of CLAUSE_XXX.
+ */
+ int Type : 2;
+
+ /**
+ * Pointer to an array of instructions.
+ * The array is terminated by an OPCODE_END instruction.
+ */
+ struct prog_instruction *Instructions;
+
+ /**
+ * Number of instructions in this clause.
+ */
+ int NumInstructions;
+
+ /**
+ * Space reserved for instructions in this clause.
+ */
+ int ReservedInstructions;
+};
+
+/**
+ * A compile object, holding the current intermediate state during compilation.
+ */
+struct radeon_compiler {
+ struct gl_program *Source;
+ GLcontext* Ctx;
+
+ /**
+ * Number of clauses in this program.
+ */
+ int NumClauses;
+
+ /**
+ * Pointer to an array of NumClauses clauses.
+ */
+ struct radeon_clause *Clauses;
+
+ /**
+ * Number of registers in the PROGRAM_TEMPORARIES file.
+ */
+ int NumTemporaries;
+};
+
+void radeonCompilerInit(
+ struct radeon_compiler *compiler,
+ GLcontext *ctx,
+ struct gl_program *source);
+void radeonCompilerCleanup(struct radeon_compiler *compiler);
+int radeonCompilerAllocateTemporary(struct radeon_compiler *compiler);
+
+struct radeon_clause *radeonCompilerInsertClause(
+ struct radeon_compiler *compiler,
+ int position,
+ int type);
+void radeonCompilerEraseClauses(
+ struct radeon_compiler *compiler,
+ int start,
+ int end);
+
+#endif