diff options
-rwxr-xr-x | src/mesa/shader/slang_core.gc | 3405 |
1 files changed, 1751 insertions, 1654 deletions
diff --git a/src/mesa/shader/slang_core.gc b/src/mesa/shader/slang_core.gc index 1b69510d64..3a18673ed6 100755 --- a/src/mesa/shader/slang_core.gc +++ b/src/mesa/shader/slang_core.gc @@ -1,1654 +1,1751 @@ -
-//
-// This file defines nearly all constructors and operators for built-in data types, using
-// extended language syntax. In general, compiler treats constructors and operators as
-// ordinary functions with some exceptions. For example, the language does not allow
-// functions to be called in constant expressions - here the exception is made to allow it.
-//
-// Each implementation provides its own version of this file. Each implementation can define
-// the required set of operators and constructors in its own fashion.
-//
-// The extended language syntax is only present when compiling this file. It is implicitly
-// included at the very beginning of the compiled shader, so no built-in functions can be
-// used.
-//
-// To communicate with the implementation, a special extended "__asm" keyword is used, followed
-// by an instruction name (any valid identifier), a destination variable identifier and a
-// a list of zero or more source variable identifiers. A variable identifier is a variable name
-// declared earlier in the code (as a function parameter, local or global variable).
-// An instruction name designates an instruction that must be exported by the implementation.
-// Each instruction receives data from destination and source variable identifiers and returns
-// data in the destination variable identifier.
-//
-// It is up to the implementation how to define a particular operator or constructor. If it is
-// expected to being used rarely, it can be defined in terms of other operators and constructors,
-// for example:
-//
-// ivec2 ____operator + (const ivec2 x, const ivec2 y) {
-// return ivec2 (x[0] + y[0], x[1] + y[1]);
-// }
-//
-// If a particular operator or constructor is expected to be used very often or is an atomic
-// operation (that is, an operation that cannot be expressed in terms of other operations or
-// would create a dependency cycle) it must be defined using one or more __asm constructs.
-//
-// Each implementation must define constructors for all scalar types (bool, float, int).
-// There are 9 scalar-to-scalar constructors (including identity constructors). However,
-// since the language introduces special constructors (like matrix constructor with a single
-// scalar value), implementations must also implement these cases.
-// The compiler provides the following algorithm when resolving a constructor:
-// - try to find a constructor with a prototype matching ours,
-// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error,
-// - if a constructor is found, execute it and return,
-// - count the size of the constructor parameter list - if it is less than the size of
-// our constructor's type, raise an error,
-// - for each parameter in the list do a recursive constructor matching for appropriate
-// scalar fields in the constructed variable,
-//
-// Each implementation must also define a set of operators that deal with built-in data types.
-// There are four kinds of operators:
-// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence)
-// and "?:" (selection).
-// 2) Operators that are implemented by the compiler by expressing it in terms of other operators:
-// - "." (field selection) - translated to subscript access,
-// - "&&" (logical and) - translated to "<left_expr> ? <right_expr> : false",
-// - "||" (logical or) - translated to "<left_expr> ? true : <right_expr>",
-// 3) Operators that can be defined by the implementation and if the required prototype is not
-// found, standard behaviour is used:
-// - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one;
-// note that at least operators for scalar data types must be defined by the implementation
-// to get it work,
-// 4) All other operators not mentioned above. If no required prototype is found, an error is
-// raised. An implementation must follow the language specification to provide all valid
-// operator prototypes.
-//
-
-//
-// TODO:
-// - do something with [] operator: leave it in compiler or move it here,
-// - emulate bools and ints with floats (this should simplify target implementation),
-// - are vec*mat and mat*vec definitions correct? is the list complete?
-//
-
-//
-// From Shader Spec, ver. 1.051
-//
-
-//
-// 5.4.1 Conversion and Scalar Constructors
-//
-
-//
-// When constructors are used to convert a float to an int, the fractional part of the
-// floating-point value is dropped.
-//
-
-int __constructor (const float _f) {
- int _i;
- __asm float_to_int _i, _f;
- return _i;
-}
-
-//
-// When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to
-// false, and nonzero values are converted to true.
-//
-
-bool __constructor (const int _i) {
- return _i != 0;
-}
-
-bool __constructor (const float _f) {
- return _f != 0.0;
-}
-
-//
-// When a constructor is used to convert a bool to an int or float, false is converted to 0 or
-// 0.0, and true is converted to 1 or 1.0.
-//
-
-int __constructor (const bool _b) {
- return _b ? 1 : 0;
-}
-
-float __constructor (const bool _b) {
- return _b ? 1.0 : 0.0;
-}
-
-//
-// Int to float constructor.
-//
-
-float __constructor (const int _i) {
- float _f;
- __asm int_to_float _f, _i;
- return _f;
-}
-
-//
-// Identity constructors, like float(float) are also legal, but of little use.
-//
-
-bool __constructor (const bool _b) {
- return _b;
-}
-
-int __constructor (const int _i) {
- return _i;
-}
-
-float __constructor (const float _f) {
- return _f;
-}
-
-//
-// Scalar constructors with non-scalar parameters can be used to take the first element from
-// a non-scalar. For example, the constructor float(vec3) will select the first component of the
-// vec3 parameter.
-//
-
-// [These scalar conversions will be handled internally by the compiler.]
-
-//
-// 5.4.2 Vector and Matrix Constructors
-//
-// Constructors can be used to create vectors or matrices from a set of scalars, vectors,
-// or matrices. This includes the ability to shorten vectors or matrices.
-//
-
-//
-// If there is a single scalar parameter to a vector constructor, it is used to initialize all
-// components of the constructed vector to that scalar’s value.
-//
-// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic
-// type of the object being constructed, the scalar construction rules (above) are used to convert
-// the parameters.
-//
-
-vec2 __constructor (const float _f) {
- return vec2 (_f, _f);
-}
-
-vec2 __constructor (const int _i) {
- return vec2 (_i, _i);
-}
-
-vec2 __constructor (const bool _b) {
- return vec2 (_b, _b);
-}
-
-vec3 __constructor (const float _f) {
- return vec3 (_f, _f, _f);
-}
-
-vec3 __constructor (const int _i) {
- return vec3 (_i, _i, _i);
-}
-
-vec3 __constructor (const bool _b) {
- return vec3 (_b, _b, _b);
-}
-
-vec4 __constructor (const float _f) {
- return vec4 (_f, _f, _f, _f);
-}
-
-vec4 __constructor (const int _i) {
- return vec4 (_i, _i, _i, _i);
-}
-
-vec4 __constructor (const bool _b) {
- return vec4 (_b, _b, _b, _b);
-}
-
-ivec2 __constructor (const int _i) {
- return ivec2 (_i, _i);
-}
-
-ivec2 __constructor (const float _f) {
- return ivec2 (_f, _f);
-}
-
-ivec2 __constructor (const bool _b) {
- return ivec2 (_b, _b);
-}
-
-ivec3 __constructor (const int _i) {
- return ivec3 (_i, _i, _i);
-}
-
-ivec3 __constructor (const float _f) {
- return ivec3 (_f, _f, _f);
-}
-
-ivec3 __constructor (const bool _b) {
- return ivec3 (_b, _b, _b);
-}
-
-ivec4 __constructor (const int _i) {
- return ivec4 (_i, _i, _i, _i);
-}
-
-ivec4 __constructor (const float _f) {
- return ivec4 (_f, _f, _f, _f);
-}
-
-ivec4 __constructor (const bool _b) {
- return ivec4 (_b, _b, _b, _b);
-}
-
-bvec2 __constructor (const bool _b) {
- return bvec2 (_b, _b);
-}
-
-bvec2 __constructor (const float _f) {
- return bvec2 (_f, _f);
-}
-
-bvec2 __constructor (const int _i) {
- return bvec2 (_i, _i);
-}
-
-bvec3 __constructor (const bool _b) {
- return bvec3 (_b, _b, _b);
-}
-
-bvec3 __constructor (const float _f) {
- return bvec3 (_f, _f, _f);
-}
-
-bvec3 __constructor (const int _i) {
- return bvec3 (_i, _i, _i);
-}
-
-bvec4 __constructor (const bool _b) {
- return bvec4 (_b, _b, _b, _b);
-}
-
-bvec4 __constructor (const float _f) {
- return bvec4 (_f, _f, _f, _f);
-}
-
-bvec4 __constructor (const int _i) {
- return bvec4 (_i, _i, _i, _i);
-}
-
-//
-// If there is a single scalar parameter to a matrix constructor, it is used to initialize all the
-// components on the matrix’s diagonal, with the remaining components initialized to 0.0.
-// (...) Matrices will be constructed in column major order.
-//
-// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic
-// type of the object being constructed, the scalar construction rules (above) are used to convert
-// the parameters.
-//
-
-mat2 __constructor (const float _f) {
- return mat2 (
- _f, .0,
- .0, _f
- );
-}
-
-mat2 __constructor (const int _i) {
- return mat2 (
- _i, .0,
- .0, _i
- );
-}
-
-mat2 __constructor (const bool _b) {
- return mat2 (
- _b, .0,
- .0, _b
- );
-}
-
-mat3 __constructor (const float _f) {
- return mat3 (
- _f, .0, .0,
- .0, _f, .0,
- .0, .0, _f
- );
-}
-
-mat3 __constructor (const int _i) {
- return mat3 (
- _i, .0, .0,
- .0, _i, .0,
- .0, .0, _i
- );
-}
-
-mat3 __constructor (const bool _b) {
- return mat3 (
- _b, .0, .0,
- .0, _b, .0,
- .0, .0, _b
- );
-}
-
-mat4 __constructor (const float _f) {
- return mat4 (
- _f, .0, .0, .0,
- .0, _f, .0, .0,
- .0, .0, _f, .0,
- .0, .0, .0, _f
- );
-}
-
-mat4 __constructor (const int _i) {
- return mat4 (
- _i, .0, .0, .0,
- .0, _i, .0, .0,
- .0, .0, _i, .0,
- .0, .0, .0, _i
- );
-}
-
-mat4 __constructor (const bool _b) {
- return mat4 (
- _b, .0, .0, .0,
- .0, _b, .0, .0,
- .0, .0, _b, .0,
- .0, .0, .0, _b
- );
-}
-
-//
-// 5.8 Assignments
-//
-// Assignments of values to variable names are done with the assignment operator ( = ), like
-//
-// lvalue = expression
-//
-// The assignment operator stores the value of expression into lvalue. It will compile only if
-// expression and lvalue have the same type. All desired type-conversions must be specified
-// explicitly via a constructor. Lvalues must be writable. Variables that are built-in types,
-// entire structures, structure fields, l-values with the field selector ( . ) applied to select
-// components or swizzles without repeated fields, and l-values dereferenced with the array
-// subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions,
-// non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot
-// be l-values.
-//
-// Expressions on the left of an assignment are evaluated before expressions on the right of the
-// assignment.
-//
-
-void __operator = (inout float a, const float b) {
- __asm float_copy a, b;
-}
-
-void __operator = (inout int a, const int b) {
- __asm int_copy a, b;
-}
-
-void __operator = (inout bool a, const bool b) {
- __asm bool_copy a, b;
-}
-
-void __operator = (inout vec2 v, const vec2 u) {
- v.x = u.x, v.y = u.y;
-}
-
-void __operator = (inout vec3 v, const vec3 u) {
- v.x = u.x, v.y = u.y, v.z = u.z;
-}
-
-void __operator = (inout vec4 v, const vec4 u) {
- v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
-}
-
-void __operator = (inout ivec2 v, const ivec2 u) {
- v.x = u.x, v.y = u.y;
-}
-
-void __operator = (inout ivec3 v, const ivec3 u) {
- v.x = u.x, v.y = u.y, v.z = u.z;
-}
-
-void __operator = (inout ivec4 v, const ivec4 u) {
- v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
-}
-
-void __operator = (inout bvec2 v, const bvec2 u) {
- v.x = u.x, v.y = u.y;
-}
-
-void __operator = (inout bvec3 v, const bvec3 u) {
- v.x = u.x, v.y = u.y, v.z = u.z;
-}
-
-void __operator = (inout bvec4 v, const bvec4 u) {
- v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
-}
-
-void __operator = (inout mat2 m, const mat2 n) {
- m[0] = n[0], m[1] = n[1];
-}
-
-void __operator = (inout mat3 m, const mat3 n) {
- m[0] = n[0], m[1] = n[1], m[2] = n[2];
-}
-
-void __operator = (inout mat4 m, const mat4 n) {
- m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3];
-}
-
-//
-// • The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide
-// into (/=). The variable and expression must be the same floating-point or integer type, ...
-//
-
-void __operator += (inout float a, const float b) {
- __asm float_add a, b;
-}
-
-void __operator -= (inout float a, const float b) {
- a += -b;
-}
-
-void __operator *= (inout float a, const float b) {
- __asm float_multiply a, b;
-}
-
-void __operator /= (inout float a, const float b) {
- __asm float_divide a, b;
-}
-
-void __operator += (inout int x, const int y) {
- __asm int_add x, y;
-}
-
-void __operator -= (inout int x, const int y) {
- x += -y;
-}
-
-void __operator *= (inout int x, const int y) {
- __asm int_multiply x, y;
-}
-
-void __operator /= (inout int x, const int y) {
- __asm int_divide x, y;
-}
-
-void __operator += (inout vec2 v, const vec2 u) {
- v.x += u.x, v.y += u.y;
-}
-
-void __operator -= (inout vec2 v, const vec2 u) {
- v.x -= u.x, v.y -= u.y;
-}
-
-void __operator *= (inout vec2 v, const vec2 u) {
- v.x *= u.x, v.y *= u.y;
-}
-
-void __operator /= (inout vec2 v, const vec2 u) {
- v.x /= u.x, v.y /= u.y;
-}
-
-void __operator += (inout vec3 v, const vec3 u) {
- v.x += u.x, v.y += u.y, v.z += u.z;
-}
-
-void __operator -= (inout vec3 v, const vec3 u) {
- v.x -= u.x, v.y -= u.y, v.z -= u.z;
-}
-
-void __operator *= (inout vec3 v, const vec3 u) {
- v.x *= u.x, v.y *= u.y, v.z *= u.z;
-}
-
-void __operator /= (inout vec3 v, const vec3 u) {
- v.x /= u.x, v.y /= u.y, v.z /= u.z;
-}
-
-void __operator += (inout vec4 v, const vec4 u) {
- v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;
-}
-
-void __operator -= (inout vec4 v, const vec4 u) {
- v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;
-}
-
-void __operator *= (inout vec4 v, const vec4 u) {
- v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;
-}
-
-void __operator /= (inout vec4 v, const vec4 u) {
- v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;
-}
-
-void __operator += (inout ivec2 v, const ivec2 u) {
- v.x += u.x, v.y += u.y;
-}
-
-void __operator -= (inout ivec2 v, const ivec2 u) {
- v.x -= u.x, v.y -= u.y;
-}
-
-void __operator *= (inout ivec2 v, const ivec2 u) {
- v.x *= u.x, v.y *= u.y;
-}
-
-void __operator /= (inout ivec2 v, const ivec2 u) {
- v.x /= u.x, v.y /= u.y;
-}
-
-void __operator += (inout ivec3 v, const ivec3 u) {
- v.x += u.x, v.y += u.y, v.z += u.z;
-}
-
-void __operator -= (inout ivec3 v, const ivec3 u) {
- v.x -= u.x, v.y -= u.y, v.z -= u.z;
-}
-
-void __operator *= (inout ivec3 v, const ivec3 u) {
- v.x *= u.x, v.y *= u.y, v.z *= u.z;
-}
-
-void __operator /= (inout ivec3 v, const ivec3 u) {
- v.x /= u.x, v.y /= u.y, v.z /= u.z;
-}
-
-void __operator += (inout ivec4 v, const ivec4 u) {
- v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;
-}
-
-void __operator -= (inout ivec4 v, const ivec4 u) {
- v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;
-}
-
-void __operator *= (inout ivec4 v, const ivec4 u) {
- v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;
-}
-
-void __operator /= (inout ivec4 v, const ivec4 u) {
- v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;
-}
-
-void __operator += (inout mat2 m, const mat2 n) {
- m[0] += n[0], m[1] += n[1];
-}
-
-void __operator -= (inout mat2 v, const mat2 n) {
- m[0] -= n[0], m[1] -= n[1];
-}
-
-void __operator *= (inout mat2 m, const mat2 n) {
- m = m * n;
-}
-
-void __operator /= (inout mat2 m, const mat2 n) {
- m[0] /= n[0], m[1] /= n[1];
-}
-
-void __operator += (inout mat3 m, const mat3 n) {
- m[0] += n[0], m[1] += n[1], m[2] += n[2];
-}
-
-void __operator -= (inout mat3 m, const mat3 n) {
- m[0] -= n[0], m[1] -= n[1], m[2] -= n[2];
-}
-
-void __operator *= (inout mat3 m, const mat3 n) {
- m = m * n;
-}
-
-void __operator /= (inout mat3 m, const mat3 n) {
- m[0] /= n[0], m[1] /= n[1], m[2] /= n[2];
-}
-
-void __operator += (inout mat4 m, const mat4 n) {
- m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3];
-}
-
-void __operator -= (inout mat4 m, const mat4 n) {
- m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3];
-}
-
-void __operator *= (inout mat4 m, const mat4 n) {
- m = m * n;
-}
-
-void __operator /= (inout mat4 m, const mat4 n) {
- m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3];
-}
-
-//
-// ... or if the expression is a float, then the variable can be floating-point, a vector, or
-// a matrix, ...
-//
-
-void __operator += (inout vec2 v, const float a) {
- v.x += a, v.y += a;
-}
-
-void __operator -= (inout vec2 v, const float a) {
- v.x -= a, v.y -= a;
-}
-
-void __operator *= (inout vec2 v, const float a) {
- v.x *= a, v.y *= a;
-}
-
-void __operator /= (inout vec2 v, const float a) {
- v.x /= a, v.y /= a;
-}
-
-void __operator += (inout vec3 v, const float a) {
- v.x += a, v.y += a, v.z += a;
-}
-
-void __operator -= (inout vec3 v, const float a) {
- v.x -= a, v.y -= a, v.z -= a;
-}
-
-void __operator *= (inout vec3 v, const float a) {
- v.x *= a, v.y *= a, v.z *= a;
-}
-
-void __operator /= (inout vec3 v, const float a) {
- v.x /= a, v.y /= a, v.z /= a;
-}
-
-void __operator += (inout vec4 v, const float a) {
- v.x += a, v.y += a, v.z += a, v.w += a;
-}
-
-void __operator -= (inout vec4 v, const float a) {
- v.x -= a, v.y -= a, v.z -= a, v.w -= a;
-}
-
-void __operator *= (inout vec4 v, const float a) {
- v.x *= a, v.y *= a, v.z *= a, v.w *= a;
-}
-
-void __operator /= (inout vec4 v, const float a) {
- v.x /= a, v.y /= a, v.z /= a, v.w /= a;
-}
-
-void __operator += (inout mat2 m, const float a) {
- m[0] += a, m[1] += a;
-}
-
-void __operator -= (inout mat2 m, const float a) {
- m[0] -= a, m[1] -= a;
-}
-
-void __operator *= (inout mat2 m, const float a) {
- m[0] *= a, m[1] *= a;
-}
-
-void __operator /= (inout mat2 m, const float a) {
- m[0] /= a, m[1] /= a;
-}
-
-void __operator += (inout mat3 m, const float a) {
- m[0] += a, m[1] += a, m[2] += a;
-}
-
-void __operator -= (inout mat3 m, const float a) {
- m[0] -= a, m[1] -= a, m[2] -= a;
-}
-
-void __operator *= (inout mat3 m, const float a) {
- m[0] *= a, m[1] *= a, m[2] *= a;
-}
-
-void __operator /= (inout mat3 m, const float a) {
- m[0] /= a, m[1] /= a, m[2] /= a;
-}
-
-void __operator += (inout mat4 m, const float a) {
- m[0] += a, m[1] += a, m[2] += a, m[3] += a;
-}
-
-void __operator -= (inout mat4 m, const float a) {
- m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a;
-}
-
-void __operator *= (inout mat4 m, const float a) {
- m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a;
-}
-
-void __operator /= (inout mat4 m, const float a) {
- m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a;
-}
-
-//
-// ... or if the operation is multiply into (*=), then the variable can be a vector and the
-// expression can be a matrix of matching size.
-//
-
-void __operator *= (inout vec2 v, const mat2 m) {
- v = v * m;
-}
-
-void __operator *= (inout vec3 v, const mat3 m) {
- v = v * m;
-}
-
-void __operator *= (inout vec4 v, const mat4 m) {
- v = v * m;
-}
-
-//
-// 5.9 Expressions
-//
-// Expressions in the shading language include the following:
-//
-
-//
-// • The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that
-// operate on integer and floating-point typed expressions (including vectors and matrices).
-// The two operands must be the same type, ...
-//
-
-float __operator + (const float a, const float b) {
- float c = a;
- return c += b;
-}
-
-float __operator - (const float a, const float b) {
- return a + -b;
-}
-
-float __operator * (const float a, const float b) {
- float c = a;
- return c *= b;
-}
-
-float __operator / (const float a, const float b) {
- float c = a;
- return c /= b;
-}
-
-int __operator + (const int a, const int b) {
- int c = a;
- return c += b;
-}
-
-int __operator - (const int x, const int y) {
- return x + -y;
-}
-
-int __operator * (const int x, const int y) {
- int z = x;
- return z *= y;
-}
-
-int __operator / (const int x, const int y) {
- int z = x;
- return z /= y;
-}
-
-vec2 __operator + (const vec2 v, const vec2 u) {
- return vec2 (v.x + u.x, v.y + u.y);
-}
-
-vec2 __operator - (const vec2 v, const vec2 u) {
- return vec2 (v.x - u.x, v.y - u.y);
-}
-
-vec3 __operator + (const vec3 v, const vec3 u) {
- return vec3 (v.x + u.x, v.y + u.y, v.z + u.z);
-}
-
-vec3 __operator - (const vec3 v, const vec3 u) {
- return vec3 (v.x - u.x, v.y - u.y, v.z - u.z);
-}
-
-vec4 __operator + (const vec4 v, const vec4 u) {
- return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);
-}
-
-vec4 __operator - (const vec4 v, const vec4 u) {
- return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);
-}
-
-ivec2 __operator + (const ivec2 v, const ivec2 u) {
- return ivec2 (v.x + u.x, v.y + u.y);
-}
-
-ivec2 __operator - (const ivec2 v, const ivec2 u) {
- return ivec2 (v.x - u.x, v.y - u.y);
-}
-
-ivec3 __operator + (const ivec3 v, const ivec3 u) {
- return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z);
-}
-
-ivec3 __operator - (const ivec3 v, const ivec3 u) {
- return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z);
-}
-
-ivec4 __operator + (const ivec4 v, const ivec4 u) {
- return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);
-}
-
-ivec4 __operator - (const ivec4 v, const ivec4 u) {
- return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);
-}
-
-mat2 __operator + (const mat2 m, const mat2 n) {
- return mat2 (m[0] + n[0], m[1] + n[1]);
-}
-
-mat2 __operator - (const mat2 m, const mat2 n) {
- return mat2 (m[0] - n[0], m[1] - n[1]);
-}
-
-mat3 __operator + (const mat3 m, const mat3 n) {
- return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]);
-}
-
-mat3 __operator - (const mat3 m, const mat3 n) {
- return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]);
-}
-
-mat4 __operator + (const mat4 m, const mat4 n) {
- return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]);
-}
-
-mat4 __operator - (const mat4 m, const mat4 n) {
- return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]);
-}
-
-//
-// ... or one must be a scalar float and the other a vector or matrix, ...
-//
-
-vec2 __operator + (const float a, const vec2 u) {
- return vec2 (a + u.x, a + u.y);
-}
-
-vec2 __operator + (const vec2 v, const float b) {
- return vec2 (v.x + b, v.y + b);
-}
-
-vec2 __operator - (const float a, const vec2 u) {
- return vec2 (a - u.x, a - u.y);
-}
-
-vec2 __operator - (const vec2 v, const float b) {
- return vec2 (v.x - b, v.y - b);
-}
-
-vec2 __operator * (const float a, const vec2 u) {
- return vec2 (a * u.x, a * u.y);
-}
-
-vec2 __operator * (const vec2 v, const float b) {
- return vec2 (v.x * b, v.y * b);
-}
-
-vec2 __operator / (const float a, const vec2 u) {
- return vec2 (a / u.x, a / u.y);
-}
-
-vec2 __operator / (const vec2 v, const float b) {
- return vec2 (v.x / b, v.y / b);
-}
-
-vec3 __operator + (const float a, const vec3 u) {
- return vec3 (a + u.x, a + u.y, a + u.z);
-}
-
-vec3 __operator + (const vec3 v, const float b) {
- return vec3 (v.x + b, v.y + b, v.z + b);
-}
-
-vec3 __operator - (const float a, const vec3 u) {
- return vec3 (a - u.x, a - u.y, a - u.z);
-}
-
-vec3 __operator - (const vec3 v, const float b) {
- return vec3 (v.x - b, v.y - b, v.z - b);
-}
-
-vec3 __operator * (const float a, const vec3 u) {
- return vec3 (a * u.x, a * u.y, a * u.z);
-}
-
-vec3 __operator * (const vec3 v, const float b) {
- return vec3 (v.x * b, v.y * b, v.z * b);
-}
-
-vec3 __operator / (const float a, const vec3 u) {
- return vec3 (a / u.x, a / u.y, a / u.z);
-}
-
-vec3 __operator / (const vec3 v, const float b) {
- return vec3 (v.x / b, v.y / b, v.z / b);
-}
-
-vec4 __operator + (const float a, const vec4 u) {
- return vec4 (a + u.x, a + u.y, a + u.z, a + u.w);
-}
-
-vec4 __operator + (const vec4 v, const float b) {
- return vec4 (v.x + b, v.y + b, v.z + b, v.w + b);
-}
-
-vec4 __operator - (const float a, const vec4 u) {
- return vec4 (a - u.x, a - u.y, a - u.z, a - u.w);
-}
-
-vec4 __operator - (const vec4 v, const float b) {
- return vec4 (v.x - b, v.y - b, v.z - b, v.w - b);
-}
-
-vec4 __operator * (const float a, const vec4 u) {
- return vec4 (a * u.x, a * u.y, a * u.z, a * u.w);
-}
-
-vec4 __operator * (const vec4 v, const float b) {
- return vec4 (v.x * b, v.y * b, v.z * b, v.w * b);
-}
-
-vec4 __operator / (const float a, const vec4 u) {
- return vec4 (a / u.x, a / u.y, a / u.z, a / u.w);
-}
-
-vec4 __operator / (const vec4 v, const float b) {
- return vec4 (v.x / b, v.y / b, v.z / b, v.w / b);
-}
-
-mat2 __operator + (const float a, const mat2 n) {
- return mat2 (a + n[0], a + n[1]);
-}
-
-mat2 __operator + (const mat2 m, const float b) {
- return mat2 (m[0] + b, m[1] + b);
-}
-
-mat2 __operator - (const float a, const mat2 n) {
- return mat2 (a - n[0], a - n[1]);
-}
-
-mat2 __operator - (const mat2 m, const float b) {
- return mat2 (m[0] - b, m[1] - b);
-}
-
-mat2 __operator * (const float a, const mat2 n) {
- return mat2 (a * n[0], a * n[1]);
-}
-
-mat2 __operator * (const mat2 m, const float b) {
- return mat2 (m[0] * b, m[1] * b);
-}
-
-mat2 __operator / (const float a, const mat2 n) {
- return mat2 (a / n[0], a / n[1]);
-}
-
-mat2 __operator / (const mat2 m, const float b) {
- return mat2 (m[0] / b, m[1] / b);
-}
-
-mat3 __operator + (const float a, const mat3 n) {
- return mat3 (a + n[0], a + n[1], a + n[2]);
-}
-
-mat3 __operator + (const mat3 m, const float b) {
- return mat3 (m[0] + b, m[1] + b, m[2] + b);
-}
-
-mat3 __operator - (const float a, const mat3 n) {
- return mat3 (a - n[0], a - n[1], a - n[2]);
-}
-
-mat3 __operator - (const mat3 m, const float b) {
- return mat3 (m[0] - b, m[1] - b, m[2] - b);
-}
-
-mat3 __operator * (const float a, const mat3 n) {
- return mat3 (a * n[0], a * n[1], a * n[2]);
-}
-
-mat3 __operator * (const mat3 m, const float b) {
- return mat3 (m[0] * b, m[1] * b, m[2] * b);
-}
-
-mat3 __operator / (const float a, const mat3 n) {
- return mat3 (a / n[0], a / n[1], a / n[2]);
-}
-
-mat3 __operator / (const mat3 m, const float b) {
- return mat3 (m[0] / b, m[1] / b, m[2] / b);
-}
-
-mat4 __operator + (const float a, const mat4 n) {
- return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]);
-}
-
-mat4 __operator + (const mat4 m, const float b) {
- return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b);
-}
-
-mat4 __operator - (const float a, const mat4 n) {
- return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]);
-}
-
-mat4 __operator - (const mat4 m, const float b) {
- return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b);
-}
-
-mat4 __operator * (const float a, const mat4 n) {
- return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]);
-}
-
-mat4 __operator * (const mat4 m, const float b) {
- return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b);
-}
-
-mat4 __operator / (const float a, const mat4 n) {
- return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]);
-}
-
-mat4 __operator / (const mat4 m, const float b) {
- return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b);
-}
-
-//
-// ... or for multiply (*) one can be a vector and the other a matrix with the same dimensional
-// size of the vector.
-//
-// [When:]
-// • the left argument is a floating-point vector and the right is a matrix with a compatible
-// dimension in which case the * operator will do a row vector matrix multiplication.
-// • the left argument is a matrix and the right is a floating-point vector with a compatible
-// dimension in which case the * operator will do a column vector matrix multiplication.
-//
-
-vec2 __operator * (const mat2 m, const vec2 v) {
- return vec2 (
- v.x * m[0].x + v.y * m[1].x,
- v.x * m[0].y + v.y * m[1].y
- );
-}
-
-vec2 __operator * (const vec2 v, const mat2 m) {
- return vec2 (
- v.x * m[0].x + v.y * m[0].y,
- v.x * m[1].x + v.y * m[1].y
- );
-}
-
-vec3 __operator * (const mat3 m, const vec3 v) {
- return vec3 (
- v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,
- v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,
- v.x * m[0].z + v.y * m[1].z + v.z * m[2].z
- );
-}
-
-vec3 __operator * (const vec3 v, const mat3 m) {
- return vec3 (
- v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,
- v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,
- v.x * m[2].x + v.y * m[2].y + v.z * m[2].z
- );
-}
-
-vec4 __operator * (const mat4 m, const vec4 v) {
- return vec4 (
- v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,
- v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,
- v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,
- v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w
- );
-}
-
-vec4 __operator * (const vec4 v, const mat4 m) {
- return vec4 (
- v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,
- v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,
- v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,
- v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w
- );
-}
-
-//
-// Multiply (*) applied to two vectors yields a component-wise multiply.
-//
-
-vec2 __operator * (const vec2 v, const vec2 u) {
- return vec2 (v.x * u.x, v.y * u.y);
-}
-
-vec3 __operator * (const vec3 v, const vec3 u) {
- return vec3 (v.x * u.x, v.y * u.y, v.z * u.z);
-}
-
-vec4 __operator * (const vec4 v, const vec4 u) {
- return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);
-}
-
-ivec2 __operator * (const ivec2 v, const ivec2 u) {
- return ivec2 (v.x * u.x, v.y * u.y);
-}
-
-ivec3 __operator * (const ivec3 v, const ivec3 u) {
- return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z);
-}
-
-ivec4 __operator * (const ivec4 v, const ivec4 u) {
- return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);
-}
-
-//
-// Dividing by zero does not cause an exception but does result in an unspecified value.
-//
-
-vec2 __operator / (const vec2 v, const vec2 u) {
- return vec2 (v.x / u.x, v.y / u.y);
-}
-
-vec3 __operator / (const vec3 v, const vec3 u) {
- return vec3 (v.x / u.x, v.y / u.y, v.z / u.z);
-}
-
-vec4 __operator / (const vec4 v, const vec4 u) {
- return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);
-}
-
-ivec2 __operator / (const ivec2 v, const ivec2 u) {
- return ivec2 (v.x / u.x, v.y / u.y);
-}
-
-ivec3 __operator / (const ivec3 v, const ivec3 u) {
- return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z);
-}
-
-ivec4 __operator / (const ivec4 v, const ivec4 u) {
- return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);
-}
-
-mat2 __operator / (const mat2 m, const mat2 n) {
- return mat2 (m[0] / n[0], m[1] / n[1]);
-}
-
-mat3 __operator / (const mat3 m, const mat3 n) {
- return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]);
-}
-
-mat4 __operator / (const mat4 m, const mat4 n) {
- return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]);
-}
-
-//
-// Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not
-// a component-wise multiply.
-//
-
-mat2 __operator * (const mat2 m, const mat2 n) {
- return mat2 (m * n[0], m * n[1]);
-}
-
-mat3 __operator * (const mat3 m, const mat3 n) {
- return mat3 (m * n[0], m * n[1], m * n[2]);
-}
-
-mat4 __operator * (const mat4 m, const mat4 n) {
- return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);
-}
-
-//
-// • The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and
-// ++) that operate on integer or floating-point values (including vectors and matrices). These
-// result with the same type they operated on. For post- and pre-increment and decrement, the
-// expression must be one that could be assigned to (an l-value). Pre-increment and predecrement
-// add or subtract 1 or 1.0 to the contents of the expression they operate on, and the
-// value of the pre-increment or pre-decrement expression is the resulting value of that
-// modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to
-// the contents of the expression they operate on, but the resulting expression has the
-// expression’s value before the post-increment or post-decrement was executed.
-//
-// [NOTE: postfix increment and decrement operators take additional dummy int parameter to
-// distinguish their prototypes from prefix ones.]
-//
-
-float __operator - (const float a) {
- float c = a;
- __asm float_negate c;
- return c;
-}
-
-int __operator - (const int a) {
- int c = a;
- __asm int_negate c;
- return c;
-}
-
-vec2 __operator - (const vec2 v) {
- return vec2 (-v.x, -v.y);
-}
-
-vec3 __operator - (const vec3 v) {
- return vec3 (-v.x, -v.y, -v.z);
-}
-
-vec4 __operator - (const vec4 v) {
- return vec4 (-v.x, -v.y, -v.z, -v.w);
-}
-
-ivec2 __operator - (const ivec2 v) {
- return ivec2 (-v.x, -v.y);
-}
-
-ivec3 __operator - (const ivec3 v) {
- return ivec3 (-v.x, -v.y, -v.z);
-}
-
-ivec4 __operator - (const ivec4 v) {
- return ivec4 (-v.x, -v.y, -v.z, -v.w);
-}
-
-mat2 __operator - (const mat2 m) {
- return mat2 (-m[0], -m[1]);
-}
-
-mat3 __operator - (const mat3 m) {
- return mat3 (-m[0], -m[1], -m[2]);
-}
-
-mat4 __operator - (const mat4 m) {
- return mat4 (-m[0], -m[1], -m[2], -m[3]);
-}
-
-void __operator -- (inout float a) {
- a -= 1.0;
-}
-
-void __operator -- (inout int a) {
- a -= 1;
-}
-
-void __operator -- (inout vec2 v) {
- --v.x, --v.y;
-}
-
-void __operator -- (inout vec3 v) {
- --v.x, --v.y, --v.z;
-}
-
-void __operator -- (inout vec4 v) {
- --v.x, --v.y, --v.z, --v.w;
-}
-
-void __operator -- (inout ivec2 v) {
- --v.x, --v.y;
-}
-
-void __operator -- (inout ivec3 v) {
- --v.x, --v.y, --v.z;
-}
-
-void __operator -- (inout ivec4 v) {
- --v.x, --v.y, --v.z, --v.w;
-}
-
-void __operator -- (inout mat2 m) {
- --m[0], --m[1];
-}
-
-void __operator -- (inout mat3 m) {
- --m[0], --m[1], --m[2];
-}
-
-void __operator -- (inout mat4 m) {
- --m[0], --m[1], --m[2], --m[3];
-}
-
-void __operator ++ (inout float a) {
- a += 1.0;
-}
-
-void __operator ++ (inout int a) {
- a += 1;
-}
-
-void __operator ++ (inout vec2 v) {
- ++v.x, ++v.y;
-}
-
-void __operator ++ (inout vec3 v) {
- ++v.x, ++v.y, ++v.z;
-}
-
-void __operator ++ (inout vec4 v) {
- ++v.x, ++v.y, ++v.z, ++v.w;
-}
-
-void __operator ++ (inout ivec2 v) {
- ++v.x, ++v.y;
-}
-
-void __operator ++ (inout ivec3 v) {
- ++v.x, ++v.y, ++v.z;
-}
-
-void __operator ++ (inout ivec4 v) {
- ++v.x, ++v.y, ++v.z, ++v.w;
-}
-
-void __operator ++ (inout mat2 m) {
- ++m[0], ++m[1];
-}
-
-void __operator ++ (inout mat3 m) {
- ++m[0], ++m[1], ++m[2];
-}
-
-void __operator ++ (inout mat4 m) {
- ++m[0], ++m[1], ++m[2], ++m[3];
-}
-
-float __operator -- (inout float a, const int) {
- const float c = a;
- --a;
- return c;
-}
-
-int __operator -- (inout int a, const int) {
- const int c = a;
- --a;
- return c;
-}
-
-vec2 __operator -- (inout vec2 v, const int) {
- return vec2 (v.x--, v.y--);
-}
-
-vec3 __operator -- (inout vec3 v, const int) {
- return vec3 (v.x--, v.y--, v.z--);
-}
-
-vec4 __operator -- (inout vec4 v, const int) {
- return vec4 (v.x--, v.y--, v.z--, v.w--);
-}
-
-ivec2 __operator -- (inout ivec2 v, const int) {
- return ivec2 (v.x--, v.y--);
-}
-
-ivec3 __operator -- (inout ivec3 v, const int) {
- return ivec3 (v.x--, v.y--, v.z--);
-}
-
-ivec4 __operator -- (inout ivec4 v, const int) {
- return ivec4 (v.x--, v.y--, v.z--, v.w--);
-}
-
-mat2 __operator -- (inout mat2 m, const int) {
- return mat2 (m[0]--, m[1]--);
-}
-
-mat3 __operator -- (inout mat3 m, const int) {
- return mat3 (m[0]--, m[1]--, m[2]--);
-}
-
-mat4 __operator -- (inout mat4 m, const int) {
- return mat4 (m[0]--, m[1]--, m[2]--, m[3]--);
-}
-
-float __operator ++ (inout float a, const int) {
- const float c = a;
- ++a;
- return c;
-}
-
-int __operator ++ (inout int a, const int) {
- const int c = a;
- ++a;
- return c;
-}
-
-vec2 __operator ++ (inout vec2 v, const int) {
- return vec2 (v.x++, v.y++);
-}
-
-vec3 __operator ++ (inout vec3 v, const int) {
- return vec3 (v.x++, v.y++, v.z++);
-}
-
-vec4 __operator ++ (inout vec4 v, const int) {
- return vec4 (v.x++, v.y++, v.z++, v.w++);
-}
-
-ivec2 __operator ++ (inout ivec2 v, const int) {
- return ivec2 (v.x++, v.y++);
-}
-
-ivec3 __operator ++ (inout ivec3 v, const int) {
- return ivec3 (v.x++, v.y++, v.z++);
-}
-
-ivec4 __operator ++ (inout ivec4 v, const int) {
- return ivec4 (v.x++, v.y++, v.z++, v.w++);
-}
-
-mat2 __operator ++ (inout mat2 m, const int) {
- return mat2 (m[0]++, m[1]++);
-}
-
-mat3 __operator ++ (inout mat3 m, const int) {
- return mat3 (m[0]++, m[1]++, m[2]++);
-}
-
-mat4 __operator ++ (inout mat4 m, const int) {
- return mat4 (m[0]++, m[1]++, m[2]++, m[3]++);
-}
-
-//
-// • The relational operators greater than (>), less than (<), greater than or equal (>=), and less
-// than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The
-// result is scalar Boolean. The operands’ types must match. To do component-wise
-// comparisons on vectors, use the built-in functions lessThan, lessThanEqual,
-// greaterThan, and greaterThanEqual.
-//
-
-bool __operator < (const float a, const float b) {
- bool c;
- __asm float_less c, a, b;
- return c;
-}
-
-bool __operator < (const int a, const int b) {
- bool c;
- __asm int_less c, a, b;
- return c;
-}
-
-bool __operator > (const float a, const float b) {
- return b < a;
-}
-
-bool __operator > (const int a, const int b) {
- return b < a;
-}
-
-bool __operator >= (const float a, const float b) {
- return a > b || a == b;
-}
-
-bool __operator >= (const int a, const int b) {
- return a > b || a == b;
-}
-
-bool __operator <= (const float a, const float b) {
- return a < b || a == b;
-}
-
-bool __operator <= (const int a, const int b) {
- return a < b || a == b;
-}
-
-//
-// • The equality operators equal (==), and not equal (!=) operate on all types except arrays.
-// They result in a scalar Boolean. For vectors, matrices, and structures, all components of the
-// operands must be equal for the operands to be considered equal. To get component-wise
-// equality results for vectors, use the built-in functions equal and notEqual.
-//
-
-bool __operator == (const float a, const float b) {
- bool c;
- __asm float_equal c, a, b;
- return c;
-}
-
-bool __operator == (const int a, const int b) {
- bool c;
- __asm int_equal c, a, b;
- return c;
-}
-
-bool __operator == (const bool a, const bool b) {
- bool c;
- __asm bool_equal c, a, b;
- return c;
-}
-
-bool __operator == (const vec2 v, const vec2 u) {
- return v.x == u.x && v.y == u.y;
-}
-
-bool __operator == (const vec3 v, const vec3 u) {
- return v.x == u.x && v.y == u.y && v.z == u.z;
-}
-
-bool __operator == (const vec4 v, const vec4 u) {
- return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
-}
-
-bool __operator == (const ivec2 v, const ivec2 u) {
- return v.x == u.x && v.y == u.y;
-}
-
-bool __operator == (const ivec3 v, const ivec3 u) {
- return v.x == u.x && v.y == u.y && v.z == u.z;
-}
-
-bool __operator == (const ivec4 v, const ivec4 u) {
- return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
-}
-
-bool __operator == (const bvec2 v, const bvec2 u) {
- return v.x == u.x && v.y == u.y;
-}
-
-bool __operator == (const bvec3 v, const bvec3 u) {
- return v.x == u.x && v.y == u.y && v.z == u.z;
-}
-
-bool __operator == (const bvec4 v, const bvec4 u) {
- return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
-}
-
-bool __operator == (const mat2 m, const mat2 n) {
- return m[0] == n[0] && m[1] == n[1];
-}
-
-bool __operator == (const mat3 m, const mat3 n) {
- return m[0] == n[0] && m[1] == n[1] && m[2] == n[2];
-}
-
-bool __operator == (const mat4 m, const mat4 n) {
- return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3];
-}
-
-bool __operator != (const float a, const float b) {
- return !(a == b);
-}
-
-bool __operator != (const int a, const int b) {
- return !(a == b);
-}
-
-bool __operator != (const bool a, const bool b) {
- return !(a == b);
-}
-
-bool __operator != (const vec2 v, const vec2 u) {
- return v.x != u.x || v.y != u.y;
-}
-
-bool __operator != (const vec3 v, const vec3 u) {
- return v.x != u.x || v.y != u.y || v.z != u.z;
-}
-
-bool __operator != (const vec4 v, const vec4 u) {
- return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
-}
-
-bool __operator != (const ivec2 v, const ivec2 u) {
- return v.x != u.x || v.y != u.y;
-}
-
-bool __operator != (const ivec3 v, const ivec3 u) {
- return v.x != u.x || v.y != u.y || v.z != u.z;
-}
-
-bool __operator != (const ivec4 v, const ivec4 u) {
- return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
-}
-
-bool __operator != (const bvec2 v, const bvec2 u) {
- return v.x != u.x || v.y != u.y;
-}
-
-bool __operator != (const bvec3 v, const bvec3 u) {
- return v.x != u.x || v.y != u.y || v.z != u.z;
-}
-
-bool __operator != (const bvec4 v, const bvec4 u) {
- return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
-}
-
-bool __operator != (const mat2 m, const mat2 n) {
- return m[0] != n[0] || m[1] != n[1];
-}
-
-bool __operator != (const mat3 m, const mat3 n) {
- return m[0] != n[0] || m[1] != n[1] || m[2] != n[2];
-}
-
-bool __operator != (const mat4 m, const mat4 n) {
- return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3];
-}
-
-//
-// • The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only
-// on two Boolean expressions and result in a Boolean expression. And (&&) will only
-// evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will
-// only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or
-// (^^) will always evaluate both operands.
-//
-
-bool __operator ^^ (const bool a, const bool b) {
- return a != b;
-}
-
-//
-// [These operators are handled internally by the compiler:]
-//
-// bool __operator && (bool a, bool b) {
-// return a ? b : false;
-// }
-// bool __operator || (bool a, bool b) {
-// return a ? true : b;
-// }
-//
-
-//
-// • The logical unary operator not (!). It operates only on a Boolean expression and results in a
-// Boolean expression. To operate on a vector, use the built-in function not.
-//
-
-bool __operator ! (const bool a) {
- return a == false;
-}
-
+ +// +// This file defines nearly all constructors and operators for built-in data types, using +// extended language syntax. In general, compiler treats constructors and operators as +// ordinary functions with some exceptions. For example, the language does not allow +// functions to be called in constant expressions - here the exception is made to allow it. +// +// Each implementation provides its own version of this file. Each implementation can define +// the required set of operators and constructors in its own fashion. +// +// The extended language syntax is only present when compiling this file. It is implicitly +// included at the very beginning of the compiled shader, so no built-in functions can be +// used. +// +// To communicate with the implementation, a special extended "__asm" keyword is used, followed +// by an instruction name (any valid identifier), a destination variable identifier and a +// a list of zero or more source variable identifiers. A variable identifier is a variable name +// declared earlier in the code (as a function parameter, local or global variable). +// An instruction name designates an instruction that must be exported by the implementation. +// Each instruction receives data from destination and source variable identifiers and returns +// data in the destination variable identifier. +// +// It is up to the implementation how to define a particular operator or constructor. If it is +// expected to being used rarely, it can be defined in terms of other operators and constructors, +// for example: +// +// ivec2 __operator + (const ivec2 x, const ivec2 y) { +// return ivec2 (x[0] + y[0], x[1] + y[1]); +// } +// +// If a particular operator or constructor is expected to be used very often or is an atomic +// operation (that is, an operation that cannot be expressed in terms of other operations or +// would create a dependency cycle) it must be defined using one or more __asm constructs. +// +// Each implementation must define constructors for all scalar types (bool, float, int). +// There are 9 scalar-to-scalar constructors (including identity constructors). However, +// since the language introduces special constructors (like matrix constructor with a single +// scalar value), implementations must also implement these cases. +// The compiler provides the following algorithm when resolving a constructor: +// - try to find a constructor with a prototype matching ours, +// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error, +// - if a constructor is found, execute it and return, +// - count the size of the constructor parameter list - if it is less than the size of +// our constructor's type, raise an error, +// - for each parameter in the list do a recursive constructor matching for appropriate +// scalar fields in the constructed variable, +// +// Each implementation must also define a set of operators that deal with built-in data types. +// There are four kinds of operators: +// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence) +// and "?:" (selection). +// 2) Operators that are implemented by the compiler by expressing it in terms of other operators: +// - "." (field selection) - translated to subscript access, +// - "&&" (logical and) - translated to "<left_expr> ? <right_expr> : false", +// - "||" (logical or) - translated to "<left_expr> ? true : <right_expr>", +// 3) Operators that can be defined by the implementation and if the required prototype is not +// found, standard behaviour is used: +// - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one; +// note that at least operators for scalar data types must be defined by the implementation +// to get it work, +// 4) All other operators not mentioned above. If no required prototype is found, an error is +// raised. An implementation must follow the language specification to provide all valid +// operator prototypes. +// + +// +// From Shader Spec, ver. 1.10, rev. 59 +// + +// +// 5.4.1 Conversion and Scalar Constructors +// + +// +// When constructors are used to convert a float to an int, the fractional part of the +// floating-point value is dropped. +// + +int __constructor (const float _f) { + int _i; + __asm float_to_int _i, _f; + return _i; +} + +// +// When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to +// false, and nonzero values are converted to true. +// + +bool __constructor (const int _i) { + return _i != 0; +} + +bool __constructor (const float _f) { + return _f != 0.0; +} + +// +// When a constructor is used to convert a bool to an int or float, false is converted to 0 or +// 0.0, and true is converted to 1 or 1.0. +// + +int __constructor (const bool _b) { + return _b ? 1 : 0; +} + +float __constructor (const bool _b) { + return _b ? 1.0 : 0.0; +} + +// +// Int to float constructor. +// + +float __constructor (const int _i) { + float _f; + __asm int_to_float _f, _i; + return _f; +} + +// +// Identity constructors, like float(float) are also legal, but of little use. +// + +bool __constructor (const bool _b) { + return _b; +} + +int __constructor (const int _i) { + return _i; +} + +float __constructor (const float _f) { + return _f; +} + +// +// Scalar constructors with non-scalar parameters can be used to take the first element from +// a non-scalar. For example, the constructor float(vec3) will select the first component of the +// vec3 parameter. +// + +// [These scalar conversions will be handled internally by the compiler.] + +// +// 5.4.2 Vector and Matrix Constructors +// +// Constructors can be used to create vectors or matrices from a set of scalars, vectors, +// or matrices. This includes the ability to shorten vectors. +// + +// +// If there is a single scalar parameter to a vector constructor, it is used to initialize all +// components of the constructed vector to that scalar’s value. +// +// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic +// type of the object being constructed, the scalar construction rules (above) are used to convert +// the parameters. +// + +vec2 __constructor (const float _f) { + return vec2 (_f, _f); +} + +vec2 __constructor (const int _i) { + return vec2 (_i, _i); +} + +vec2 __constructor (const bool _b) { + return vec2 (_b, _b); +} + +vec3 __constructor (const float _f) { + return vec3 (_f, _f, _f); +} + +vec3 __constructor (const int _i) { + return vec3 (_i, _i, _i); +} + +vec3 __constructor (const bool _b) { + return vec3 (_b, _b, _b); +} + +vec4 __constructor (const float _f) { + return vec4 (_f, _f, _f, _f); +} + +vec4 __constructor (const int _i) { + return vec4 (_i, _i, _i, _i); +} + +vec4 __constructor (const bool _b) { + return vec4 (_b, _b, _b, _b); +} + +ivec2 __constructor (const int _i) { + return ivec2 (_i, _i); +} + +ivec2 __constructor (const float _f) { + return ivec2 (_f, _f); +} + +ivec2 __constructor (const bool _b) { + return ivec2 (_b, _b); +} + +ivec3 __constructor (const int _i) { + return ivec3 (_i, _i, _i); +} + +ivec3 __constructor (const float _f) { + return ivec3 (_f, _f, _f); +} + +ivec3 __constructor (const bool _b) { + return ivec3 (_b, _b, _b); +} + +ivec4 __constructor (const int _i) { + return ivec4 (_i, _i, _i, _i); +} + +ivec4 __constructor (const float _f) { + return ivec4 (_f, _f, _f, _f); +} + +ivec4 __constructor (const bool _b) { + return ivec4 (_b, _b, _b, _b); +} + +bvec2 __constructor (const bool _b) { + return bvec2 (_b, _b); +} + +bvec2 __constructor (const float _f) { + return bvec2 (_f, _f); +} + +bvec2 __constructor (const int _i) { + return bvec2 (_i, _i); +} + +bvec3 __constructor (const bool _b) { + return bvec3 (_b, _b, _b); +} + +bvec3 __constructor (const float _f) { + return bvec3 (_f, _f, _f); +} + +bvec3 __constructor (const int _i) { + return bvec3 (_i, _i, _i); +} + +bvec4 __constructor (const bool _b) { + return bvec4 (_b, _b, _b, _b); +} + +bvec4 __constructor (const float _f) { + return bvec4 (_f, _f, _f, _f); +} + +bvec4 __constructor (const int _i) { + return bvec4 (_i, _i, _i, _i); +} + +// +// If there is a single scalar parameter to a matrix constructor, it is used to initialize all the +// components on the matrix’s diagonal, with the remaining components initialized to 0.0. +// (...) Matrices will be constructed in column major order. It is an error to construct matrices +// from other matrices. This is reserved for future use. +// +// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic +// type of the object being constructed, the scalar construction rules (above) are used to convert +// the parameters. +// + +mat2 __constructor (const float _f) { + return mat2 ( + _f, .0, + .0, _f + ); +} + +mat2 __constructor (const int _i) { + return mat2 ( + _i, .0, + .0, _i + ); +} + +mat2 __constructor (const bool _b) { + return mat2 ( + _b, .0, + .0, _b + ); +} + +mat3 __constructor (const float _f) { + return mat3 ( + _f, .0, .0, + .0, _f, .0, + .0, .0, _f + ); +} + +mat3 __constructor (const int _i) { + return mat3 ( + _i, .0, .0, + .0, _i, .0, + .0, .0, _i + ); +} + +mat3 __constructor (const bool _b) { + return mat3 ( + _b, .0, .0, + .0, _b, .0, + .0, .0, _b + ); +} + +mat4 __constructor (const float _f) { + return mat4 ( + _f, .0, .0, .0, + .0, _f, .0, .0, + .0, .0, _f, .0, + .0, .0, .0, _f + ); +} + +mat4 __constructor (const int _i) { + return mat4 ( + _i, .0, .0, .0, + .0, _i, .0, .0, + .0, .0, _i, .0, + .0, .0, .0, _i + ); +} + +mat4 __constructor (const bool _b) { + return mat4 ( + _b, .0, .0, .0, + .0, _b, .0, .0, + .0, .0, _b, .0, + .0, .0, .0, _b + ); +} + +// +// 5.8 Assignments +// +// Assignments of values to variable names are done with the assignment operator ( = ), like +// +// lvalue = expression +// +// The assignment operator stores the value of expression into lvalue. It will compile only if +// expression and lvalue have the same type. All desired type-conversions must be specified +// explicitly via a constructor. Lvalues must be writable. Variables that are built-in types, +// entire structures, structure fields, l-values with the field selector ( . ) applied to select +// components or swizzles without repeated fields, and l-values dereferenced with the array +// subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions, +// non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot +// be l-values. +// +// Expressions on the left of an assignment are evaluated before expressions on the right of the +// assignment. +// + +void __operator = (inout float a, const float b) { + __asm float_copy a, b; +} + +void __operator = (inout int a, const int b) { + __asm int_copy a, b; +} + +void __operator = (inout bool a, const bool b) { + __asm bool_copy a, b; +} + +void __operator = (inout vec2 v, const vec2 u) { + v.x = u.x, v.y = u.y; +} + +void __operator = (inout vec3 v, const vec3 u) { + v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout vec4 v, const vec4 u) { + v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout ivec2 v, const ivec2 u) { + v.x = u.x, v.y = u.y; +} + +void __operator = (inout ivec3 v, const ivec3 u) { + v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout ivec4 v, const ivec4 u) { + v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout bvec2 v, const bvec2 u) { + v.x = u.x, v.y = u.y; +} + +void __operator = (inout bvec3 v, const bvec3 u) { + v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout bvec4 v, const bvec4 u) { + v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout mat2 m, const mat2 n) { + m[0] = n[0], m[1] = n[1]; +} + +void __operator = (inout mat3 m, const mat3 n) { + m[0] = n[0], m[1] = n[1], m[2] = n[2]; +} + +void __operator = (inout mat4 m, const mat4 n) { + m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3]; +} + +// +// • The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide +// into (/=). The variable and expression must be the same floating-point or integer type, ... +// + +void __operator += (inout float a, const float b) { + __asm float_add a, b; +} + +void __operator -= (inout float a, const float b) { + a += -b; +} + +void __operator *= (inout float a, const float b) { + __asm float_multiply a, b; +} + +void __operator /= (inout float a, const float b) { + __asm float_divide a, b; +} + +void __operator += (inout int x, const int y) { + __asm int_add x, y; +} + +void __operator -= (inout int x, const int y) { + x += -y; +} + +void __operator *= (inout int x, const int y) { + __asm int_multiply x, y; +} + +void __operator /= (inout int x, const int y) { + __asm int_divide x, y; +} + +void __operator += (inout vec2 v, const vec2 u) { + v.x += u.x, v.y += u.y; +} + +void __operator -= (inout vec2 v, const vec2 u) { + v.x -= u.x, v.y -= u.y; +} + +void __operator *= (inout vec2 v, const vec2 u) { + v.x *= u.x, v.y *= u.y; +} + +void __operator /= (inout vec2 v, const vec2 u) { + v.x /= u.x, v.y /= u.y; +} + +void __operator += (inout vec3 v, const vec3 u) { + v.x += u.x, v.y += u.y, v.z += u.z; +} + +void __operator -= (inout vec3 v, const vec3 u) { + v.x -= u.x, v.y -= u.y, v.z -= u.z; +} + +void __operator *= (inout vec3 v, const vec3 u) { + v.x *= u.x, v.y *= u.y, v.z *= u.z; +} + +void __operator /= (inout vec3 v, const vec3 u) { + v.x /= u.x, v.y /= u.y, v.z /= u.z; +} + +void __operator += (inout vec4 v, const vec4 u) { + v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; +} + +void __operator -= (inout vec4 v, const vec4 u) { + v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; +} + +void __operator *= (inout vec4 v, const vec4 u) { + v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; +} + +void __operator /= (inout vec4 v, const vec4 u) { + v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; +} + +void __operator += (inout ivec2 v, const ivec2 u) { + v.x += u.x, v.y += u.y; +} + +void __operator -= (inout ivec2 v, const ivec2 u) { + v.x -= u.x, v.y -= u.y; +} + +void __operator *= (inout ivec2 v, const ivec2 u) { + v.x *= u.x, v.y *= u.y; +} + +void __operator /= (inout ivec2 v, const ivec2 u) { + v.x /= u.x, v.y /= u.y; +} + +void __operator += (inout ivec3 v, const ivec3 u) { + v.x += u.x, v.y += u.y, v.z += u.z; +} + +void __operator -= (inout ivec3 v, const ivec3 u) { + v.x -= u.x, v.y -= u.y, v.z -= u.z; +} + +void __operator *= (inout ivec3 v, const ivec3 u) { + v.x *= u.x, v.y *= u.y, v.z *= u.z; +} + +void __operator /= (inout ivec3 v, const ivec3 u) { + v.x /= u.x, v.y /= u.y, v.z /= u.z; +} + +void __operator += (inout ivec4 v, const ivec4 u) { + v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; +} + +void __operator -= (inout ivec4 v, const ivec4 u) { + v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; +} + +void __operator *= (inout ivec4 v, const ivec4 u) { + v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; +} + +void __operator /= (inout ivec4 v, const ivec4 u) { + v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; +} + +void __operator += (inout mat2 m, const mat2 n) { + m[0] += n[0], m[1] += n[1]; +} + +void __operator -= (inout mat2 v, const mat2 n) { + m[0] -= n[0], m[1] -= n[1]; +} + +void __operator *= (inout mat2 m, const mat2 n) { + m = m * n; +} + +void __operator /= (inout mat2 m, const mat2 n) { + m[0] /= n[0], m[1] /= n[1]; +} + +void __operator += (inout mat3 m, const mat3 n) { + m[0] += n[0], m[1] += n[1], m[2] += n[2]; +} + +void __operator -= (inout mat3 m, const mat3 n) { + m[0] -= n[0], m[1] -= n[1], m[2] -= n[2]; +} + +void __operator *= (inout mat3 m, const mat3 n) { + m = m * n; +} + +void __operator /= (inout mat3 m, const mat3 n) { + m[0] /= n[0], m[1] /= n[1], m[2] /= n[2]; +} + +void __operator += (inout mat4 m, const mat4 n) { + m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3]; +} + +void __operator -= (inout mat4 m, const mat4 n) { + m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3]; +} + +void __operator *= (inout mat4 m, const mat4 n) { + m = m * n; +} + +void __operator /= (inout mat4 m, const mat4 n) { + m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3]; +} + +// +// ... or if the expression is a float, then the variable can be floating-point, a vector, or +// a matrix, ... +// + +void __operator += (inout vec2 v, const float a) { + v.x += a, v.y += a; +} + +void __operator -= (inout vec2 v, const float a) { + v.x -= a, v.y -= a; +} + +void __operator *= (inout vec2 v, const float a) { + v.x *= a, v.y *= a; +} + +void __operator /= (inout vec2 v, const float a) { + v.x /= a, v.y /= a; +} + +void __operator += (inout vec3 v, const float a) { + v.x += a, v.y += a, v.z += a; +} + +void __operator -= (inout vec3 v, const float a) { + v.x -= a, v.y -= a, v.z -= a; +} + +void __operator *= (inout vec3 v, const float a) { + v.x *= a, v.y *= a, v.z *= a; +} + +void __operator /= (inout vec3 v, const float a) { + v.x /= a, v.y /= a, v.z /= a; +} + +void __operator += (inout vec4 v, const float a) { + v.x += a, v.y += a, v.z += a, v.w += a; +} + +void __operator -= (inout vec4 v, const float a) { + v.x -= a, v.y -= a, v.z -= a, v.w -= a; +} + +void __operator *= (inout vec4 v, const float a) { + v.x *= a, v.y *= a, v.z *= a, v.w *= a; +} + +void __operator /= (inout vec4 v, const float a) { + v.x /= a, v.y /= a, v.z /= a, v.w /= a; +} + +void __operator += (inout mat2 m, const float a) { + m[0] += a, m[1] += a; +} + +void __operator -= (inout mat2 m, const float a) { + m[0] -= a, m[1] -= a; +} + +void __operator *= (inout mat2 m, const float a) { + m[0] *= a, m[1] *= a; +} + +void __operator /= (inout mat2 m, const float a) { + m[0] /= a, m[1] /= a; +} + +void __operator += (inout mat3 m, const float a) { + m[0] += a, m[1] += a, m[2] += a; +} + +void __operator -= (inout mat3 m, const float a) { + m[0] -= a, m[1] -= a, m[2] -= a; +} + +void __operator *= (inout mat3 m, const float a) { + m[0] *= a, m[1] *= a, m[2] *= a; +} + +void __operator /= (inout mat3 m, const float a) { + m[0] /= a, m[1] /= a, m[2] /= a; +} + +void __operator += (inout mat4 m, const float a) { + m[0] += a, m[1] += a, m[2] += a, m[3] += a; +} + +void __operator -= (inout mat4 m, const float a) { + m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a; +} + +void __operator *= (inout mat4 m, const float a) { + m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a; +} + +void __operator /= (inout mat4 m, const float a) { + m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a; +} + +// +// ... or if the operation is multiply into (*=), then the variable can be a vector and the +// expression can be a matrix of matching size. +// + +void __operator *= (inout vec2 v, const mat2 m) { + v = v * m; +} + +void __operator *= (inout vec3 v, const mat3 m) { + v = v * m; +} + +void __operator *= (inout vec4 v, const mat4 m) { + v = v * m; +} + +// +// 5.9 Expressions +// +// Expressions in the shading language include the following: +// + +// +// • The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that +// operate on integer and floating-point typed expressions (including vectors and matrices). +// The two operands must be the same type, (...) Additionally, for multiply (*) (...) If one +// operand is scalar and the other is a vector or matrix, the scalar is applied component-wise +// to the vector or matrix, resulting in the same type as the vector or matrix. +// + +float __operator + (const float a, const float b) { + float c = a; + return c += b; +} + +float __operator - (const float a, const float b) { + return a + -b; +} + +float __operator * (const float a, const float b) { + float c = a; + return c *= b; +} + +float __operator / (const float a, const float b) { + float c = a; + return c /= b; +} + +int __operator + (const int a, const int b) { + int c = a; + return c += b; +} + +int __operator - (const int x, const int y) { + return x + -y; +} + +int __operator * (const int x, const int y) { + int z = x; + return z *= y; +} + +int __operator / (const int x, const int y) { + int z = x; + return z /= y; +} + +vec2 __operator + (const vec2 v, const vec2 u) { + return vec2 (v.x + u.x, v.y + u.y); +} + +vec2 __operator - (const vec2 v, const vec2 u) { + return vec2 (v.x - u.x, v.y - u.y); +} + +vec3 __operator + (const vec3 v, const vec3 u) { + return vec3 (v.x + u.x, v.y + u.y, v.z + u.z); +} + +vec3 __operator - (const vec3 v, const vec3 u) { + return vec3 (v.x - u.x, v.y - u.y, v.z - u.z); +} + +vec4 __operator + (const vec4 v, const vec4 u) { + return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); +} + +vec4 __operator - (const vec4 v, const vec4 u) { + return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); +} + +ivec2 __operator + (const ivec2 v, const ivec2 u) { + return ivec2 (v.x + u.x, v.y + u.y); +} + +ivec2 __operator - (const ivec2 v, const ivec2 u) { + return ivec2 (v.x - u.x, v.y - u.y); +} + +ivec3 __operator + (const ivec3 v, const ivec3 u) { + return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z); +} + +ivec3 __operator - (const ivec3 v, const ivec3 u) { + return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z); +} + +ivec4 __operator + (const ivec4 v, const ivec4 u) { + return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); +} + +ivec4 __operator - (const ivec4 v, const ivec4 u) { + return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); +} + +mat2 __operator + (const mat2 m, const mat2 n) { + return mat2 (m[0] + n[0], m[1] + n[1]); +} + +mat2 __operator - (const mat2 m, const mat2 n) { + return mat2 (m[0] - n[0], m[1] - n[1]); +} + +mat3 __operator + (const mat3 m, const mat3 n) { + return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]); +} + +mat3 __operator - (const mat3 m, const mat3 n) { + return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]); +} + +mat4 __operator + (const mat4 m, const mat4 n) { + return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]); +} + +mat4 __operator - (const mat4 m, const mat4 n) { + return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]); +} + +// +// ... or one can be a scalar float and the other a float vector or matrix, ... +// + +vec2 __operator + (const float a, const vec2 u) { + return vec2 (a + u.x, a + u.y); +} + +vec2 __operator + (const vec2 v, const float b) { + return vec2 (v.x + b, v.y + b); +} + +vec2 __operator - (const float a, const vec2 u) { + return vec2 (a - u.x, a - u.y); +} + +vec2 __operator - (const vec2 v, const float b) { + return vec2 (v.x - b, v.y - b); +} + +vec2 __operator * (const float a, const vec2 u) { + return vec2 (a * u.x, a * u.y); +} + +vec2 __operator * (const vec2 v, const float b) { + return vec2 (v.x * b, v.y * b); +} + +vec2 __operator / (const float a, const vec2 u) { + return vec2 (a / u.x, a / u.y); +} + +vec2 __operator / (const vec2 v, const float b) { + return vec2 (v.x / b, v.y / b); +} + +vec3 __operator + (const float a, const vec3 u) { + return vec3 (a + u.x, a + u.y, a + u.z); +} + +vec3 __operator + (const vec3 v, const float b) { + return vec3 (v.x + b, v.y + b, v.z + b); +} + +vec3 __operator - (const float a, const vec3 u) { + return vec3 (a - u.x, a - u.y, a - u.z); +} + +vec3 __operator - (const vec3 v, const float b) { + return vec3 (v.x - b, v.y - b, v.z - b); +} + +vec3 __operator * (const float a, const vec3 u) { + return vec3 (a * u.x, a * u.y, a * u.z); +} + +vec3 __operator * (const vec3 v, const float b) { + return vec3 (v.x * b, v.y * b, v.z * b); +} + +vec3 __operator / (const float a, const vec3 u) { + return vec3 (a / u.x, a / u.y, a / u.z); +} + +vec3 __operator / (const vec3 v, const float b) { + return vec3 (v.x / b, v.y / b, v.z / b); +} + +vec4 __operator + (const float a, const vec4 u) { + return vec4 (a + u.x, a + u.y, a + u.z, a + u.w); +} + +vec4 __operator + (const vec4 v, const float b) { + return vec4 (v.x + b, v.y + b, v.z + b, v.w + b); +} + +vec4 __operator - (const float a, const vec4 u) { + return vec4 (a - u.x, a - u.y, a - u.z, a - u.w); +} + +vec4 __operator - (const vec4 v, const float b) { + return vec4 (v.x - b, v.y - b, v.z - b, v.w - b); +} + +vec4 __operator * (const float a, const vec4 u) { + return vec4 (a * u.x, a * u.y, a * u.z, a * u.w); +} + +vec4 __operator * (const vec4 v, const float b) { + return vec4 (v.x * b, v.y * b, v.z * b, v.w * b); +} + +vec4 __operator / (const float a, const vec4 u) { + return vec4 (a / u.x, a / u.y, a / u.z, a / u.w); +} + +vec4 __operator / (const vec4 v, const float b) { + return vec4 (v.x / b, v.y / b, v.z / b, v.w / b); +} + +mat2 __operator + (const float a, const mat2 n) { + return mat2 (a + n[0], a + n[1]); +} + +mat2 __operator + (const mat2 m, const float b) { + return mat2 (m[0] + b, m[1] + b); +} + +mat2 __operator - (const float a, const mat2 n) { + return mat2 (a - n[0], a - n[1]); +} + +mat2 __operator - (const mat2 m, const float b) { + return mat2 (m[0] - b, m[1] - b); +} + +mat2 __operator * (const float a, const mat2 n) { + return mat2 (a * n[0], a * n[1]); +} + +mat2 __operator * (const mat2 m, const float b) { + return mat2 (m[0] * b, m[1] * b); +} + +mat2 __operator / (const float a, const mat2 n) { + return mat2 (a / n[0], a / n[1]); +} + +mat2 __operator / (const mat2 m, const float b) { + return mat2 (m[0] / b, m[1] / b); +} + +mat3 __operator + (const float a, const mat3 n) { + return mat3 (a + n[0], a + n[1], a + n[2]); +} + +mat3 __operator + (const mat3 m, const float b) { + return mat3 (m[0] + b, m[1] + b, m[2] + b); +} + +mat3 __operator - (const float a, const mat3 n) { + return mat3 (a - n[0], a - n[1], a - n[2]); +} + +mat3 __operator - (const mat3 m, const float b) { + return mat3 (m[0] - b, m[1] - b, m[2] - b); +} + +mat3 __operator * (const float a, const mat3 n) { + return mat3 (a * n[0], a * n[1], a * n[2]); +} + +mat3 __operator * (const mat3 m, const float b) { + return mat3 (m[0] * b, m[1] * b, m[2] * b); +} + +mat3 __operator / (const float a, const mat3 n) { + return mat3 (a / n[0], a / n[1], a / n[2]); +} + +mat3 __operator / (const mat3 m, const float b) { + return mat3 (m[0] / b, m[1] / b, m[2] / b); +} + +mat4 __operator + (const float a, const mat4 n) { + return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]); +} + +mat4 __operator + (const mat4 m, const float b) { + return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b); +} + +mat4 __operator - (const float a, const mat4 n) { + return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]); +} + +mat4 __operator - (const mat4 m, const float b) { + return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b); +} + +mat4 __operator * (const float a, const mat4 n) { + return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]); +} + +mat4 __operator * (const mat4 m, const float b) { + return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b); +} + +mat4 __operator / (const float a, const mat4 n) { + return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]); +} + +mat4 __operator / (const mat4 m, const float b) { + return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b); +} + +// +// ... or one can be a scalar integer and the other an integer vector. +// + +ivec2 __operator + (const int a, const ivec2 u) { + return ivec2 (a + u.x, a + u.y); +} + +ivec2 __operator + (const ivec2 v, const int b) { + return ivec2 (v.x + b, v.y + b); +} + +ivec2 __operator - (const int a, const ivec2 u) { + return ivec2 (a - u.x, a - u.y); +} + +ivec2 __operator - (const ivec2 v, const int b) { + return ivec2 (v.x - b, v.y - b); +} + +ivec2 __operator * (const int a, const ivec2 u) { + return ivec2 (a * u.x, a * u.y); +} + +ivec2 __operator * (const ivec2 v, const int b) { + return ivec2 (v.x * b, v.y * b); +} + +ivec2 __operator / (const int a, const ivec2 u) { + return ivec2 (a / u.x, a / u.y); +} + +ivec2 __operator / (const ivec2 v, const int b) { + return ivec2 (v.x / b, v.y / b); +} + +ivec3 __operator + (const int a, const ivec3 u) { + return ivec3 (a + u.x, a + u.y, a + u.z); +} + +ivec3 __operator + (const ivec3 v, const int b) { + return ivec3 (v.x + b, v.y + b, v.z + b); +} + +ivec3 __operator - (const int a, const ivec3 u) { + return ivec3 (a - u.x, a - u.y, a - u.z); +} + +ivec3 __operator - (const ivec3 v, const int b) { + return ivec3 (v.x - b, v.y - b, v.z - b); +} + +ivec3 __operator * (const int a, const ivec3 u) { + return ivec3 (a * u.x, a * u.y, a * u.z); +} + +ivec3 __operator * (const ivec3 v, const int b) { + return ivec3 (v.x * b, v.y * b, v.z * b); +} + +ivec3 __operator / (const int a, const ivec3 u) { + return ivec3 (a / u.x, a / u.y, a / u.z); +} + +ivec3 __operator / (const ivec3 v, const int b) { + return ivec3 (v.x / b, v.y / b, v.z / b); +} + +ivec4 __operator + (const int a, const ivec4 u) { + return ivec4 (a + u.x, a + u.y, a + u.z, a + u.w); +} + +ivec4 __operator + (const ivec4 v, const int b) { + return ivec4 (v.x + b, v.y + b, v.z + b, v.w + b); +} + +ivec4 __operator - (const int a, const ivec4 u) { + return ivec4 (a - u.x, a - u.y, a - u.z, a - u.w); +} + +ivec4 __operator - (const ivec4 v, const int b) { + return ivec4 (v.x - b, v.y - b, v.z - b, v.w - b); +} + +ivec4 __operator * (const int a, const ivec4 u) { + return ivec4 (a * u.x, a * u.y, a * u.z, a * u.w); +} + +ivec4 __operator * (const ivec4 v, const int b) { + return ivec4 (v.x * b, v.y * b, v.z * b, v.w * b); +} + +ivec4 __operator / (const int a, const ivec4 u) { + return ivec4 (a / u.x, a / u.y, a / u.z, a / u.w); +} + +ivec4 __operator / (const ivec4 v, const int b) { + return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b); +} + +// +// Additionally, for multiply (*) one can be a vector and the other a matrix with the same +// dimensional size of the vector. These result in the same fundamental type (integer or float) +// as the expressions they operate on. +// +// [When:] +// • the left argument is a floating-point vector and the right is a matrix with a compatible +// dimension in which case the * operator will do a row vector matrix multiplication. +// • the left argument is a matrix and the right is a floating-point vector with a compatible +// dimension in which case the * operator will do a column vector matrix multiplication. +// + +vec2 __operator * (const mat2 m, const vec2 v) { + return vec2 ( + v.x * m[0].x + v.y * m[1].x, + v.x * m[0].y + v.y * m[1].y + ); +} + +vec2 __operator * (const vec2 v, const mat2 m) { + return vec2 ( + v.x * m[0].x + v.y * m[0].y, + v.x * m[1].x + v.y * m[1].y + ); +} + +vec3 __operator * (const mat3 m, const vec3 v) { + return vec3 ( + v.x * m[0].x + v.y * m[1].x + v.z * m[2].x, + v.x * m[0].y + v.y * m[1].y + v.z * m[2].y, + v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + ); +} + +vec3 __operator * (const vec3 v, const mat3 m) { + return vec3 ( + v.x * m[0].x + v.y * m[0].y + v.z * m[0].z, + v.x * m[1].x + v.y * m[1].y + v.z * m[1].z, + v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + ); +} + +vec4 __operator * (const mat4 m, const vec4 v) { + return vec4 ( + v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x, + v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y, + v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z, + v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w + ); +} + +vec4 __operator * (const vec4 v, const mat4 m) { + return vec4 ( + v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w, + v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w, + v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w, + v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w + ); +} + +// +// Multiply (*) applied to two vectors yields a component-wise multiply. +// + +vec2 __operator * (const vec2 v, const vec2 u) { + return vec2 (v.x * u.x, v.y * u.y); +} + +vec3 __operator * (const vec3 v, const vec3 u) { + return vec3 (v.x * u.x, v.y * u.y, v.z * u.z); +} + +vec4 __operator * (const vec4 v, const vec4 u) { + return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); +} + +ivec2 __operator * (const ivec2 v, const ivec2 u) { + return ivec2 (v.x * u.x, v.y * u.y); +} + +ivec3 __operator * (const ivec3 v, const ivec3 u) { + return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z); +} + +ivec4 __operator * (const ivec4 v, const ivec4 u) { + return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); +} + +// +// Dividing by zero does not cause an exception but does result in an unspecified value. +// + +vec2 __operator / (const vec2 v, const vec2 u) { + return vec2 (v.x / u.x, v.y / u.y); +} + +vec3 __operator / (const vec3 v, const vec3 u) { + return vec3 (v.x / u.x, v.y / u.y, v.z / u.z); +} + +vec4 __operator / (const vec4 v, const vec4 u) { + return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); +} + +ivec2 __operator / (const ivec2 v, const ivec2 u) { + return ivec2 (v.x / u.x, v.y / u.y); +} + +ivec3 __operator / (const ivec3 v, const ivec3 u) { + return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z); +} + +ivec4 __operator / (const ivec4 v, const ivec4 u) { + return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); +} + +mat2 __operator / (const mat2 m, const mat2 n) { + return mat2 (m[0] / n[0], m[1] / n[1]); +} + +mat3 __operator / (const mat3 m, const mat3 n) { + return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]); +} + +mat4 __operator / (const mat4 m, const mat4 n) { + return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]); +} + +// +// Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not +// a component-wise multiply. +// + +mat2 __operator * (const mat2 m, const mat2 n) { + return mat2 (m * n[0], m * n[1]); +} + +mat3 __operator * (const mat3 m, const mat3 n) { + return mat3 (m * n[0], m * n[1], m * n[2]); +} + +mat4 __operator * (const mat4 m, const mat4 n) { + return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]); +} + +// +// • The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and +// ++) that operate on integer or floating-point values (including vectors and matrices). These +// result with the same type they operated on. For post- and pre-increment and decrement, the +// expression must be one that could be assigned to (an l-value). Pre-increment and predecrement +// add or subtract 1 or 1.0 to the contents of the expression they operate on, and the +// value of the pre-increment or pre-decrement expression is the resulting value of that +// modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to +// the contents of the expression they operate on, but the resulting expression has the +// expression’s value before the post-increment or post-decrement was executed. +// +// [NOTE: postfix increment and decrement operators take additional dummy int parameter to +// distinguish their prototypes from prefix ones.] +// + +float __operator - (const float a) { + float c = a; + __asm float_negate c; + return c; +} + +int __operator - (const int a) { + int c = a; + __asm int_negate c; + return c; +} + +vec2 __operator - (const vec2 v) { + return vec2 (-v.x, -v.y); +} + +vec3 __operator - (const vec3 v) { + return vec3 (-v.x, -v.y, -v.z); +} + +vec4 __operator - (const vec4 v) { + return vec4 (-v.x, -v.y, -v.z, -v.w); +} + +ivec2 __operator - (const ivec2 v) { + return ivec2 (-v.x, -v.y); +} + +ivec3 __operator - (const ivec3 v) { + return ivec3 (-v.x, -v.y, -v.z); +} + +ivec4 __operator - (const ivec4 v) { + return ivec4 (-v.x, -v.y, -v.z, -v.w); +} + +mat2 __operator - (const mat2 m) { + return mat2 (-m[0], -m[1]); +} + +mat3 __operator - (const mat3 m) { + return mat3 (-m[0], -m[1], -m[2]); +} + +mat4 __operator - (const mat4 m) { + return mat4 (-m[0], -m[1], -m[2], -m[3]); +} + +void __operator -- (inout float a) { + a -= 1.0; +} + +void __operator -- (inout int a) { + a -= 1; +} + +void __operator -- (inout vec2 v) { + --v.x, --v.y; +} + +void __operator -- (inout vec3 v) { + --v.x, --v.y, --v.z; +} + +void __operator -- (inout vec4 v) { + --v.x, --v.y, --v.z, --v.w; +} + +void __operator -- (inout ivec2 v) { + --v.x, --v.y; +} + +void __operator -- (inout ivec3 v) { + --v.x, --v.y, --v.z; +} + +void __operator -- (inout ivec4 v) { + --v.x, --v.y, --v.z, --v.w; +} + +void __operator -- (inout mat2 m) { + --m[0], --m[1]; +} + +void __operator -- (inout mat3 m) { + --m[0], --m[1], --m[2]; +} + +void __operator -- (inout mat4 m) { + --m[0], --m[1], --m[2], --m[3]; +} + +void __operator ++ (inout float a) { + a += 1.0; +} + +void __operator ++ (inout int a) { + a += 1; +} + +void __operator ++ (inout vec2 v) { + ++v.x, ++v.y; +} + +void __operator ++ (inout vec3 v) { + ++v.x, ++v.y, ++v.z; +} + +void __operator ++ (inout vec4 v) { + ++v.x, ++v.y, ++v.z, ++v.w; +} + +void __operator ++ (inout ivec2 v) { + ++v.x, ++v.y; +} + +void __operator ++ (inout ivec3 v) { + ++v.x, ++v.y, ++v.z; +} + +void __operator ++ (inout ivec4 v) { + ++v.x, ++v.y, ++v.z, ++v.w; +} + +void __operator ++ (inout mat2 m) { + ++m[0], ++m[1]; +} + +void __operator ++ (inout mat3 m) { + ++m[0], ++m[1], ++m[2]; +} + +void __operator ++ (inout mat4 m) { + ++m[0], ++m[1], ++m[2], ++m[3]; +} + +float __operator -- (inout float a, const int) { + const float c = a; + --a; + return c; +} + +int __operator -- (inout int a, const int) { + const int c = a; + --a; + return c; +} + +vec2 __operator -- (inout vec2 v, const int) { + return vec2 (v.x--, v.y--); +} + +vec3 __operator -- (inout vec3 v, const int) { + return vec3 (v.x--, v.y--, v.z--); +} + +vec4 __operator -- (inout vec4 v, const int) { + return vec4 (v.x--, v.y--, v.z--, v.w--); +} + +ivec2 __operator -- (inout ivec2 v, const int) { + return ivec2 (v.x--, v.y--); +} + +ivec3 __operator -- (inout ivec3 v, const int) { + return ivec3 (v.x--, v.y--, v.z--); +} + +ivec4 __operator -- (inout ivec4 v, const int) { + return ivec4 (v.x--, v.y--, v.z--, v.w--); +} + +mat2 __operator -- (inout mat2 m, const int) { + return mat2 (m[0]--, m[1]--); +} + +mat3 __operator -- (inout mat3 m, const int) { + return mat3 (m[0]--, m[1]--, m[2]--); +} + +mat4 __operator -- (inout mat4 m, const int) { + return mat4 (m[0]--, m[1]--, m[2]--, m[3]--); +} + +float __operator ++ (inout float a, const int) { + const float c = a; + ++a; + return c; +} + +int __operator ++ (inout int a, const int) { + const int c = a; + ++a; + return c; +} + +vec2 __operator ++ (inout vec2 v, const int) { + return vec2 (v.x++, v.y++); +} + +vec3 __operator ++ (inout vec3 v, const int) { + return vec3 (v.x++, v.y++, v.z++); +} + +vec4 __operator ++ (inout vec4 v, const int) { + return vec4 (v.x++, v.y++, v.z++, v.w++); +} + +ivec2 __operator ++ (inout ivec2 v, const int) { + return ivec2 (v.x++, v.y++); +} + +ivec3 __operator ++ (inout ivec3 v, const int) { + return ivec3 (v.x++, v.y++, v.z++); +} + +ivec4 __operator ++ (inout ivec4 v, const int) { + return ivec4 (v.x++, v.y++, v.z++, v.w++); +} + +mat2 __operator ++ (inout mat2 m, const int) { + return mat2 (m[0]++, m[1]++); +} + +mat3 __operator ++ (inout mat3 m, const int) { + return mat3 (m[0]++, m[1]++, m[2]++); +} + +mat4 __operator ++ (inout mat4 m, const int) { + return mat4 (m[0]++, m[1]++, m[2]++, m[3]++); +} + +// +// • The relational operators greater than (>), less than (<), greater than or equal (>=), and less +// than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The +// result is scalar Boolean. The operands’ types must match. To do component-wise +// comparisons on vectors, use the built-in functions lessThan, lessThanEqual, +// greaterThan, and greaterThanEqual. +// + +bool __operator < (const float a, const float b) { + bool c; + __asm float_less c, a, b; + return c; +} + +bool __operator < (const int a, const int b) { + bool c; + __asm int_less c, a, b; + return c; +} + +bool __operator > (const float a, const float b) { + return b < a; +} + +bool __operator > (const int a, const int b) { + return b < a; +} + +bool __operator >= (const float a, const float b) { + return a > b || a == b; +} + +bool __operator >= (const int a, const int b) { + return a > b || a == b; +} + +bool __operator <= (const float a, const float b) { + return a < b || a == b; +} + +bool __operator <= (const int a, const int b) { + return a < b || a == b; +} + +// +// • The equality operators equal (==), and not equal (!=) operate on all types except arrays. +// They result in a scalar Boolean. For vectors, matrices, and structures, all components of the +// operands must be equal for the operands to be considered equal. To get component-wise +// equality results for vectors, use the built-in functions equal and notEqual. +// + +bool __operator == (const float a, const float b) { + bool c; + __asm float_equal c, a, b; + return c; +} + +bool __operator == (const int a, const int b) { + bool c; + __asm int_equal c, a, b; + return c; +} + +bool __operator == (const bool a, const bool b) { + bool c; + __asm bool_equal c, a, b; + return c; +} + +bool __operator == (const vec2 v, const vec2 u) { + return v.x == u.x && v.y == u.y; +} + +bool __operator == (const vec3 v, const vec3 u) { + return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const vec4 v, const vec4 u) { + return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const ivec2 v, const ivec2 u) { + return v.x == u.x && v.y == u.y; +} + +bool __operator == (const ivec3 v, const ivec3 u) { + return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const ivec4 v, const ivec4 u) { + return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const bvec2 v, const bvec2 u) { + return v.x == u.x && v.y == u.y; +} + +bool __operator == (const bvec3 v, const bvec3 u) { + return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const bvec4 v, const bvec4 u) { + return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const mat2 m, const mat2 n) { + return m[0] == n[0] && m[1] == n[1]; +} + +bool __operator == (const mat3 m, const mat3 n) { + return m[0] == n[0] && m[1] == n[1] && m[2] == n[2]; +} + +bool __operator == (const mat4 m, const mat4 n) { + return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3]; +} + +bool __operator != (const float a, const float b) { + return !(a == b); +} + +bool __operator != (const int a, const int b) { + return !(a == b); +} + +bool __operator != (const bool a, const bool b) { + return !(a == b); +} + +bool __operator != (const vec2 v, const vec2 u) { + return v.x != u.x || v.y != u.y; +} + +bool __operator != (const vec3 v, const vec3 u) { + return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const vec4 v, const vec4 u) { + return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const ivec2 v, const ivec2 u) { + return v.x != u.x || v.y != u.y; +} + +bool __operator != (const ivec3 v, const ivec3 u) { + return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const ivec4 v, const ivec4 u) { + return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const bvec2 v, const bvec2 u) { + return v.x != u.x || v.y != u.y; +} + +bool __operator != (const bvec3 v, const bvec3 u) { + return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const bvec4 v, const bvec4 u) { + return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const mat2 m, const mat2 n) { + return m[0] != n[0] || m[1] != n[1]; +} + +bool __operator != (const mat3 m, const mat3 n) { + return m[0] != n[0] || m[1] != n[1] || m[2] != n[2]; +} + +bool __operator != (const mat4 m, const mat4 n) { + return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3]; +} + +// +// • The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only +// on two Boolean expressions and result in a Boolean expression. And (&&) will only +// evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will +// only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or +// (^^) will always evaluate both operands. +// + +bool __operator ^^ (const bool a, const bool b) { + return a != b; +} + +// +// [These operators are handled internally by the compiler:] +// +// bool __operator && (bool a, bool b) { +// return a ? b : false; +// } +// bool __operator || (bool a, bool b) { +// return a ? true : b; +// } +// + +// +// • The logical unary operator not (!). It operates only on a Boolean expression and results in a +// Boolean expression. To operate on a vector, use the built-in function not. +// + +bool __operator ! (const bool a) { + return a == false; +} + |