diff options
| -rwxr-xr-x | src/mesa/shader/slang_core.gc | 3405 | 
1 files changed, 1751 insertions, 1654 deletions
diff --git a/src/mesa/shader/slang_core.gc b/src/mesa/shader/slang_core.gc index 1b69510d64..3a18673ed6 100755 --- a/src/mesa/shader/slang_core.gc +++ b/src/mesa/shader/slang_core.gc @@ -1,1654 +1,1751 @@ -
 -// 
 -// This file defines nearly all constructors and operators for built-in data types, using
 -// extended language syntax. In general, compiler treats constructors and operators as
 -// ordinary functions with some exceptions. For example, the language does not allow
 -// functions to be called in constant expressions - here the exception is made to allow it.
 -// 
 -// Each implementation provides its own version of this file. Each implementation can define
 -// the required set of operators and constructors in its own fashion.
 -// 
 -// The extended language syntax is only present when compiling this file. It is implicitly
 -// included at the very beginning of the compiled shader, so no built-in functions can be
 -// used.
 -// 
 -// To communicate with the implementation, a special extended "__asm" keyword is used, followed
 -// by an instruction name (any valid identifier), a destination variable identifier and a
 -// a list of zero or more source variable identifiers. A variable identifier is a variable name
 -// declared earlier in the code (as a function parameter, local or global variable).
 -// An instruction name designates an instruction that must be exported by the implementation.
 -// Each instruction receives data from destination and source variable identifiers and returns
 -// data in the destination variable identifier.
 -// 
 -// It is up to the implementation how to define a particular operator or constructor. If it is
 -// expected to being used rarely, it can be defined in terms of other operators and constructors,
 -// for example:
 -// 
 -// ivec2 ____operator + (const ivec2 x, const ivec2 y) {
 -//    return ivec2 (x[0] + y[0], x[1] + y[1]);
 -// }
 -// 
 -// If a particular operator or constructor is expected to be used very often or is an atomic
 -// operation (that is, an operation that cannot be expressed in terms of other operations or
 -// would create a dependency cycle) it must be defined using one or more __asm constructs.
 -// 
 -// Each implementation must define constructors for all scalar types (bool, float, int).
 -// There are 9 scalar-to-scalar constructors (including identity constructors). However,
 -// since the language introduces special constructors (like matrix constructor with a single
 -// scalar value), implementations must also implement these cases.
 -// The compiler provides the following algorithm when resolving a constructor:
 -// - try to find a constructor with a prototype matching ours,
 -// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error,
 -// - if a constructor is found, execute it and return,
 -// - count the size of the constructor parameter list - if it is less than the size of
 -//   our constructor's type, raise an error,
 -// - for each parameter in the list do a recursive constructor matching for appropriate
 -//   scalar fields in the constructed variable,
 -// 
 -// Each implementation must also define a set of operators that deal with built-in data types.
 -// There are four kinds of operators:
 -// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence)
 -//    and "?:" (selection).
 -// 2) Operators that are implemented by the compiler by expressing it in terms of other operators:
 -//    - "." (field selection) - translated to subscript access,
 -//    - "&&" (logical and) - translated to "<left_expr> ? <right_expr> : false",
 -//    - "||" (logical or) - translated to "<left_expr> ? true : <right_expr>",
 -// 3) Operators that can be defined by the implementation and if the required prototype is not
 -//    found, standard behaviour is used:
 -//    - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one;
 -//      note that at least operators for scalar data types must be defined by the implementation
 -//      to get it work,
 -// 4) All other operators not mentioned above. If no required prototype is found, an error is
 -//    raised. An implementation must follow the language specification to provide all valid
 -//    operator prototypes.
 -// 
 -
 -// 
 -// TODO:
 -//   - do something with [] operator: leave it in compiler or move it here,
 -//   - emulate bools and ints with floats (this should simplify target implementation),
 -//   - are vec*mat and mat*vec definitions correct? is the list complete?
 -// 
 -
 -// 
 -// From Shader Spec, ver. 1.051
 -// 
 -
 -// 
 -// 5.4.1 Conversion and Scalar Constructors
 -// 
 -
 -// 
 -// When constructors are used to convert a float to an int, the fractional part of the
 -// floating-point value is dropped.
 -// 
 -
 -int __constructor (const float _f) {
 -    int _i;
 -    __asm float_to_int _i, _f;
 -    return _i;
 -}
 -
 -// 
 -// When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to
 -// false, and nonzero values are converted to true.
 -// 
 -
 -bool __constructor (const int _i) {
 -    return _i != 0;
 -}
 -
 -bool __constructor (const float _f) {
 -    return _f != 0.0;
 -}
 -
 -// 
 -// When a constructor is used to convert a bool to an int or float, false is converted to 0 or
 -// 0.0, and true is converted to 1 or 1.0.
 -// 
 -
 -int __constructor (const bool _b) {
 -    return _b ? 1 : 0;
 -}
 -
 -float __constructor (const bool _b) {
 -    return _b ? 1.0 : 0.0;
 -}
 -
 -// 
 -// Int to float constructor.
 -// 
 -
 -float __constructor (const int _i) {
 -    float _f;
 -    __asm int_to_float _f, _i;
 -    return _f;
 -}
 -
 -// 
 -// Identity constructors, like float(float) are also legal, but of little use.
 -// 
 -
 -bool __constructor (const bool _b) {
 -    return _b;
 -}
 -
 -int __constructor (const int _i) {
 -    return _i;
 -}
 -
 -float __constructor (const float _f) {
 -    return _f;
 -}
 -
 -// 
 -// Scalar constructors with non-scalar parameters can be used to take the first element from
 -// a non-scalar. For example, the constructor float(vec3) will select the first component of the
 -// vec3 parameter.
 -// 
 -
 -// [These scalar conversions will be handled internally by the compiler.]
 -
 -// 
 -// 5.4.2 Vector and Matrix Constructors
 -// 
 -// Constructors can be used to create vectors or matrices from a set of scalars, vectors,
 -// or matrices. This includes the ability to shorten vectors or matrices.
 -// 
 -
 -// 
 -// If there is a single scalar parameter to a vector constructor, it is used to initialize all
 -// components of the constructed vector to that scalar’s value.
 -// 
 -// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic
 -// type of the object being constructed, the scalar construction rules (above) are used to convert
 -// the parameters.
 -// 
 -
 -vec2 __constructor (const float _f) {
 -    return vec2 (_f, _f);
 -}
 -
 -vec2 __constructor (const int _i) {
 -    return vec2 (_i, _i);
 -}
 -
 -vec2 __constructor (const bool _b) {
 -    return vec2 (_b, _b);
 -}
 -
 -vec3 __constructor (const float _f) {
 -    return vec3 (_f, _f, _f);
 -}
 -
 -vec3 __constructor (const int _i) {
 -    return vec3 (_i, _i, _i);
 -}
 -
 -vec3 __constructor (const bool _b) {
 -    return vec3 (_b, _b, _b);
 -}
 -
 -vec4 __constructor (const float _f) {
 -    return vec4 (_f, _f, _f, _f);
 -}
 -
 -vec4 __constructor (const int _i) {
 -    return vec4 (_i, _i, _i, _i);
 -}
 -
 -vec4 __constructor (const bool _b) {
 -    return vec4 (_b, _b, _b, _b);
 -}
 -
 -ivec2 __constructor (const int _i) {
 -    return ivec2 (_i, _i);
 -}
 -
 -ivec2 __constructor (const float _f) {
 -    return ivec2 (_f, _f);
 -}
 -
 -ivec2 __constructor (const bool _b) {
 -    return ivec2 (_b, _b);
 -}
 -
 -ivec3 __constructor (const int _i) {
 -    return ivec3 (_i, _i, _i);
 -}
 -
 -ivec3 __constructor (const float _f) {
 -    return ivec3 (_f, _f, _f);
 -}
 -
 -ivec3 __constructor (const bool _b) {
 -    return ivec3 (_b, _b, _b);
 -}
 -
 -ivec4 __constructor (const int _i) {
 -    return ivec4 (_i, _i, _i, _i);
 -}
 -
 -ivec4 __constructor (const float _f) {
 -    return ivec4 (_f, _f, _f, _f);
 -}
 -
 -ivec4 __constructor (const bool _b) {
 -    return ivec4 (_b, _b, _b, _b);
 -}
 -
 -bvec2 __constructor (const bool _b) {
 -    return bvec2 (_b, _b);
 -}
 -
 -bvec2 __constructor (const float _f) {
 -    return bvec2 (_f, _f);
 -}
 -
 -bvec2 __constructor (const int _i) {
 -    return bvec2 (_i, _i);
 -}
 -
 -bvec3 __constructor (const bool _b) {
 -    return bvec3 (_b, _b, _b);
 -}
 -
 -bvec3 __constructor (const float _f) {
 -    return bvec3 (_f, _f, _f);
 -}
 -
 -bvec3 __constructor (const int _i) {
 -    return bvec3 (_i, _i, _i);
 -}
 -
 -bvec4 __constructor (const bool _b) {
 -    return bvec4 (_b, _b, _b, _b);
 -}
 -
 -bvec4 __constructor (const float _f) {
 -    return bvec4 (_f, _f, _f, _f);
 -}
 -
 -bvec4 __constructor (const int _i) {
 -    return bvec4 (_i, _i, _i, _i);
 -}
 -
 -// 
 -// If there is a single scalar parameter to a matrix constructor, it is used to initialize all the
 -// components on the matrix’s diagonal, with the remaining components initialized to 0.0.
 -// (...) Matrices will be constructed in column major order.
 -// 
 -// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic
 -// type of the object being constructed, the scalar construction rules (above) are used to convert
 -// the parameters.
 -// 
 -
 -mat2 __constructor (const float _f) {
 -    return mat2 (
 -        _f, .0,
 -        .0, _f
 -    );
 -}
 -
 -mat2 __constructor (const int _i) {
 -    return mat2 (
 -        _i, .0,
 -        .0, _i
 -    );
 -}
 -
 -mat2 __constructor (const bool _b) {
 -    return mat2 (
 -        _b, .0,
 -        .0, _b
 -    );
 -}
 -
 -mat3 __constructor (const float _f) {
 -    return mat3 (
 -        _f, .0, .0,
 -        .0, _f, .0,
 -        .0, .0, _f
 -    );
 -}
 -
 -mat3 __constructor (const int _i) {
 -    return mat3 (
 -        _i, .0, .0,
 -        .0, _i, .0,
 -        .0, .0, _i
 -    );
 -}
 -
 -mat3 __constructor (const bool _b) {
 -    return mat3 (
 -        _b, .0, .0,
 -        .0, _b, .0,
 -        .0, .0, _b
 -    );
 -}
 -
 -mat4 __constructor (const float _f) {
 -    return mat4 (
 -        _f, .0, .0, .0,
 -        .0, _f, .0, .0,
 -        .0, .0, _f, .0,
 -        .0, .0, .0, _f
 -    );
 -}
 -
 -mat4 __constructor (const int _i) {
 -    return mat4 (
 -        _i, .0, .0, .0,
 -        .0, _i, .0, .0,
 -        .0, .0, _i, .0,
 -        .0, .0, .0, _i
 -    );
 -}
 -
 -mat4 __constructor (const bool _b) {
 -    return mat4 (
 -        _b, .0, .0, .0,
 -        .0, _b, .0, .0,
 -        .0, .0, _b, .0,
 -        .0, .0, .0, _b
 -    );
 -}
 -
 -// 
 -// 5.8 Assignments
 -// 
 -// Assignments of values to variable names are done with the assignment operator ( = ), like
 -// 
 -//   lvalue = expression
 -// 
 -// The assignment operator stores the value of expression into lvalue. It will compile only if
 -// expression and lvalue have the same type. All desired type-conversions must be specified
 -// explicitly via a constructor. Lvalues must be writable. Variables that are built-in types,
 -// entire structures, structure fields, l-values with the field selector ( . ) applied to select
 -// components or swizzles without repeated fields, and l-values dereferenced with the array
 -// subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions,
 -// non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot
 -// be l-values.
 -// 
 -// Expressions on the left of an assignment are evaluated before expressions on the right of the
 -// assignment.
 -// 
 -
 -void __operator = (inout float a, const float b) {
 -	__asm float_copy a, b;
 -}
 -
 -void __operator = (inout int a, const int b) {
 -	__asm int_copy a, b;
 -}
 -
 -void __operator = (inout bool a, const bool b) {
 -	__asm bool_copy a, b;
 -}
 -
 -void __operator = (inout vec2 v, const vec2 u) {
 -	v.x = u.x, v.y = u.y;
 -}
 -
 -void __operator = (inout vec3 v, const vec3 u) {
 -	v.x = u.x, v.y = u.y, v.z = u.z;
 -}
 -
 -void __operator = (inout vec4 v, const vec4 u) {
 -	v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
 -}
 -
 -void __operator = (inout ivec2 v, const ivec2 u) {
 -	v.x = u.x, v.y = u.y;
 -}
 -
 -void __operator = (inout ivec3 v, const ivec3 u) {
 -	v.x = u.x, v.y = u.y, v.z = u.z;
 -}
 -
 -void __operator = (inout ivec4 v, const ivec4 u) {
 -	v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
 -}
 -
 -void __operator = (inout bvec2 v, const bvec2 u) {
 -	v.x = u.x, v.y = u.y;
 -}
 -
 -void __operator = (inout bvec3 v, const bvec3 u) {
 -	v.x = u.x, v.y = u.y, v.z = u.z;
 -}
 -
 -void __operator = (inout bvec4 v, const bvec4 u) {
 -	v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
 -}
 -
 -void __operator = (inout mat2 m, const mat2 n) {
 -	m[0] = n[0], m[1] = n[1];
 -}
 -
 -void __operator = (inout mat3 m, const mat3 n) {
 -	m[0] = n[0], m[1] = n[1], m[2] = n[2];
 -}
 -
 -void __operator = (inout mat4 m, const mat4 n) {
 -	m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3];
 -}
 -
 -// 
 -// • The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide
 -//   into (/=). The variable and expression must be the same floating-point or integer type, ...
 -// 
 -
 -void __operator += (inout float a, const float b) {
 -    __asm float_add a, b;
 -}
 -
 -void __operator -= (inout float a, const float b) {
 -    a += -b;
 -}
 -
 -void __operator *= (inout float a, const float b) {
 -    __asm float_multiply a, b;
 -}
 -
 -void __operator /= (inout float a, const float b) {
 -    __asm float_divide a, b;
 -}
 -
 -void __operator += (inout int x, const int y) {
 -    __asm int_add x, y;
 -}
 -
 -void __operator -= (inout int x, const int y) {
 -    x += -y;
 -}
 -
 -void __operator *= (inout int x, const int y) {
 -    __asm int_multiply x, y;
 -}
 -
 -void __operator /= (inout int x, const int y) {
 -    __asm int_divide x, y;
 -}
 -
 -void __operator += (inout vec2 v, const vec2 u) {
 -    v.x += u.x, v.y += u.y;
 -}
 -
 -void __operator -= (inout vec2 v, const vec2 u) {
 -    v.x -= u.x, v.y -= u.y;
 -}
 -
 -void __operator *= (inout vec2 v, const vec2 u) {
 -    v.x *= u.x, v.y *= u.y;
 -}
 -
 -void __operator /= (inout vec2 v, const vec2 u) {
 -    v.x /= u.x, v.y /= u.y;
 -}
 -
 -void __operator += (inout vec3 v, const vec3 u) {
 -    v.x += u.x, v.y += u.y, v.z += u.z;
 -}
 -
 -void __operator -= (inout vec3 v, const vec3 u) {
 -    v.x -= u.x, v.y -= u.y, v.z -= u.z;
 -}
 -
 -void __operator *= (inout vec3 v, const vec3 u) {
 -    v.x *= u.x, v.y *= u.y, v.z *= u.z;
 -}
 -
 -void __operator /= (inout vec3 v, const vec3 u) {
 -    v.x /= u.x, v.y /= u.y, v.z /= u.z;
 -}
 -
 -void __operator += (inout vec4 v, const vec4 u) {
 -    v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;
 -}
 -
 -void __operator -= (inout vec4 v, const vec4 u) {
 -    v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;
 -}
 -
 -void __operator *= (inout vec4 v, const vec4 u) {
 -    v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;
 -}
 -
 -void __operator /= (inout vec4 v, const vec4 u) {
 -    v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;
 -}
 -
 -void __operator += (inout ivec2 v, const ivec2 u) {
 -    v.x += u.x, v.y += u.y;
 -}
 -
 -void __operator -= (inout ivec2 v, const ivec2 u) {
 -    v.x -= u.x, v.y -= u.y;
 -}
 -
 -void __operator *= (inout ivec2 v, const ivec2 u) {
 -    v.x *= u.x, v.y *= u.y;
 -}
 -
 -void __operator /= (inout ivec2 v, const ivec2 u) {
 -    v.x /= u.x, v.y /= u.y;
 -}
 -
 -void __operator += (inout ivec3 v, const ivec3 u) {
 -    v.x += u.x, v.y += u.y, v.z += u.z;
 -}
 -
 -void __operator -= (inout ivec3 v, const ivec3 u) {
 -    v.x -= u.x, v.y -= u.y, v.z -= u.z;
 -}
 -
 -void __operator *= (inout ivec3 v, const ivec3 u) {
 -    v.x *= u.x, v.y *= u.y, v.z *= u.z;
 -}
 -
 -void __operator /= (inout ivec3 v, const ivec3 u) {
 -    v.x /= u.x, v.y /= u.y, v.z /= u.z;
 -}
 -
 -void __operator += (inout ivec4 v, const ivec4 u) {
 -    v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;
 -}
 -
 -void __operator -= (inout ivec4 v, const ivec4 u) {
 -    v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;
 -}
 -
 -void __operator *= (inout ivec4 v, const ivec4 u) {
 -    v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;
 -}
 -
 -void __operator /= (inout ivec4 v, const ivec4 u) {
 -    v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;
 -}
 -
 -void __operator += (inout mat2 m, const mat2 n) {
 -    m[0] += n[0], m[1] += n[1];
 -}
 -
 -void __operator -= (inout mat2 v, const mat2 n) {
 -    m[0] -= n[0], m[1] -= n[1];
 -}
 -
 -void __operator *= (inout mat2 m, const mat2 n) {
 -    m = m * n;
 -}
 -
 -void __operator /= (inout mat2 m, const mat2 n) {
 -    m[0] /= n[0], m[1] /= n[1];
 -}
 -
 -void __operator += (inout mat3 m, const mat3 n) {
 -    m[0] += n[0], m[1] += n[1], m[2] += n[2];
 -}
 -
 -void __operator -= (inout mat3 m, const mat3 n) {
 -    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2];
 -}
 -
 -void __operator *= (inout mat3 m, const mat3 n) {
 -    m = m * n;
 -}
 -
 -void __operator /= (inout mat3 m, const mat3 n) {
 -    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2];
 -}
 -
 -void __operator += (inout mat4 m, const mat4 n) {
 -    m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3];
 -}
 -
 -void __operator -= (inout mat4 m, const mat4 n) {
 -    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3];
 -}
 -
 -void __operator *= (inout mat4 m, const mat4 n) {
 -    m = m * n;
 -}
 -
 -void __operator /= (inout mat4 m, const mat4 n) {
 -    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3];
 -}
 -
 -// 
 -//   ... or if the expression is a float, then the variable can be floating-point, a vector, or
 -//   a matrix, ...
 -// 
 -
 -void __operator += (inout vec2 v, const float a) {
 -    v.x += a, v.y += a;
 -}
 -
 -void __operator -= (inout vec2 v, const float a) {
 -    v.x -= a, v.y -= a;
 -}
 -
 -void __operator *= (inout vec2 v, const float a) {
 -    v.x *= a, v.y *= a;
 -}
 -
 -void __operator /= (inout vec2 v, const float a) {
 -    v.x /= a, v.y /= a;
 -}
 -
 -void __operator += (inout vec3 v, const float a) {
 -    v.x += a, v.y += a, v.z += a;
 -}
 -
 -void __operator -= (inout vec3 v, const float a) {
 -    v.x -= a, v.y -= a, v.z -= a;
 -}
 -
 -void __operator *= (inout vec3 v, const float a) {
 -    v.x *= a, v.y *= a, v.z *= a;
 -}
 -
 -void __operator /= (inout vec3 v, const float a) {
 -    v.x /= a, v.y /= a, v.z /= a;
 -}
 -
 -void __operator += (inout vec4 v, const float a) {
 -    v.x += a, v.y += a, v.z += a, v.w += a;
 -}
 -
 -void __operator -= (inout vec4 v, const float a) {
 -    v.x -= a, v.y -= a, v.z -= a, v.w -= a;
 -}
 -
 -void __operator *= (inout vec4 v, const float a) {
 -    v.x *= a, v.y *= a, v.z *= a, v.w *= a;
 -}
 -
 -void __operator /= (inout vec4 v, const float a) {
 -    v.x /= a, v.y /= a, v.z /= a, v.w /= a;
 -}
 -
 -void __operator += (inout mat2 m, const float a) {
 -    m[0] += a, m[1] += a;
 -}
 -
 -void __operator -= (inout mat2 m, const float a) {
 -    m[0] -= a, m[1] -= a;
 -}
 -
 -void __operator *= (inout mat2 m, const float a) {
 -    m[0] *= a, m[1] *= a;
 -}
 -
 -void __operator /= (inout mat2 m, const float a) {
 -    m[0] /= a, m[1] /= a;
 -}
 -
 -void __operator += (inout mat3 m, const float a) {
 -    m[0] += a, m[1] += a, m[2] += a;
 -}
 -
 -void __operator -= (inout mat3 m, const float a) {
 -    m[0] -= a, m[1] -= a, m[2] -= a;
 -}
 -
 -void __operator *= (inout mat3 m, const float a) {
 -    m[0] *= a, m[1] *= a, m[2] *= a;
 -}
 -
 -void __operator /= (inout mat3 m, const float a) {
 -    m[0] /= a, m[1] /= a, m[2] /= a;
 -}
 -
 -void __operator += (inout mat4 m, const float a) {
 -    m[0] += a, m[1] += a, m[2] += a, m[3] += a;
 -}
 -
 -void __operator -= (inout mat4 m, const float a) {
 -    m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a;
 -}
 -
 -void __operator *= (inout mat4 m, const float a) {
 -    m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a;
 -}
 -
 -void __operator /= (inout mat4 m, const float a) {
 -    m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a;
 -}
 -
 -// 
 -//   ... or if the operation is multiply into (*=), then the variable can be a vector and the
 -//   expression can be a matrix of matching size.
 -// 
 -
 -void __operator *= (inout vec2 v, const mat2 m) {
 -    v = v * m;
 -}
 -
 -void __operator *= (inout vec3 v, const mat3 m) {
 -    v = v * m;
 -}
 -
 -void __operator *= (inout vec4 v, const mat4 m) {
 -    v = v * m;
 -}
 -
 -// 
 -// 5.9 Expressions
 -// 
 -// Expressions in the shading language include the following:
 -// 
 -
 -// 
 -// • The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that
 -//   operate on integer and floating-point typed expressions (including vectors and matrices).
 -//   The two operands must be the same type, ...
 -// 
 -
 -float __operator + (const float a, const float b) {
 -    float c = a;
 -    return c += b;
 -}
 -
 -float __operator - (const float a, const float b) {
 -    return a + -b;
 -}
 -
 -float __operator * (const float a, const float b) {
 -    float c = a;
 -    return c *= b;
 -}
 -
 -float __operator / (const float a, const float b) {
 -    float c = a;
 -    return c /= b;
 -}
 -
 -int __operator + (const int a, const int b) {
 -    int c = a;
 -    return c += b;
 -}
 -
 -int __operator - (const int x, const int y) {
 -    return x + -y;
 -}
 -
 -int __operator * (const int x, const int y) {
 -    int z = x;
 -    return z *= y;
 -}
 -
 -int __operator / (const int x, const int y) {
 -    int z = x;
 -    return z /= y;
 -}
 -
 -vec2 __operator + (const vec2 v, const vec2 u) {
 -    return vec2 (v.x + u.x, v.y + u.y);
 -}
 -
 -vec2 __operator - (const vec2 v, const vec2 u) {
 -    return vec2 (v.x - u.x, v.y - u.y);
 -}
 -
 -vec3 __operator + (const vec3 v, const vec3 u) {
 -    return vec3 (v.x + u.x, v.y + u.y, v.z + u.z);
 -}
 -
 -vec3 __operator - (const vec3 v, const vec3 u) {
 -    return vec3 (v.x - u.x, v.y - u.y, v.z - u.z);
 -}
 -
 -vec4 __operator + (const vec4 v, const vec4 u) {
 -    return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);
 -}
 -
 -vec4 __operator - (const vec4 v, const vec4 u) {
 -    return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);
 -}
 -
 -ivec2 __operator + (const ivec2 v, const ivec2 u) {
 -    return ivec2 (v.x + u.x, v.y + u.y);
 -}
 -
 -ivec2 __operator - (const ivec2 v, const ivec2 u) {
 -    return ivec2 (v.x - u.x, v.y - u.y);
 -}
 -
 -ivec3 __operator + (const ivec3 v, const ivec3 u) {
 -    return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z);
 -}
 -
 -ivec3 __operator - (const ivec3 v, const ivec3 u) {
 -    return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z);
 -}
 -
 -ivec4 __operator + (const ivec4 v, const ivec4 u) {
 -    return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);
 -}
 -
 -ivec4 __operator - (const ivec4 v, const ivec4 u) {
 -    return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);
 -}
 -
 -mat2 __operator + (const mat2 m, const mat2 n) {
 -    return mat2 (m[0] + n[0], m[1] + n[1]);
 -}
 -
 -mat2 __operator - (const mat2 m, const mat2 n) {
 -    return mat2 (m[0] - n[0], m[1] - n[1]);
 -}
 -
 -mat3 __operator + (const mat3 m, const mat3 n) {
 -    return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]);
 -}
 -
 -mat3 __operator - (const mat3 m, const mat3 n) {
 -    return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]);
 -}
 -
 -mat4 __operator + (const mat4 m, const mat4 n) {
 -    return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]);
 -}
 -
 -mat4 __operator - (const mat4 m, const mat4 n) {
 -    return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]);
 -}
 -
 -// 
 -//   ... or one must be a scalar float and the other a vector or matrix, ...
 -// 
 -
 -vec2 __operator + (const float a, const vec2 u) {
 -    return vec2 (a + u.x, a + u.y);
 -}
 -
 -vec2 __operator + (const vec2 v, const float b) {
 -    return vec2 (v.x + b, v.y + b);
 -}
 -
 -vec2 __operator - (const float a, const vec2 u) {
 -    return vec2 (a - u.x, a - u.y);
 -}
 -
 -vec2 __operator - (const vec2 v, const float b) {
 -    return vec2 (v.x - b, v.y - b);
 -}
 -
 -vec2 __operator * (const float a, const vec2 u) {
 -    return vec2 (a * u.x, a * u.y);
 -}
 -
 -vec2 __operator * (const vec2 v, const float b) {
 -    return vec2 (v.x * b, v.y * b);
 -}
 -
 -vec2 __operator / (const float a, const vec2 u) {
 -    return vec2 (a / u.x, a / u.y);
 -}
 -
 -vec2 __operator / (const vec2 v, const float b) {
 -    return vec2 (v.x / b, v.y / b);
 -}
 -
 -vec3 __operator + (const float a, const vec3 u) {
 -    return vec3 (a + u.x, a + u.y, a + u.z);
 -}
 -
 -vec3 __operator + (const vec3 v, const float b) {
 -    return vec3 (v.x + b, v.y + b, v.z + b);
 -}
 -
 -vec3 __operator - (const float a, const vec3 u) {
 -    return vec3 (a - u.x, a - u.y, a - u.z);
 -}
 -
 -vec3 __operator - (const vec3 v, const float b) {
 -    return vec3 (v.x - b, v.y - b, v.z - b);
 -}
 -
 -vec3 __operator * (const float a, const vec3 u) {
 -    return vec3 (a * u.x, a * u.y, a * u.z);
 -}
 -
 -vec3 __operator * (const vec3 v, const float b) {
 -    return vec3 (v.x * b, v.y * b, v.z * b);
 -}
 -
 -vec3 __operator / (const float a, const vec3 u) {
 -    return vec3 (a / u.x, a / u.y, a / u.z);
 -}
 -
 -vec3 __operator / (const vec3 v, const float b) {
 -    return vec3 (v.x / b, v.y / b, v.z / b);
 -}
 -
 -vec4 __operator + (const float a, const vec4 u) {
 -    return vec4 (a + u.x, a + u.y, a + u.z, a + u.w);
 -}
 -
 -vec4 __operator + (const vec4 v, const float b) {
 -    return vec4 (v.x + b, v.y + b, v.z + b, v.w + b);
 -}
 -
 -vec4 __operator - (const float a, const vec4 u) {
 -    return vec4 (a - u.x, a - u.y, a - u.z, a - u.w);
 -}
 -
 -vec4 __operator - (const vec4 v, const float b) {
 -    return vec4 (v.x - b, v.y - b, v.z - b, v.w - b);
 -}
 -
 -vec4 __operator * (const float a, const vec4 u) {
 -    return vec4 (a * u.x, a * u.y, a * u.z, a * u.w);
 -}
 -
 -vec4 __operator * (const vec4 v, const float b) {
 -    return vec4 (v.x * b, v.y * b, v.z * b, v.w * b);
 -}
 -
 -vec4 __operator / (const float a, const vec4 u) {
 -    return vec4 (a / u.x, a / u.y, a / u.z, a / u.w);
 -}
 -
 -vec4 __operator / (const vec4 v, const float b) {
 -    return vec4 (v.x / b, v.y / b, v.z / b, v.w / b);
 -}
 -
 -mat2 __operator + (const float a, const mat2 n) {
 -    return mat2 (a + n[0], a + n[1]);
 -}
 -
 -mat2 __operator + (const mat2 m, const float b) {
 -    return mat2 (m[0] + b, m[1] + b);
 -}
 -
 -mat2 __operator - (const float a, const mat2 n) {
 -    return mat2 (a - n[0], a - n[1]);
 -}
 -
 -mat2 __operator - (const mat2 m, const float b) {
 -    return mat2 (m[0] - b, m[1] - b);
 -}
 -
 -mat2 __operator * (const float a, const mat2 n) {
 -    return mat2 (a * n[0], a * n[1]);
 -}
 -
 -mat2 __operator * (const mat2 m, const float b) {
 -    return mat2 (m[0] * b, m[1] * b);
 -}
 -
 -mat2 __operator / (const float a, const mat2 n) {
 -    return mat2 (a / n[0], a / n[1]);
 -}
 -
 -mat2 __operator / (const mat2 m, const float b) {
 -    return mat2 (m[0] / b, m[1] / b);
 -}
 -
 -mat3 __operator + (const float a, const mat3 n) {
 -    return mat3 (a + n[0], a + n[1], a + n[2]);
 -}
 -
 -mat3 __operator + (const mat3 m, const float b) {
 -    return mat3 (m[0] + b, m[1] + b, m[2] + b);
 -}
 -
 -mat3 __operator - (const float a, const mat3 n) {
 -    return mat3 (a - n[0], a - n[1], a - n[2]);
 -}
 -
 -mat3 __operator - (const mat3 m, const float b) {
 -    return mat3 (m[0] - b, m[1] - b, m[2] - b);
 -}
 -
 -mat3 __operator * (const float a, const mat3 n) {
 -    return mat3 (a * n[0], a * n[1], a * n[2]);
 -}
 -
 -mat3 __operator * (const mat3 m, const float b) {
 -    return mat3 (m[0] * b, m[1] * b, m[2] * b);
 -}
 -
 -mat3 __operator / (const float a, const mat3 n) {
 -    return mat3 (a / n[0], a / n[1], a / n[2]);
 -}
 -
 -mat3 __operator / (const mat3 m, const float b) {
 -    return mat3 (m[0] / b, m[1] / b, m[2] / b);
 -}
 -
 -mat4 __operator + (const float a, const mat4 n) {
 -    return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]);
 -}
 -
 -mat4 __operator + (const mat4 m, const float b) {
 -    return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b);
 -}
 -
 -mat4 __operator - (const float a, const mat4 n) {
 -    return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]);
 -}
 -
 -mat4 __operator - (const mat4 m, const float b) {
 -    return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b);
 -}
 -
 -mat4 __operator * (const float a, const mat4 n) {
 -    return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]);
 -}
 -
 -mat4 __operator * (const mat4 m, const float b) {
 -    return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b);
 -}
 -
 -mat4 __operator / (const float a, const mat4 n) {
 -    return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]);
 -}
 -
 -mat4 __operator / (const mat4 m, const float b) {
 -    return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b);
 -}
 -
 -// 
 -//   ... or for multiply (*) one can be a vector and the other a matrix with the same dimensional
 -//   size of the vector.
 -// 
 -// [When:]
 -// • the left argument is a floating-point vector and the right is a matrix with a compatible
 -//   dimension in which case the * operator will do a row vector matrix multiplication.
 -// • the left argument is a matrix and the right is a floating-point vector with a compatible
 -//   dimension in which case the * operator will do a column vector matrix multiplication.
 -// 
 -
 -vec2 __operator * (const mat2 m, const vec2 v) {
 -    return vec2 (
 -        v.x * m[0].x + v.y * m[1].x,
 -        v.x * m[0].y + v.y * m[1].y
 -    );
 -}
 -
 -vec2 __operator * (const vec2 v, const mat2 m) {
 -    return vec2 (
 -        v.x * m[0].x + v.y * m[0].y,
 -        v.x * m[1].x + v.y * m[1].y
 -    );
 -}
 -
 -vec3 __operator * (const mat3 m, const vec3 v) {
 -    return vec3 (
 -        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,
 -        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,
 -        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z
 -    );
 -}
 -
 -vec3 __operator * (const vec3 v, const mat3 m) {
 -    return vec3 (
 -        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,
 -        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,
 -        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z
 -    );
 -}
 -
 -vec4 __operator * (const mat4 m, const vec4 v) {
 -    return vec4 (
 -        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,
 -        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,
 -        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,
 -        v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w
 -    );
 -}
 -
 -vec4 __operator * (const vec4 v, const mat4 m) {
 -    return vec4 (
 -        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,
 -        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,
 -        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,
 -        v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w
 -    );
 -}
 -
 -// 
 -//   Multiply (*) applied to two vectors yields a component-wise multiply.
 -// 
 -
 -vec2 __operator * (const vec2 v, const vec2 u) {
 -    return vec2 (v.x * u.x, v.y * u.y);
 -}
 -
 -vec3 __operator * (const vec3 v, const vec3 u) {
 -    return vec3 (v.x * u.x, v.y * u.y, v.z * u.z);
 -}
 -
 -vec4 __operator * (const vec4 v, const vec4 u) {
 -    return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);
 -}
 -
 -ivec2 __operator * (const ivec2 v, const ivec2 u) {
 -    return ivec2 (v.x * u.x, v.y * u.y);
 -}
 -
 -ivec3 __operator * (const ivec3 v, const ivec3 u) {
 -    return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z);
 -}
 -
 -ivec4 __operator * (const ivec4 v, const ivec4 u) {
 -    return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);
 -}
 -
 -// 
 -//   Dividing by zero does not cause an exception but does result in an unspecified value.
 -// 
 -
 -vec2 __operator / (const vec2 v, const vec2 u) {
 -    return vec2 (v.x / u.x, v.y / u.y);
 -}
 -
 -vec3 __operator / (const vec3 v, const vec3 u) {
 -    return vec3 (v.x / u.x, v.y / u.y, v.z / u.z);
 -}
 -
 -vec4 __operator / (const vec4 v, const vec4 u) {
 -    return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);
 -}
 -
 -ivec2 __operator / (const ivec2 v, const ivec2 u) {
 -    return ivec2 (v.x / u.x, v.y / u.y);
 -}
 -
 -ivec3 __operator / (const ivec3 v, const ivec3 u) {
 -    return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z);
 -}
 -
 -ivec4 __operator / (const ivec4 v, const ivec4 u) {
 -    return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);
 -}
 -
 -mat2 __operator / (const mat2 m, const mat2 n) {
 -    return mat2 (m[0] / n[0], m[1] / n[1]);
 -}
 -
 -mat3 __operator / (const mat3 m, const mat3 n) {
 -    return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]);
 -}
 -
 -mat4 __operator / (const mat4 m, const mat4 n) {
 -    return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]);
 -}
 -
 -// 
 -//   Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not
 -//   a component-wise multiply.
 -// 
 -
 -mat2 __operator * (const mat2 m, const mat2 n) {
 -    return mat2 (m * n[0], m * n[1]);
 -}
 -
 -mat3 __operator * (const mat3 m, const mat3 n) {
 -    return mat3 (m * n[0], m * n[1], m * n[2]);
 -}
 -
 -mat4 __operator * (const mat4 m, const mat4 n) {
 -    return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);
 -}
 -
 -// 
 -// • The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and
 -//   ++) that operate on integer or floating-point values (including vectors and matrices). These
 -//   result with the same type they operated on. For post- and pre-increment and decrement, the
 -//   expression must be one that could be assigned to (an l-value). Pre-increment and predecrement
 -//   add or subtract 1 or 1.0 to the contents of the expression they operate on, and the
 -//   value of the pre-increment or pre-decrement expression is the resulting value of that
 -//   modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to
 -//   the contents of the expression they operate on, but the resulting expression has the
 -//   expression’s value before the post-increment or post-decrement was executed.
 -// 
 -// [NOTE: postfix increment and decrement operators take additional dummy int parameter to
 -//        distinguish their prototypes from prefix ones.]
 -// 
 -
 -float __operator - (const float a) {
 -    float c = a;
 -    __asm float_negate c;
 -    return c;
 -}
 -
 -int __operator - (const int a) {
 -    int c = a;
 -    __asm int_negate c;
 -    return c;
 -}
 -
 -vec2 __operator - (const vec2 v) {
 -    return vec2 (-v.x, -v.y);
 -}
 -
 -vec3 __operator - (const vec3 v) {
 -    return vec3 (-v.x, -v.y, -v.z);
 -}
 -
 -vec4 __operator - (const vec4 v) {
 -    return vec4 (-v.x, -v.y, -v.z, -v.w);
 -}
 -
 -ivec2 __operator - (const ivec2 v) {
 -    return ivec2 (-v.x, -v.y);
 -}
 -
 -ivec3 __operator - (const ivec3 v) {
 -    return ivec3 (-v.x, -v.y, -v.z);
 -}
 -
 -ivec4 __operator - (const ivec4 v) {
 -    return ivec4 (-v.x, -v.y, -v.z, -v.w);
 -}
 -
 -mat2 __operator - (const mat2 m) {
 -    return mat2 (-m[0], -m[1]);
 -}
 -
 -mat3 __operator - (const mat3 m) {
 -    return mat3 (-m[0], -m[1], -m[2]);
 -}
 -
 -mat4 __operator - (const mat4 m) {
 -    return mat4 (-m[0], -m[1], -m[2], -m[3]);
 -}
 -
 -void __operator -- (inout float a) {
 -    a -= 1.0;
 -}
 -
 -void __operator -- (inout int a) {
 -    a -= 1;
 -}
 -
 -void __operator -- (inout vec2 v) {
 -    --v.x, --v.y;
 -}
 -
 -void __operator -- (inout vec3 v) {
 -    --v.x, --v.y, --v.z;
 -}
 -
 -void __operator -- (inout vec4 v) {
 -    --v.x, --v.y, --v.z, --v.w;
 -}
 -
 -void __operator -- (inout ivec2 v) {
 -    --v.x, --v.y;
 -}
 -
 -void __operator -- (inout ivec3 v) {
 -    --v.x, --v.y, --v.z;
 -}
 -
 -void __operator -- (inout ivec4 v) {
 -    --v.x, --v.y, --v.z, --v.w;
 -}
 -
 -void __operator -- (inout mat2 m) {
 -    --m[0], --m[1];
 -}
 -
 -void __operator -- (inout mat3 m) {
 -    --m[0], --m[1], --m[2];
 -}
 -
 -void __operator -- (inout mat4 m) {
 -    --m[0], --m[1], --m[2], --m[3];
 -}
 -
 -void __operator ++ (inout float a) {
 -    a += 1.0;
 -}
 -
 -void __operator ++ (inout int a) {
 -    a += 1;
 -}
 -
 -void __operator ++ (inout vec2 v) {
 -    ++v.x, ++v.y;
 -}
 -
 -void __operator ++ (inout vec3 v) {
 -    ++v.x, ++v.y, ++v.z;
 -}
 -
 -void __operator ++ (inout vec4 v) {
 -    ++v.x, ++v.y, ++v.z, ++v.w;
 -}
 -
 -void __operator ++ (inout ivec2 v) {
 -    ++v.x, ++v.y;
 -}
 -
 -void __operator ++ (inout ivec3 v) {
 -    ++v.x, ++v.y, ++v.z;
 -}
 -
 -void __operator ++ (inout ivec4 v) {
 -    ++v.x, ++v.y, ++v.z, ++v.w;
 -}
 -
 -void __operator ++ (inout mat2 m) {
 -    ++m[0], ++m[1];
 -}
 -
 -void __operator ++ (inout mat3 m) {
 -    ++m[0], ++m[1], ++m[2];
 -}
 -
 -void __operator ++ (inout mat4 m) {
 -    ++m[0], ++m[1], ++m[2], ++m[3];
 -}
 -
 -float __operator -- (inout float a, const int) {
 -    const float c = a;
 -    --a;
 -    return c;
 -}
 -
 -int __operator -- (inout int a, const int) {
 -    const int c = a;
 -    --a;
 -    return c;
 -}
 -
 -vec2 __operator -- (inout vec2 v, const int) {
 -    return vec2 (v.x--, v.y--);
 -}
 -
 -vec3 __operator -- (inout vec3 v, const int) {
 -    return vec3 (v.x--, v.y--, v.z--);
 -}
 -
 -vec4 __operator -- (inout vec4 v, const int) {
 -    return vec4 (v.x--, v.y--, v.z--, v.w--);
 -}
 -
 -ivec2 __operator -- (inout ivec2 v, const int) {
 -    return ivec2 (v.x--, v.y--);
 -}
 -
 -ivec3 __operator -- (inout ivec3 v, const int) {
 -    return ivec3 (v.x--, v.y--, v.z--);
 -}
 -
 -ivec4 __operator -- (inout ivec4 v, const int) {
 -    return ivec4 (v.x--, v.y--, v.z--, v.w--);
 -}
 -
 -mat2 __operator -- (inout mat2 m, const int) {
 -    return mat2 (m[0]--, m[1]--);
 -}
 -
 -mat3 __operator -- (inout mat3 m, const int) {
 -    return mat3 (m[0]--, m[1]--, m[2]--);
 -}
 -
 -mat4 __operator -- (inout mat4 m, const int) {
 -    return mat4 (m[0]--, m[1]--, m[2]--, m[3]--);
 -}
 -
 -float __operator ++ (inout float a, const int) {
 -    const float c = a;
 -    ++a;
 -    return c;
 -}
 -
 -int __operator ++ (inout int a, const int) {
 -    const int c = a;
 -    ++a;
 -    return c;
 -}
 -
 -vec2 __operator ++ (inout vec2 v, const int) {
 -    return vec2 (v.x++, v.y++);
 -}
 -
 -vec3 __operator ++ (inout vec3 v, const int) {
 -    return vec3 (v.x++, v.y++, v.z++);
 -}
 -
 -vec4 __operator ++ (inout vec4 v, const int) {
 -    return vec4 (v.x++, v.y++, v.z++, v.w++);
 -}
 -
 -ivec2 __operator ++ (inout ivec2 v, const int) {
 -    return ivec2 (v.x++, v.y++);
 -}
 -
 -ivec3 __operator ++ (inout ivec3 v, const int) {
 -    return ivec3 (v.x++, v.y++, v.z++);
 -}
 -
 -ivec4 __operator ++ (inout ivec4 v, const int) {
 -    return ivec4 (v.x++, v.y++, v.z++, v.w++);
 -}
 -
 -mat2 __operator ++ (inout mat2 m, const int) {
 -    return mat2 (m[0]++, m[1]++);
 -}
 -
 -mat3 __operator ++ (inout mat3 m, const int) {
 -    return mat3 (m[0]++, m[1]++, m[2]++);
 -}
 -
 -mat4 __operator ++ (inout mat4 m, const int) {
 -    return mat4 (m[0]++, m[1]++, m[2]++, m[3]++);
 -}
 -
 -// 
 -// • The relational operators greater than (>), less than (<), greater than or equal (>=), and less
 -//   than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The
 -//   result is scalar Boolean. The operands’ types must match. To do component-wise
 -//   comparisons on vectors, use the built-in functions lessThan, lessThanEqual,
 -//   greaterThan, and greaterThanEqual.
 -// 
 -
 -bool __operator < (const float a, const float b) {
 -    bool c;
 -    __asm float_less c, a, b;
 -    return c;
 -}
 -
 -bool __operator < (const int a, const int b) {
 -    bool c;
 -    __asm int_less c, a, b;
 -    return c;
 -}
 -
 -bool __operator > (const float a, const float b) {
 -    return b < a;
 -}
 -
 -bool __operator > (const int a, const int b) {
 -    return b < a;
 -}
 -
 -bool __operator >= (const float a, const float b) {
 -    return a > b || a == b;
 -}
 -
 -bool __operator >= (const int a, const int b) {
 -    return a > b || a == b;
 -}
 -
 -bool __operator <= (const float a, const float b) {
 -    return a < b || a == b;
 -}
 -
 -bool __operator <= (const int a, const int b) {
 -    return a < b || a == b;
 -}
 -
 -// 
 -// • The equality operators equal (==), and not equal (!=) operate on all types except arrays.
 -//   They result in a scalar Boolean. For vectors, matrices, and structures, all components of the
 -//   operands must be equal for the operands to be considered equal. To get component-wise
 -//   equality results for vectors, use the built-in functions equal and notEqual.
 -// 
 -
 -bool __operator == (const float a, const float b) {
 -	bool c;
 -	__asm float_equal c, a, b;
 -	return c;
 -}
 -
 -bool __operator == (const int a, const int b) {
 -	bool c;
 -	__asm int_equal c, a, b;
 -	return c;
 -}
 -
 -bool __operator == (const bool a, const bool b) {
 -	bool c;
 -	__asm bool_equal c, a, b;
 -	return c;
 -}
 -
 -bool __operator == (const vec2 v, const vec2 u) {
 -	return v.x == u.x && v.y == u.y;
 -}
 -
 -bool __operator == (const vec3 v, const vec3 u) {
 -	return v.x == u.x && v.y == u.y && v.z == u.z;
 -}
 -
 -bool __operator == (const vec4 v, const vec4 u) {
 -	return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
 -}
 -
 -bool __operator == (const ivec2 v, const ivec2 u) {
 -	return v.x == u.x && v.y == u.y;
 -}
 -
 -bool __operator == (const ivec3 v, const ivec3 u) {
 -	return v.x == u.x && v.y == u.y && v.z == u.z;
 -}
 -
 -bool __operator == (const ivec4 v, const ivec4 u) {
 -	return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
 -}
 -
 -bool __operator == (const bvec2 v, const bvec2 u) {
 -	return v.x == u.x && v.y == u.y;
 -}
 -
 -bool __operator == (const bvec3 v, const bvec3 u) {
 -	return v.x == u.x && v.y == u.y && v.z == u.z;
 -}
 -
 -bool __operator == (const bvec4 v, const bvec4 u) {
 -	return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
 -}
 -
 -bool __operator == (const mat2 m, const mat2 n) {
 -	return m[0] == n[0] && m[1] == n[1];
 -}
 -
 -bool __operator == (const mat3 m, const mat3 n) {
 -	return m[0] == n[0] && m[1] == n[1] && m[2] == n[2];
 -}
 -
 -bool __operator == (const mat4 m, const mat4 n) {
 -	return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3];
 -}
 -
 -bool __operator != (const float a, const float b) {
 -	return !(a == b);
 -}
 -
 -bool __operator != (const int a, const int b) {
 -	return !(a == b);
 -}
 -
 -bool __operator != (const bool a, const bool b) {
 -	return !(a == b);
 -}
 -
 -bool __operator != (const vec2 v, const vec2 u) {
 -	return v.x != u.x || v.y != u.y;
 -}
 -
 -bool __operator != (const vec3 v, const vec3 u) {
 -	return v.x != u.x || v.y != u.y || v.z != u.z;
 -}
 -
 -bool __operator != (const vec4 v, const vec4 u) {
 -	return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
 -}
 -
 -bool __operator != (const ivec2 v, const ivec2 u) {
 -	return v.x != u.x || v.y != u.y;
 -}
 -
 -bool __operator != (const ivec3 v, const ivec3 u) {
 -	return v.x != u.x || v.y != u.y || v.z != u.z;
 -}
 -
 -bool __operator != (const ivec4 v, const ivec4 u) {
 -	return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
 -}
 -
 -bool __operator != (const bvec2 v, const bvec2 u) {
 -	return v.x != u.x || v.y != u.y;
 -}
 -
 -bool __operator != (const bvec3 v, const bvec3 u) {
 -	return v.x != u.x || v.y != u.y || v.z != u.z;
 -}
 -
 -bool __operator != (const bvec4 v, const bvec4 u) {
 -	return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
 -}
 -
 -bool __operator != (const mat2 m, const mat2 n) {
 -	return m[0] != n[0] || m[1] != n[1];
 -}
 -
 -bool __operator != (const mat3 m, const mat3 n) {
 -	return m[0] != n[0] || m[1] != n[1] || m[2] != n[2];
 -}
 -
 -bool __operator != (const mat4 m, const mat4 n) {
 -	return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3];
 -}
 -
 -// 
 -// • The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only
 -//   on two Boolean expressions and result in a Boolean expression. And (&&) will only
 -//   evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will
 -//   only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or
 -//   (^^) will always evaluate both operands.
 -// 
 -
 -bool __operator ^^ (const bool a, const bool b) {
 -    return a != b;
 -}
 -
 -// 
 -// [These operators are handled internally by the compiler:]
 -// 
 -// bool __operator && (bool a, bool b) {
 -//     return a ? b : false;
 -// }
 -// bool __operator || (bool a, bool b) {
 -//     return a ? true : b;
 -// }
 -// 
 -
 -// 
 -// • The logical unary operator not (!). It operates only on a Boolean expression and results in a
 -//   Boolean expression. To operate on a vector, use the built-in function not.
 -// 
 -
 -bool __operator ! (const bool a) {
 -    return a == false;
 -}
 -
 + +//  +// This file defines nearly all constructors and operators for built-in data types, using +// extended language syntax. In general, compiler treats constructors and operators as +// ordinary functions with some exceptions. For example, the language does not allow +// functions to be called in constant expressions - here the exception is made to allow it. +//  +// Each implementation provides its own version of this file. Each implementation can define +// the required set of operators and constructors in its own fashion. +//  +// The extended language syntax is only present when compiling this file. It is implicitly +// included at the very beginning of the compiled shader, so no built-in functions can be +// used. +//  +// To communicate with the implementation, a special extended "__asm" keyword is used, followed +// by an instruction name (any valid identifier), a destination variable identifier and a +// a list of zero or more source variable identifiers. A variable identifier is a variable name +// declared earlier in the code (as a function parameter, local or global variable). +// An instruction name designates an instruction that must be exported by the implementation. +// Each instruction receives data from destination and source variable identifiers and returns +// data in the destination variable identifier. +//  +// It is up to the implementation how to define a particular operator or constructor. If it is +// expected to being used rarely, it can be defined in terms of other operators and constructors, +// for example: +//  +// ivec2 __operator + (const ivec2 x, const ivec2 y) { +//    return ivec2 (x[0] + y[0], x[1] + y[1]); +// } +//  +// If a particular operator or constructor is expected to be used very often or is an atomic +// operation (that is, an operation that cannot be expressed in terms of other operations or +// would create a dependency cycle) it must be defined using one or more __asm constructs. +//  +// Each implementation must define constructors for all scalar types (bool, float, int). +// There are 9 scalar-to-scalar constructors (including identity constructors). However, +// since the language introduces special constructors (like matrix constructor with a single +// scalar value), implementations must also implement these cases. +// The compiler provides the following algorithm when resolving a constructor: +// - try to find a constructor with a prototype matching ours, +// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error, +// - if a constructor is found, execute it and return, +// - count the size of the constructor parameter list - if it is less than the size of +//   our constructor's type, raise an error, +// - for each parameter in the list do a recursive constructor matching for appropriate +//   scalar fields in the constructed variable, +//  +// Each implementation must also define a set of operators that deal with built-in data types. +// There are four kinds of operators: +// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence) +//    and "?:" (selection). +// 2) Operators that are implemented by the compiler by expressing it in terms of other operators: +//    - "." (field selection) - translated to subscript access, +//    - "&&" (logical and) - translated to "<left_expr> ? <right_expr> : false", +//    - "||" (logical or) - translated to "<left_expr> ? true : <right_expr>", +// 3) Operators that can be defined by the implementation and if the required prototype is not +//    found, standard behaviour is used: +//    - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one; +//      note that at least operators for scalar data types must be defined by the implementation +//      to get it work, +// 4) All other operators not mentioned above. If no required prototype is found, an error is +//    raised. An implementation must follow the language specification to provide all valid +//    operator prototypes. +//  + +//  +// From Shader Spec, ver. 1.10, rev. 59 +//  + +//  +// 5.4.1 Conversion and Scalar Constructors +//  + +//  +// When constructors are used to convert a float to an int, the fractional part of the +// floating-point value is dropped. +//  + +int __constructor (const float _f) { +    int _i; +    __asm float_to_int _i, _f; +    return _i; +} + +//  +// When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to +// false, and nonzero values are converted to true. +//  + +bool __constructor (const int _i) { +    return _i != 0; +} + +bool __constructor (const float _f) { +    return _f != 0.0; +} + +//  +// When a constructor is used to convert a bool to an int or float, false is converted to 0 or +// 0.0, and true is converted to 1 or 1.0. +//  + +int __constructor (const bool _b) { +    return _b ? 1 : 0; +} + +float __constructor (const bool _b) { +    return _b ? 1.0 : 0.0; +} + +//  +// Int to float constructor. +//  + +float __constructor (const int _i) { +    float _f; +    __asm int_to_float _f, _i; +    return _f; +} + +//  +// Identity constructors, like float(float) are also legal, but of little use. +//  + +bool __constructor (const bool _b) { +    return _b; +} + +int __constructor (const int _i) { +    return _i; +} + +float __constructor (const float _f) { +    return _f; +} + +//  +// Scalar constructors with non-scalar parameters can be used to take the first element from +// a non-scalar. For example, the constructor float(vec3) will select the first component of the +// vec3 parameter. +//  + +// [These scalar conversions will be handled internally by the compiler.] + +//  +// 5.4.2 Vector and Matrix Constructors +//  +// Constructors can be used to create vectors or matrices from a set of scalars, vectors, +// or matrices. This includes the ability to shorten vectors. +//  + +//  +// If there is a single scalar parameter to a vector constructor, it is used to initialize all +// components of the constructed vector to that scalar’s value. +//  +// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic +// type of the object being constructed, the scalar construction rules (above) are used to convert +// the parameters. +//  + +vec2 __constructor (const float _f) { +    return vec2 (_f, _f); +} + +vec2 __constructor (const int _i) { +    return vec2 (_i, _i); +} + +vec2 __constructor (const bool _b) { +    return vec2 (_b, _b); +} + +vec3 __constructor (const float _f) { +    return vec3 (_f, _f, _f); +} + +vec3 __constructor (const int _i) { +    return vec3 (_i, _i, _i); +} + +vec3 __constructor (const bool _b) { +    return vec3 (_b, _b, _b); +} + +vec4 __constructor (const float _f) { +    return vec4 (_f, _f, _f, _f); +} + +vec4 __constructor (const int _i) { +    return vec4 (_i, _i, _i, _i); +} + +vec4 __constructor (const bool _b) { +    return vec4 (_b, _b, _b, _b); +} + +ivec2 __constructor (const int _i) { +    return ivec2 (_i, _i); +} + +ivec2 __constructor (const float _f) { +    return ivec2 (_f, _f); +} + +ivec2 __constructor (const bool _b) { +    return ivec2 (_b, _b); +} + +ivec3 __constructor (const int _i) { +    return ivec3 (_i, _i, _i); +} + +ivec3 __constructor (const float _f) { +    return ivec3 (_f, _f, _f); +} + +ivec3 __constructor (const bool _b) { +    return ivec3 (_b, _b, _b); +} + +ivec4 __constructor (const int _i) { +    return ivec4 (_i, _i, _i, _i); +} + +ivec4 __constructor (const float _f) { +    return ivec4 (_f, _f, _f, _f); +} + +ivec4 __constructor (const bool _b) { +    return ivec4 (_b, _b, _b, _b); +} + +bvec2 __constructor (const bool _b) { +    return bvec2 (_b, _b); +} + +bvec2 __constructor (const float _f) { +    return bvec2 (_f, _f); +} + +bvec2 __constructor (const int _i) { +    return bvec2 (_i, _i); +} + +bvec3 __constructor (const bool _b) { +    return bvec3 (_b, _b, _b); +} + +bvec3 __constructor (const float _f) { +    return bvec3 (_f, _f, _f); +} + +bvec3 __constructor (const int _i) { +    return bvec3 (_i, _i, _i); +} + +bvec4 __constructor (const bool _b) { +    return bvec4 (_b, _b, _b, _b); +} + +bvec4 __constructor (const float _f) { +    return bvec4 (_f, _f, _f, _f); +} + +bvec4 __constructor (const int _i) { +    return bvec4 (_i, _i, _i, _i); +} + +//  +// If there is a single scalar parameter to a matrix constructor, it is used to initialize all the +// components on the matrix’s diagonal, with the remaining components initialized to 0.0. +// (...) Matrices will be constructed in column major order. It is an error to construct matrices +// from other matrices. This is reserved for future use. +//  +// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic +// type of the object being constructed, the scalar construction rules (above) are used to convert +// the parameters. +//  + +mat2 __constructor (const float _f) { +    return mat2 ( +        _f, .0, +        .0, _f +    ); +} + +mat2 __constructor (const int _i) { +    return mat2 ( +        _i, .0, +        .0, _i +    ); +} + +mat2 __constructor (const bool _b) { +    return mat2 ( +        _b, .0, +        .0, _b +    ); +} + +mat3 __constructor (const float _f) { +    return mat3 ( +        _f, .0, .0, +        .0, _f, .0, +        .0, .0, _f +    ); +} + +mat3 __constructor (const int _i) { +    return mat3 ( +        _i, .0, .0, +        .0, _i, .0, +        .0, .0, _i +    ); +} + +mat3 __constructor (const bool _b) { +    return mat3 ( +        _b, .0, .0, +        .0, _b, .0, +        .0, .0, _b +    ); +} + +mat4 __constructor (const float _f) { +    return mat4 ( +        _f, .0, .0, .0, +        .0, _f, .0, .0, +        .0, .0, _f, .0, +        .0, .0, .0, _f +    ); +} + +mat4 __constructor (const int _i) { +    return mat4 ( +        _i, .0, .0, .0, +        .0, _i, .0, .0, +        .0, .0, _i, .0, +        .0, .0, .0, _i +    ); +} + +mat4 __constructor (const bool _b) { +    return mat4 ( +        _b, .0, .0, .0, +        .0, _b, .0, .0, +        .0, .0, _b, .0, +        .0, .0, .0, _b +    ); +} + +//  +// 5.8 Assignments +//  +// Assignments of values to variable names are done with the assignment operator ( = ), like +//  +//   lvalue = expression +//  +// The assignment operator stores the value of expression into lvalue. It will compile only if +// expression and lvalue have the same type. All desired type-conversions must be specified +// explicitly via a constructor. Lvalues must be writable. Variables that are built-in types, +// entire structures, structure fields, l-values with the field selector ( . ) applied to select +// components or swizzles without repeated fields, and l-values dereferenced with the array +// subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions, +// non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot +// be l-values. +//  +// Expressions on the left of an assignment are evaluated before expressions on the right of the +// assignment. +//  + +void __operator = (inout float a, const float b) { +	__asm float_copy a, b; +} + +void __operator = (inout int a, const int b) { +	__asm int_copy a, b; +} + +void __operator = (inout bool a, const bool b) { +	__asm bool_copy a, b; +} + +void __operator = (inout vec2 v, const vec2 u) { +	v.x = u.x, v.y = u.y; +} + +void __operator = (inout vec3 v, const vec3 u) { +	v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout vec4 v, const vec4 u) { +	v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout ivec2 v, const ivec2 u) { +	v.x = u.x, v.y = u.y; +} + +void __operator = (inout ivec3 v, const ivec3 u) { +	v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout ivec4 v, const ivec4 u) { +	v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout bvec2 v, const bvec2 u) { +	v.x = u.x, v.y = u.y; +} + +void __operator = (inout bvec3 v, const bvec3 u) { +	v.x = u.x, v.y = u.y, v.z = u.z; +} + +void __operator = (inout bvec4 v, const bvec4 u) { +	v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w; +} + +void __operator = (inout mat2 m, const mat2 n) { +	m[0] = n[0], m[1] = n[1]; +} + +void __operator = (inout mat3 m, const mat3 n) { +	m[0] = n[0], m[1] = n[1], m[2] = n[2]; +} + +void __operator = (inout mat4 m, const mat4 n) { +	m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3]; +} + +//  +// • The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide +//   into (/=). The variable and expression must be the same floating-point or integer type, ... +//  + +void __operator += (inout float a, const float b) { +    __asm float_add a, b; +} + +void __operator -= (inout float a, const float b) { +    a += -b; +} + +void __operator *= (inout float a, const float b) { +    __asm float_multiply a, b; +} + +void __operator /= (inout float a, const float b) { +    __asm float_divide a, b; +} + +void __operator += (inout int x, const int y) { +    __asm int_add x, y; +} + +void __operator -= (inout int x, const int y) { +    x += -y; +} + +void __operator *= (inout int x, const int y) { +    __asm int_multiply x, y; +} + +void __operator /= (inout int x, const int y) { +    __asm int_divide x, y; +} + +void __operator += (inout vec2 v, const vec2 u) { +    v.x += u.x, v.y += u.y; +} + +void __operator -= (inout vec2 v, const vec2 u) { +    v.x -= u.x, v.y -= u.y; +} + +void __operator *= (inout vec2 v, const vec2 u) { +    v.x *= u.x, v.y *= u.y; +} + +void __operator /= (inout vec2 v, const vec2 u) { +    v.x /= u.x, v.y /= u.y; +} + +void __operator += (inout vec3 v, const vec3 u) { +    v.x += u.x, v.y += u.y, v.z += u.z; +} + +void __operator -= (inout vec3 v, const vec3 u) { +    v.x -= u.x, v.y -= u.y, v.z -= u.z; +} + +void __operator *= (inout vec3 v, const vec3 u) { +    v.x *= u.x, v.y *= u.y, v.z *= u.z; +} + +void __operator /= (inout vec3 v, const vec3 u) { +    v.x /= u.x, v.y /= u.y, v.z /= u.z; +} + +void __operator += (inout vec4 v, const vec4 u) { +    v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; +} + +void __operator -= (inout vec4 v, const vec4 u) { +    v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; +} + +void __operator *= (inout vec4 v, const vec4 u) { +    v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; +} + +void __operator /= (inout vec4 v, const vec4 u) { +    v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; +} + +void __operator += (inout ivec2 v, const ivec2 u) { +    v.x += u.x, v.y += u.y; +} + +void __operator -= (inout ivec2 v, const ivec2 u) { +    v.x -= u.x, v.y -= u.y; +} + +void __operator *= (inout ivec2 v, const ivec2 u) { +    v.x *= u.x, v.y *= u.y; +} + +void __operator /= (inout ivec2 v, const ivec2 u) { +    v.x /= u.x, v.y /= u.y; +} + +void __operator += (inout ivec3 v, const ivec3 u) { +    v.x += u.x, v.y += u.y, v.z += u.z; +} + +void __operator -= (inout ivec3 v, const ivec3 u) { +    v.x -= u.x, v.y -= u.y, v.z -= u.z; +} + +void __operator *= (inout ivec3 v, const ivec3 u) { +    v.x *= u.x, v.y *= u.y, v.z *= u.z; +} + +void __operator /= (inout ivec3 v, const ivec3 u) { +    v.x /= u.x, v.y /= u.y, v.z /= u.z; +} + +void __operator += (inout ivec4 v, const ivec4 u) { +    v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w; +} + +void __operator -= (inout ivec4 v, const ivec4 u) { +    v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w; +} + +void __operator *= (inout ivec4 v, const ivec4 u) { +    v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w; +} + +void __operator /= (inout ivec4 v, const ivec4 u) { +    v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w; +} + +void __operator += (inout mat2 m, const mat2 n) { +    m[0] += n[0], m[1] += n[1]; +} + +void __operator -= (inout mat2 v, const mat2 n) { +    m[0] -= n[0], m[1] -= n[1]; +} + +void __operator *= (inout mat2 m, const mat2 n) { +    m = m * n; +} + +void __operator /= (inout mat2 m, const mat2 n) { +    m[0] /= n[0], m[1] /= n[1]; +} + +void __operator += (inout mat3 m, const mat3 n) { +    m[0] += n[0], m[1] += n[1], m[2] += n[2]; +} + +void __operator -= (inout mat3 m, const mat3 n) { +    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2]; +} + +void __operator *= (inout mat3 m, const mat3 n) { +    m = m * n; +} + +void __operator /= (inout mat3 m, const mat3 n) { +    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2]; +} + +void __operator += (inout mat4 m, const mat4 n) { +    m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3]; +} + +void __operator -= (inout mat4 m, const mat4 n) { +    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3]; +} + +void __operator *= (inout mat4 m, const mat4 n) { +    m = m * n; +} + +void __operator /= (inout mat4 m, const mat4 n) { +    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3]; +} + +//  +//   ... or if the expression is a float, then the variable can be floating-point, a vector, or +//   a matrix, ... +//  + +void __operator += (inout vec2 v, const float a) { +    v.x += a, v.y += a; +} + +void __operator -= (inout vec2 v, const float a) { +    v.x -= a, v.y -= a; +} + +void __operator *= (inout vec2 v, const float a) { +    v.x *= a, v.y *= a; +} + +void __operator /= (inout vec2 v, const float a) { +    v.x /= a, v.y /= a; +} + +void __operator += (inout vec3 v, const float a) { +    v.x += a, v.y += a, v.z += a; +} + +void __operator -= (inout vec3 v, const float a) { +    v.x -= a, v.y -= a, v.z -= a; +} + +void __operator *= (inout vec3 v, const float a) { +    v.x *= a, v.y *= a, v.z *= a; +} + +void __operator /= (inout vec3 v, const float a) { +    v.x /= a, v.y /= a, v.z /= a; +} + +void __operator += (inout vec4 v, const float a) { +    v.x += a, v.y += a, v.z += a, v.w += a; +} + +void __operator -= (inout vec4 v, const float a) { +    v.x -= a, v.y -= a, v.z -= a, v.w -= a; +} + +void __operator *= (inout vec4 v, const float a) { +    v.x *= a, v.y *= a, v.z *= a, v.w *= a; +} + +void __operator /= (inout vec4 v, const float a) { +    v.x /= a, v.y /= a, v.z /= a, v.w /= a; +} + +void __operator += (inout mat2 m, const float a) { +    m[0] += a, m[1] += a; +} + +void __operator -= (inout mat2 m, const float a) { +    m[0] -= a, m[1] -= a; +} + +void __operator *= (inout mat2 m, const float a) { +    m[0] *= a, m[1] *= a; +} + +void __operator /= (inout mat2 m, const float a) { +    m[0] /= a, m[1] /= a; +} + +void __operator += (inout mat3 m, const float a) { +    m[0] += a, m[1] += a, m[2] += a; +} + +void __operator -= (inout mat3 m, const float a) { +    m[0] -= a, m[1] -= a, m[2] -= a; +} + +void __operator *= (inout mat3 m, const float a) { +    m[0] *= a, m[1] *= a, m[2] *= a; +} + +void __operator /= (inout mat3 m, const float a) { +    m[0] /= a, m[1] /= a, m[2] /= a; +} + +void __operator += (inout mat4 m, const float a) { +    m[0] += a, m[1] += a, m[2] += a, m[3] += a; +} + +void __operator -= (inout mat4 m, const float a) { +    m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a; +} + +void __operator *= (inout mat4 m, const float a) { +    m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a; +} + +void __operator /= (inout mat4 m, const float a) { +    m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a; +} + +//  +//   ... or if the operation is multiply into (*=), then the variable can be a vector and the +//   expression can be a matrix of matching size. +//  + +void __operator *= (inout vec2 v, const mat2 m) { +    v = v * m; +} + +void __operator *= (inout vec3 v, const mat3 m) { +    v = v * m; +} + +void __operator *= (inout vec4 v, const mat4 m) { +    v = v * m; +} + +//  +// 5.9 Expressions +//  +// Expressions in the shading language include the following: +//  + +//  +// • The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that +//   operate on integer and floating-point typed expressions (including vectors and matrices). +//   The two operands must be the same type, (...) Additionally, for multiply (*) (...) If one +//   operand is scalar and the other is a vector or matrix, the scalar is applied component-wise +//   to the vector or matrix, resulting in the same type as the vector or matrix. +//  + +float __operator + (const float a, const float b) { +    float c = a; +    return c += b; +} + +float __operator - (const float a, const float b) { +    return a + -b; +} + +float __operator * (const float a, const float b) { +    float c = a; +    return c *= b; +} + +float __operator / (const float a, const float b) { +    float c = a; +    return c /= b; +} + +int __operator + (const int a, const int b) { +    int c = a; +    return c += b; +} + +int __operator - (const int x, const int y) { +    return x + -y; +} + +int __operator * (const int x, const int y) { +    int z = x; +    return z *= y; +} + +int __operator / (const int x, const int y) { +    int z = x; +    return z /= y; +} + +vec2 __operator + (const vec2 v, const vec2 u) { +    return vec2 (v.x + u.x, v.y + u.y); +} + +vec2 __operator - (const vec2 v, const vec2 u) { +    return vec2 (v.x - u.x, v.y - u.y); +} + +vec3 __operator + (const vec3 v, const vec3 u) { +    return vec3 (v.x + u.x, v.y + u.y, v.z + u.z); +} + +vec3 __operator - (const vec3 v, const vec3 u) { +    return vec3 (v.x - u.x, v.y - u.y, v.z - u.z); +} + +vec4 __operator + (const vec4 v, const vec4 u) { +    return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); +} + +vec4 __operator - (const vec4 v, const vec4 u) { +    return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); +} + +ivec2 __operator + (const ivec2 v, const ivec2 u) { +    return ivec2 (v.x + u.x, v.y + u.y); +} + +ivec2 __operator - (const ivec2 v, const ivec2 u) { +    return ivec2 (v.x - u.x, v.y - u.y); +} + +ivec3 __operator + (const ivec3 v, const ivec3 u) { +    return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z); +} + +ivec3 __operator - (const ivec3 v, const ivec3 u) { +    return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z); +} + +ivec4 __operator + (const ivec4 v, const ivec4 u) { +    return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w); +} + +ivec4 __operator - (const ivec4 v, const ivec4 u) { +    return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w); +} + +mat2 __operator + (const mat2 m, const mat2 n) { +    return mat2 (m[0] + n[0], m[1] + n[1]); +} + +mat2 __operator - (const mat2 m, const mat2 n) { +    return mat2 (m[0] - n[0], m[1] - n[1]); +} + +mat3 __operator + (const mat3 m, const mat3 n) { +    return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]); +} + +mat3 __operator - (const mat3 m, const mat3 n) { +    return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]); +} + +mat4 __operator + (const mat4 m, const mat4 n) { +    return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]); +} + +mat4 __operator - (const mat4 m, const mat4 n) { +    return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]); +} + +//  +//   ... or one can be a scalar float and the other a float vector or matrix, ... +//  + +vec2 __operator + (const float a, const vec2 u) { +    return vec2 (a + u.x, a + u.y); +} + +vec2 __operator + (const vec2 v, const float b) { +    return vec2 (v.x + b, v.y + b); +} + +vec2 __operator - (const float a, const vec2 u) { +    return vec2 (a - u.x, a - u.y); +} + +vec2 __operator - (const vec2 v, const float b) { +    return vec2 (v.x - b, v.y - b); +} + +vec2 __operator * (const float a, const vec2 u) { +    return vec2 (a * u.x, a * u.y); +} + +vec2 __operator * (const vec2 v, const float b) { +    return vec2 (v.x * b, v.y * b); +} + +vec2 __operator / (const float a, const vec2 u) { +    return vec2 (a / u.x, a / u.y); +} + +vec2 __operator / (const vec2 v, const float b) { +    return vec2 (v.x / b, v.y / b); +} + +vec3 __operator + (const float a, const vec3 u) { +    return vec3 (a + u.x, a + u.y, a + u.z); +} + +vec3 __operator + (const vec3 v, const float b) { +    return vec3 (v.x + b, v.y + b, v.z + b); +} + +vec3 __operator - (const float a, const vec3 u) { +    return vec3 (a - u.x, a - u.y, a - u.z); +} + +vec3 __operator - (const vec3 v, const float b) { +    return vec3 (v.x - b, v.y - b, v.z - b); +} + +vec3 __operator * (const float a, const vec3 u) { +    return vec3 (a * u.x, a * u.y, a * u.z); +} + +vec3 __operator * (const vec3 v, const float b) { +    return vec3 (v.x * b, v.y * b, v.z * b); +} + +vec3 __operator / (const float a, const vec3 u) { +    return vec3 (a / u.x, a / u.y, a / u.z); +} + +vec3 __operator / (const vec3 v, const float b) { +    return vec3 (v.x / b, v.y / b, v.z / b); +} + +vec4 __operator + (const float a, const vec4 u) { +    return vec4 (a + u.x, a + u.y, a + u.z, a + u.w); +} + +vec4 __operator + (const vec4 v, const float b) { +    return vec4 (v.x + b, v.y + b, v.z + b, v.w + b); +} + +vec4 __operator - (const float a, const vec4 u) { +    return vec4 (a - u.x, a - u.y, a - u.z, a - u.w); +} + +vec4 __operator - (const vec4 v, const float b) { +    return vec4 (v.x - b, v.y - b, v.z - b, v.w - b); +} + +vec4 __operator * (const float a, const vec4 u) { +    return vec4 (a * u.x, a * u.y, a * u.z, a * u.w); +} + +vec4 __operator * (const vec4 v, const float b) { +    return vec4 (v.x * b, v.y * b, v.z * b, v.w * b); +} + +vec4 __operator / (const float a, const vec4 u) { +    return vec4 (a / u.x, a / u.y, a / u.z, a / u.w); +} + +vec4 __operator / (const vec4 v, const float b) { +    return vec4 (v.x / b, v.y / b, v.z / b, v.w / b); +} + +mat2 __operator + (const float a, const mat2 n) { +    return mat2 (a + n[0], a + n[1]); +} + +mat2 __operator + (const mat2 m, const float b) { +    return mat2 (m[0] + b, m[1] + b); +} + +mat2 __operator - (const float a, const mat2 n) { +    return mat2 (a - n[0], a - n[1]); +} + +mat2 __operator - (const mat2 m, const float b) { +    return mat2 (m[0] - b, m[1] - b); +} + +mat2 __operator * (const float a, const mat2 n) { +    return mat2 (a * n[0], a * n[1]); +} + +mat2 __operator * (const mat2 m, const float b) { +    return mat2 (m[0] * b, m[1] * b); +} + +mat2 __operator / (const float a, const mat2 n) { +    return mat2 (a / n[0], a / n[1]); +} + +mat2 __operator / (const mat2 m, const float b) { +    return mat2 (m[0] / b, m[1] / b); +} + +mat3 __operator + (const float a, const mat3 n) { +    return mat3 (a + n[0], a + n[1], a + n[2]); +} + +mat3 __operator + (const mat3 m, const float b) { +    return mat3 (m[0] + b, m[1] + b, m[2] + b); +} + +mat3 __operator - (const float a, const mat3 n) { +    return mat3 (a - n[0], a - n[1], a - n[2]); +} + +mat3 __operator - (const mat3 m, const float b) { +    return mat3 (m[0] - b, m[1] - b, m[2] - b); +} + +mat3 __operator * (const float a, const mat3 n) { +    return mat3 (a * n[0], a * n[1], a * n[2]); +} + +mat3 __operator * (const mat3 m, const float b) { +    return mat3 (m[0] * b, m[1] * b, m[2] * b); +} + +mat3 __operator / (const float a, const mat3 n) { +    return mat3 (a / n[0], a / n[1], a / n[2]); +} + +mat3 __operator / (const mat3 m, const float b) { +    return mat3 (m[0] / b, m[1] / b, m[2] / b); +} + +mat4 __operator + (const float a, const mat4 n) { +    return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]); +} + +mat4 __operator + (const mat4 m, const float b) { +    return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b); +} + +mat4 __operator - (const float a, const mat4 n) { +    return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]); +} + +mat4 __operator - (const mat4 m, const float b) { +    return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b); +} + +mat4 __operator * (const float a, const mat4 n) { +    return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]); +} + +mat4 __operator * (const mat4 m, const float b) { +    return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b); +} + +mat4 __operator / (const float a, const mat4 n) { +    return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]); +} + +mat4 __operator / (const mat4 m, const float b) { +    return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b); +} + +// +// ... or one can be a scalar integer and the other an integer vector. +// + +ivec2 __operator + (const int a, const ivec2 u) { +    return ivec2 (a + u.x, a + u.y); +} + +ivec2 __operator + (const ivec2 v, const int b) { +    return ivec2 (v.x + b, v.y + b); +} + +ivec2 __operator - (const int a, const ivec2 u) { +    return ivec2 (a - u.x, a - u.y); +} + +ivec2 __operator - (const ivec2 v, const int b) { +    return ivec2 (v.x - b, v.y - b); +} + +ivec2 __operator * (const int a, const ivec2 u) { +    return ivec2 (a * u.x, a * u.y); +} + +ivec2 __operator * (const ivec2 v, const int b) { +    return ivec2 (v.x * b, v.y * b); +} + +ivec2 __operator / (const int a, const ivec2 u) { +    return ivec2 (a / u.x, a / u.y); +} + +ivec2 __operator / (const ivec2 v, const int b) { +    return ivec2 (v.x / b, v.y / b); +} + +ivec3 __operator + (const int a, const ivec3 u) { +    return ivec3 (a + u.x, a + u.y, a + u.z); +} + +ivec3 __operator + (const ivec3 v, const int b) { +    return ivec3 (v.x + b, v.y + b, v.z + b); +} + +ivec3 __operator - (const int a, const ivec3 u) { +    return ivec3 (a - u.x, a - u.y, a - u.z); +} + +ivec3 __operator - (const ivec3 v, const int b) { +    return ivec3 (v.x - b, v.y - b, v.z - b); +} + +ivec3 __operator * (const int a, const ivec3 u) { +    return ivec3 (a * u.x, a * u.y, a * u.z); +} + +ivec3 __operator * (const ivec3 v, const int b) { +    return ivec3 (v.x * b, v.y * b, v.z * b); +} + +ivec3 __operator / (const int a, const ivec3 u) { +    return ivec3 (a / u.x, a / u.y, a / u.z); +} + +ivec3 __operator / (const ivec3 v, const int b) { +    return ivec3 (v.x / b, v.y / b, v.z / b); +} + +ivec4 __operator + (const int a, const ivec4 u) { +    return ivec4 (a + u.x, a + u.y, a + u.z, a + u.w); +} + +ivec4 __operator + (const ivec4 v, const int b) { +    return ivec4 (v.x + b, v.y + b, v.z + b, v.w + b); +} + +ivec4 __operator - (const int a, const ivec4 u) { +    return ivec4 (a - u.x, a - u.y, a - u.z, a - u.w); +} + +ivec4 __operator - (const ivec4 v, const int b) { +    return ivec4 (v.x - b, v.y - b, v.z - b, v.w - b); +} + +ivec4 __operator * (const int a, const ivec4 u) { +    return ivec4 (a * u.x, a * u.y, a * u.z, a * u.w); +} + +ivec4 __operator * (const ivec4 v, const int b) { +    return ivec4 (v.x * b, v.y * b, v.z * b, v.w * b); +} + +ivec4 __operator / (const int a, const ivec4 u) { +    return ivec4 (a / u.x, a / u.y, a / u.z, a / u.w); +} + +ivec4 __operator / (const ivec4 v, const int b) { +    return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b); +} + +//  +//   Additionally, for multiply (*) one can be a vector and the other a matrix with the same +//   dimensional size of the vector. These result in the same fundamental type (integer or float) +//   as the expressions they operate on. +//  +// [When:] +// • the left argument is a floating-point vector and the right is a matrix with a compatible +//   dimension in which case the * operator will do a row vector matrix multiplication. +// • the left argument is a matrix and the right is a floating-point vector with a compatible +//   dimension in which case the * operator will do a column vector matrix multiplication. +//  + +vec2 __operator * (const mat2 m, const vec2 v) { +    return vec2 ( +        v.x * m[0].x + v.y * m[1].x, +        v.x * m[0].y + v.y * m[1].y +    ); +} + +vec2 __operator * (const vec2 v, const mat2 m) { +    return vec2 ( +        v.x * m[0].x + v.y * m[0].y, +        v.x * m[1].x + v.y * m[1].y +    ); +} + +vec3 __operator * (const mat3 m, const vec3 v) { +    return vec3 ( +        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x, +        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y, +        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z +    ); +} + +vec3 __operator * (const vec3 v, const mat3 m) { +    return vec3 ( +        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z, +        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z, +        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z +    ); +} + +vec4 __operator * (const mat4 m, const vec4 v) { +    return vec4 ( +        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x, +        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y, +        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z, +        v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w +    ); +} + +vec4 __operator * (const vec4 v, const mat4 m) { +    return vec4 ( +        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w, +        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w, +        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w, +        v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w +    ); +} + +//  +//   Multiply (*) applied to two vectors yields a component-wise multiply. +//  + +vec2 __operator * (const vec2 v, const vec2 u) { +    return vec2 (v.x * u.x, v.y * u.y); +} + +vec3 __operator * (const vec3 v, const vec3 u) { +    return vec3 (v.x * u.x, v.y * u.y, v.z * u.z); +} + +vec4 __operator * (const vec4 v, const vec4 u) { +    return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); +} + +ivec2 __operator * (const ivec2 v, const ivec2 u) { +    return ivec2 (v.x * u.x, v.y * u.y); +} + +ivec3 __operator * (const ivec3 v, const ivec3 u) { +    return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z); +} + +ivec4 __operator * (const ivec4 v, const ivec4 u) { +    return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w); +} + +//  +//   Dividing by zero does not cause an exception but does result in an unspecified value. +//  + +vec2 __operator / (const vec2 v, const vec2 u) { +    return vec2 (v.x / u.x, v.y / u.y); +} + +vec3 __operator / (const vec3 v, const vec3 u) { +    return vec3 (v.x / u.x, v.y / u.y, v.z / u.z); +} + +vec4 __operator / (const vec4 v, const vec4 u) { +    return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); +} + +ivec2 __operator / (const ivec2 v, const ivec2 u) { +    return ivec2 (v.x / u.x, v.y / u.y); +} + +ivec3 __operator / (const ivec3 v, const ivec3 u) { +    return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z); +} + +ivec4 __operator / (const ivec4 v, const ivec4 u) { +    return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w); +} + +mat2 __operator / (const mat2 m, const mat2 n) { +    return mat2 (m[0] / n[0], m[1] / n[1]); +} + +mat3 __operator / (const mat3 m, const mat3 n) { +    return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]); +} + +mat4 __operator / (const mat4 m, const mat4 n) { +    return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]); +} + +//  +//   Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not +//   a component-wise multiply. +//  + +mat2 __operator * (const mat2 m, const mat2 n) { +    return mat2 (m * n[0], m * n[1]); +} + +mat3 __operator * (const mat3 m, const mat3 n) { +    return mat3 (m * n[0], m * n[1], m * n[2]); +} + +mat4 __operator * (const mat4 m, const mat4 n) { +    return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]); +} + +//  +// • The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and +//   ++) that operate on integer or floating-point values (including vectors and matrices). These +//   result with the same type they operated on. For post- and pre-increment and decrement, the +//   expression must be one that could be assigned to (an l-value). Pre-increment and predecrement +//   add or subtract 1 or 1.0 to the contents of the expression they operate on, and the +//   value of the pre-increment or pre-decrement expression is the resulting value of that +//   modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to +//   the contents of the expression they operate on, but the resulting expression has the +//   expression’s value before the post-increment or post-decrement was executed. +//  +// [NOTE: postfix increment and decrement operators take additional dummy int parameter to +//        distinguish their prototypes from prefix ones.] +//  + +float __operator - (const float a) { +    float c = a; +    __asm float_negate c; +    return c; +} + +int __operator - (const int a) { +    int c = a; +    __asm int_negate c; +    return c; +} + +vec2 __operator - (const vec2 v) { +    return vec2 (-v.x, -v.y); +} + +vec3 __operator - (const vec3 v) { +    return vec3 (-v.x, -v.y, -v.z); +} + +vec4 __operator - (const vec4 v) { +    return vec4 (-v.x, -v.y, -v.z, -v.w); +} + +ivec2 __operator - (const ivec2 v) { +    return ivec2 (-v.x, -v.y); +} + +ivec3 __operator - (const ivec3 v) { +    return ivec3 (-v.x, -v.y, -v.z); +} + +ivec4 __operator - (const ivec4 v) { +    return ivec4 (-v.x, -v.y, -v.z, -v.w); +} + +mat2 __operator - (const mat2 m) { +    return mat2 (-m[0], -m[1]); +} + +mat3 __operator - (const mat3 m) { +    return mat3 (-m[0], -m[1], -m[2]); +} + +mat4 __operator - (const mat4 m) { +    return mat4 (-m[0], -m[1], -m[2], -m[3]); +} + +void __operator -- (inout float a) { +    a -= 1.0; +} + +void __operator -- (inout int a) { +    a -= 1; +} + +void __operator -- (inout vec2 v) { +    --v.x, --v.y; +} + +void __operator -- (inout vec3 v) { +    --v.x, --v.y, --v.z; +} + +void __operator -- (inout vec4 v) { +    --v.x, --v.y, --v.z, --v.w; +} + +void __operator -- (inout ivec2 v) { +    --v.x, --v.y; +} + +void __operator -- (inout ivec3 v) { +    --v.x, --v.y, --v.z; +} + +void __operator -- (inout ivec4 v) { +    --v.x, --v.y, --v.z, --v.w; +} + +void __operator -- (inout mat2 m) { +    --m[0], --m[1]; +} + +void __operator -- (inout mat3 m) { +    --m[0], --m[1], --m[2]; +} + +void __operator -- (inout mat4 m) { +    --m[0], --m[1], --m[2], --m[3]; +} + +void __operator ++ (inout float a) { +    a += 1.0; +} + +void __operator ++ (inout int a) { +    a += 1; +} + +void __operator ++ (inout vec2 v) { +    ++v.x, ++v.y; +} + +void __operator ++ (inout vec3 v) { +    ++v.x, ++v.y, ++v.z; +} + +void __operator ++ (inout vec4 v) { +    ++v.x, ++v.y, ++v.z, ++v.w; +} + +void __operator ++ (inout ivec2 v) { +    ++v.x, ++v.y; +} + +void __operator ++ (inout ivec3 v) { +    ++v.x, ++v.y, ++v.z; +} + +void __operator ++ (inout ivec4 v) { +    ++v.x, ++v.y, ++v.z, ++v.w; +} + +void __operator ++ (inout mat2 m) { +    ++m[0], ++m[1]; +} + +void __operator ++ (inout mat3 m) { +    ++m[0], ++m[1], ++m[2]; +} + +void __operator ++ (inout mat4 m) { +    ++m[0], ++m[1], ++m[2], ++m[3]; +} + +float __operator -- (inout float a, const int) { +    const float c = a; +    --a; +    return c; +} + +int __operator -- (inout int a, const int) { +    const int c = a; +    --a; +    return c; +} + +vec2 __operator -- (inout vec2 v, const int) { +    return vec2 (v.x--, v.y--); +} + +vec3 __operator -- (inout vec3 v, const int) { +    return vec3 (v.x--, v.y--, v.z--); +} + +vec4 __operator -- (inout vec4 v, const int) { +    return vec4 (v.x--, v.y--, v.z--, v.w--); +} + +ivec2 __operator -- (inout ivec2 v, const int) { +    return ivec2 (v.x--, v.y--); +} + +ivec3 __operator -- (inout ivec3 v, const int) { +    return ivec3 (v.x--, v.y--, v.z--); +} + +ivec4 __operator -- (inout ivec4 v, const int) { +    return ivec4 (v.x--, v.y--, v.z--, v.w--); +} + +mat2 __operator -- (inout mat2 m, const int) { +    return mat2 (m[0]--, m[1]--); +} + +mat3 __operator -- (inout mat3 m, const int) { +    return mat3 (m[0]--, m[1]--, m[2]--); +} + +mat4 __operator -- (inout mat4 m, const int) { +    return mat4 (m[0]--, m[1]--, m[2]--, m[3]--); +} + +float __operator ++ (inout float a, const int) { +    const float c = a; +    ++a; +    return c; +} + +int __operator ++ (inout int a, const int) { +    const int c = a; +    ++a; +    return c; +} + +vec2 __operator ++ (inout vec2 v, const int) { +    return vec2 (v.x++, v.y++); +} + +vec3 __operator ++ (inout vec3 v, const int) { +    return vec3 (v.x++, v.y++, v.z++); +} + +vec4 __operator ++ (inout vec4 v, const int) { +    return vec4 (v.x++, v.y++, v.z++, v.w++); +} + +ivec2 __operator ++ (inout ivec2 v, const int) { +    return ivec2 (v.x++, v.y++); +} + +ivec3 __operator ++ (inout ivec3 v, const int) { +    return ivec3 (v.x++, v.y++, v.z++); +} + +ivec4 __operator ++ (inout ivec4 v, const int) { +    return ivec4 (v.x++, v.y++, v.z++, v.w++); +} + +mat2 __operator ++ (inout mat2 m, const int) { +    return mat2 (m[0]++, m[1]++); +} + +mat3 __operator ++ (inout mat3 m, const int) { +    return mat3 (m[0]++, m[1]++, m[2]++); +} + +mat4 __operator ++ (inout mat4 m, const int) { +    return mat4 (m[0]++, m[1]++, m[2]++, m[3]++); +} + +//  +// • The relational operators greater than (>), less than (<), greater than or equal (>=), and less +//   than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The +//   result is scalar Boolean. The operands’ types must match. To do component-wise +//   comparisons on vectors, use the built-in functions lessThan, lessThanEqual, +//   greaterThan, and greaterThanEqual. +//  + +bool __operator < (const float a, const float b) { +    bool c; +    __asm float_less c, a, b; +    return c; +} + +bool __operator < (const int a, const int b) { +    bool c; +    __asm int_less c, a, b; +    return c; +} + +bool __operator > (const float a, const float b) { +    return b < a; +} + +bool __operator > (const int a, const int b) { +    return b < a; +} + +bool __operator >= (const float a, const float b) { +    return a > b || a == b; +} + +bool __operator >= (const int a, const int b) { +    return a > b || a == b; +} + +bool __operator <= (const float a, const float b) { +    return a < b || a == b; +} + +bool __operator <= (const int a, const int b) { +    return a < b || a == b; +} + +//  +// • The equality operators equal (==), and not equal (!=) operate on all types except arrays. +//   They result in a scalar Boolean. For vectors, matrices, and structures, all components of the +//   operands must be equal for the operands to be considered equal. To get component-wise +//   equality results for vectors, use the built-in functions equal and notEqual. +//  + +bool __operator == (const float a, const float b) { +	bool c; +	__asm float_equal c, a, b; +	return c; +} + +bool __operator == (const int a, const int b) { +	bool c; +	__asm int_equal c, a, b; +	return c; +} + +bool __operator == (const bool a, const bool b) { +	bool c; +	__asm bool_equal c, a, b; +	return c; +} + +bool __operator == (const vec2 v, const vec2 u) { +	return v.x == u.x && v.y == u.y; +} + +bool __operator == (const vec3 v, const vec3 u) { +	return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const vec4 v, const vec4 u) { +	return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const ivec2 v, const ivec2 u) { +	return v.x == u.x && v.y == u.y; +} + +bool __operator == (const ivec3 v, const ivec3 u) { +	return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const ivec4 v, const ivec4 u) { +	return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const bvec2 v, const bvec2 u) { +	return v.x == u.x && v.y == u.y; +} + +bool __operator == (const bvec3 v, const bvec3 u) { +	return v.x == u.x && v.y == u.y && v.z == u.z; +} + +bool __operator == (const bvec4 v, const bvec4 u) { +	return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w; +} + +bool __operator == (const mat2 m, const mat2 n) { +	return m[0] == n[0] && m[1] == n[1]; +} + +bool __operator == (const mat3 m, const mat3 n) { +	return m[0] == n[0] && m[1] == n[1] && m[2] == n[2]; +} + +bool __operator == (const mat4 m, const mat4 n) { +	return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3]; +} + +bool __operator != (const float a, const float b) { +	return !(a == b); +} + +bool __operator != (const int a, const int b) { +	return !(a == b); +} + +bool __operator != (const bool a, const bool b) { +	return !(a == b); +} + +bool __operator != (const vec2 v, const vec2 u) { +	return v.x != u.x || v.y != u.y; +} + +bool __operator != (const vec3 v, const vec3 u) { +	return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const vec4 v, const vec4 u) { +	return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const ivec2 v, const ivec2 u) { +	return v.x != u.x || v.y != u.y; +} + +bool __operator != (const ivec3 v, const ivec3 u) { +	return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const ivec4 v, const ivec4 u) { +	return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const bvec2 v, const bvec2 u) { +	return v.x != u.x || v.y != u.y; +} + +bool __operator != (const bvec3 v, const bvec3 u) { +	return v.x != u.x || v.y != u.y || v.z != u.z; +} + +bool __operator != (const bvec4 v, const bvec4 u) { +	return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w; +} + +bool __operator != (const mat2 m, const mat2 n) { +	return m[0] != n[0] || m[1] != n[1]; +} + +bool __operator != (const mat3 m, const mat3 n) { +	return m[0] != n[0] || m[1] != n[1] || m[2] != n[2]; +} + +bool __operator != (const mat4 m, const mat4 n) { +	return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3]; +} + +//  +// • The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only +//   on two Boolean expressions and result in a Boolean expression. And (&&) will only +//   evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will +//   only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or +//   (^^) will always evaluate both operands. +//  + +bool __operator ^^ (const bool a, const bool b) { +    return a != b; +} + +//  +// [These operators are handled internally by the compiler:] +//  +// bool __operator && (bool a, bool b) { +//     return a ? b : false; +// } +// bool __operator || (bool a, bool b) { +//     return a ? true : b; +// } +//  + +//  +// • The logical unary operator not (!). It operates only on a Boolean expression and results in a +//   Boolean expression. To operate on a vector, use the built-in function not. +//  + +bool __operator ! (const bool a) { +    return a == false; +} +  | 
