diff options
Diffstat (limited to 'src/gallium/auxiliary/rtasm')
-rw-r--r-- | src/gallium/auxiliary/rtasm/Makefile | 1 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/SConscript | 1 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_execmem.c | 17 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc.c | 959 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc.h | 335 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c | 666 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h | 480 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_x86sse.c | 66 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_x86sse.h | 11 |
9 files changed, 2238 insertions, 298 deletions
diff --git a/src/gallium/auxiliary/rtasm/Makefile b/src/gallium/auxiliary/rtasm/Makefile index 39b8a4dbd7..252dc5274a 100644 --- a/src/gallium/auxiliary/rtasm/Makefile +++ b/src/gallium/auxiliary/rtasm/Makefile @@ -7,6 +7,7 @@ C_SOURCES = \ rtasm_cpu.c \ rtasm_execmem.c \ rtasm_x86sse.c \ + rtasm_ppc.c \ rtasm_ppc_spe.c include ../../Makefile.template diff --git a/src/gallium/auxiliary/rtasm/SConscript b/src/gallium/auxiliary/rtasm/SConscript index 8ea25922aa..eb48368acc 100644 --- a/src/gallium/auxiliary/rtasm/SConscript +++ b/src/gallium/auxiliary/rtasm/SConscript @@ -6,6 +6,7 @@ rtasm = env.ConvenienceLibrary( 'rtasm_cpu.c', 'rtasm_execmem.c', 'rtasm_x86sse.c', + 'rtasm_ppc.c', 'rtasm_ppc_spe.c', ]) diff --git a/src/gallium/auxiliary/rtasm/rtasm_execmem.c b/src/gallium/auxiliary/rtasm/rtasm_execmem.c index f16191cb61..be7433baf8 100644 --- a/src/gallium/auxiliary/rtasm/rtasm_execmem.c +++ b/src/gallium/auxiliary/rtasm/rtasm_execmem.c @@ -38,12 +38,13 @@ #include "rtasm_execmem.h" -#if defined(__linux__) +#if defined(PIPE_OS_LINUX) + /* * Allocate a large block of memory which can hold code then dole it out * in pieces by means of the generic memory manager code. -*/ + */ #include <unistd.h> #include <sys/mman.h> @@ -62,7 +63,7 @@ static void init_heap(void) { if (!exec_heap) - exec_heap = mmInit( 0, EXEC_HEAP_SIZE ); + exec_heap = u_mmInit( 0, EXEC_HEAP_SIZE ); if (!exec_mem) exec_mem = (unsigned char *) mmap(0, EXEC_HEAP_SIZE, @@ -83,7 +84,7 @@ rtasm_exec_malloc(size_t size) if (exec_heap) { size = (size + 31) & ~31; /* next multiple of 32 bytes */ - block = mmAllocMem( exec_heap, size, 5, 0 ); /* 5 -> 32-byte alignment */ + block = u_mmAllocMem( exec_heap, size, 5, 0 ); /* 5 -> 32-byte alignment */ } if (block) @@ -103,17 +104,17 @@ rtasm_exec_free(void *addr) pipe_mutex_lock(exec_mutex); if (exec_heap) { - struct mem_block *block = mmFindBlock(exec_heap, (unsigned char *)addr - exec_mem); + struct mem_block *block = u_mmFindBlock(exec_heap, (unsigned char *)addr - exec_mem); if (block) - mmFreeMem(block); + u_mmFreeMem(block); } pipe_mutex_unlock(exec_mutex); } -#else +#else /* PIPE_OS_LINUX */ /* * Just use regular memory. @@ -133,4 +134,4 @@ rtasm_exec_free(void *addr) } -#endif +#endif /* PIPE_OS_LINUX */ diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc.c b/src/gallium/auxiliary/rtasm/rtasm_ppc.c new file mode 100644 index 0000000000..b65bfa7bbd --- /dev/null +++ b/src/gallium/auxiliary/rtasm/rtasm_ppc.c @@ -0,0 +1,959 @@ +/************************************************************************** + * + * Copyright (C) 2008 Tungsten Graphics, Inc. All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + +/** + * PPC code generation. + * For reference, see http://www.power.org/resources/reading/PowerISA_V2.05.pdf + * ABI info: http://www.cs.utsa.edu/~whaley/teach/cs6463FHPO/LEC/lec12_ho.pdf + * + * Other PPC refs: + * http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600719DF2 + * http://www.ibm.com/developerworks/eserver/library/es-archguide-v2.html + * http://www.freescale.com/files/product/doc/MPCFPE32B.pdf + * + * \author Brian Paul + */ + + +#include <stdio.h> +#include "util/u_memory.h" +#include "pipe/p_debug.h" +#include "rtasm_execmem.h" +#include "rtasm_ppc.h" + + +void +ppc_init_func(struct ppc_function *p) +{ + uint i; + + p->num_inst = 0; + p->max_inst = 100; /* first guess at buffer size */ + p->store = rtasm_exec_malloc(p->max_inst * PPC_INST_SIZE); + p->reg_used = 0x0; + p->fp_used = 0x0; + p->vec_used = 0x0; + + /* only allow using gp registers 3..12 for now */ + for (i = 0; i < 3; i++) + ppc_reserve_register(p, i); + for (i = 12; i < PPC_NUM_REGS; i++) + ppc_reserve_register(p, i); +} + + +void +ppc_release_func(struct ppc_function *p) +{ + assert(p->num_inst <= p->max_inst); + if (p->store != NULL) { + rtasm_exec_free(p->store); + } + p->store = NULL; +} + + +uint +ppc_num_instructions(const struct ppc_function *p) +{ + return p->num_inst; +} + + +void (*ppc_get_func(struct ppc_function *p))(void) +{ +#if 0 + DUMP_END(); + if (DISASSEM && p->store) + debug_printf("disassemble %p %p\n", p->store, p->csr); + + if (p->store == p->error_overflow) + return (void (*)(void)) NULL; + else +#endif + return (void (*)(void)) p->store; +} + + +void +ppc_dump_func(const struct ppc_function *p) +{ + uint i; + for (i = 0; i < p->num_inst; i++) { + debug_printf("%3u: 0x%08x\n", i, p->store[i]); + } +} + + +/** + * Mark a register as being unavailable. + */ +int +ppc_reserve_register(struct ppc_function *p, int reg) +{ + assert(reg < PPC_NUM_REGS); + p->reg_used |= (1 << reg); + return reg; +} + + +/** + * Allocate a general purpose register. + * \return register index or -1 if none left. + */ +int +ppc_allocate_register(struct ppc_function *p) +{ + unsigned i; + for (i = 0; i < PPC_NUM_REGS; i++) { + const uint64_t mask = 1 << i; + if ((p->reg_used & mask) == 0) { + p->reg_used |= mask; + return i; + } + } + return -1; +} + + +/** + * Mark the given general purpose register as "unallocated". + */ +void +ppc_release_register(struct ppc_function *p, int reg) +{ + assert(reg < PPC_NUM_REGS); + assert(p->reg_used & (1 << reg)); + p->reg_used &= ~(1 << reg); +} + + +/** + * Allocate a floating point register. + * \return register index or -1 if none left. + */ +int +ppc_allocate_fp_register(struct ppc_function *p) +{ + unsigned i; + for (i = 0; i < PPC_NUM_FP_REGS; i++) { + const uint64_t mask = 1 << i; + if ((p->fp_used & mask) == 0) { + p->fp_used |= mask; + return i; + } + } + return -1; +} + + +/** + * Mark the given floating point register as "unallocated". + */ +void +ppc_release_fp_register(struct ppc_function *p, int reg) +{ + assert(reg < PPC_NUM_FP_REGS); + assert(p->fp_used & (1 << reg)); + p->fp_used &= ~(1 << reg); +} + + +/** + * Allocate a vector register. + * \return register index or -1 if none left. + */ +int +ppc_allocate_vec_register(struct ppc_function *p) +{ + unsigned i; + for (i = 0; i < PPC_NUM_VEC_REGS; i++) { + const uint64_t mask = 1 << i; + if ((p->vec_used & mask) == 0) { + p->vec_used |= mask; + return i; + } + } + return -1; +} + + +/** + * Mark the given vector register as "unallocated". + */ +void +ppc_release_vec_register(struct ppc_function *p, int reg) +{ + assert(reg < PPC_NUM_VEC_REGS); + assert(p->vec_used & (1 << reg)); + p->vec_used &= ~(1 << reg); +} + + +/** + * Append instruction to instruction buffer. Grow buffer if out of room. + */ +static void +emit_instruction(struct ppc_function *p, uint32_t inst_bits) +{ + if (!p->store) + return; /* out of memory, drop the instruction */ + + if (p->num_inst == p->max_inst) { + /* allocate larger buffer */ + uint32_t *newbuf; + p->max_inst *= 2; /* 2x larger */ + newbuf = rtasm_exec_malloc(p->max_inst * PPC_INST_SIZE); + if (newbuf) { + memcpy(newbuf, p->store, p->num_inst * PPC_INST_SIZE); + } + rtasm_exec_free(p->store); + p->store = newbuf; + if (!p->store) { + /* out of memory */ + p->num_inst = 0; + return; + } + } + + p->store[p->num_inst++] = inst_bits; +} + + +union vx_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned vD:5; + unsigned vA:5; + unsigned vB:5; + unsigned op2:11; + } inst; +}; + +static INLINE void +emit_vx(struct ppc_function *p, uint op2, uint vD, uint vA, uint vB) +{ + union vx_inst inst; + inst.inst.op = 4; + inst.inst.vD = vD; + inst.inst.vA = vA; + inst.inst.vB = vB; + inst.inst.op2 = op2; + emit_instruction(p, inst.bits); +}; + + +union vxr_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned vD:5; + unsigned vA:5; + unsigned vB:5; + unsigned rC:1; + unsigned op2:10; + } inst; +}; + +static INLINE void +emit_vxr(struct ppc_function *p, uint op2, uint vD, uint vA, uint vB) +{ + union vxr_inst inst; + inst.inst.op = 4; + inst.inst.vD = vD; + inst.inst.vA = vA; + inst.inst.vB = vB; + inst.inst.rC = 0; + inst.inst.op2 = op2; + emit_instruction(p, inst.bits); +}; + + +union va_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned vD:5; + unsigned vA:5; + unsigned vB:5; + unsigned vC:5; + unsigned op2:6; + } inst; +}; + +static INLINE void +emit_va(struct ppc_function *p, uint op2, uint vD, uint vA, uint vB, uint vC) +{ + union va_inst inst; + inst.inst.op = 4; + inst.inst.vD = vD; + inst.inst.vA = vA; + inst.inst.vB = vB; + inst.inst.vC = vC; + inst.inst.op2 = op2; + emit_instruction(p, inst.bits); +}; + + +union i_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned li:24; + unsigned aa:1; + unsigned lk:1; + } inst; +}; + +static INLINE void +emit_i(struct ppc_function *p, uint op, uint li, uint aa, uint lk) +{ + union i_inst inst; + inst.inst.op = op; + inst.inst.li = li; + inst.inst.aa = aa; + inst.inst.lk = lk; + emit_instruction(p, inst.bits); +} + + +union xl_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned bo:5; + unsigned bi:5; + unsigned unused:3; + unsigned bh:2; + unsigned op2:10; + unsigned lk:1; + } inst; +}; + +static INLINE void +emit_xl(struct ppc_function *p, uint op, uint bo, uint bi, uint bh, + uint op2, uint lk) +{ + union xl_inst inst; + inst.inst.op = op; + inst.inst.bo = bo; + inst.inst.bi = bi; + inst.inst.unused = 0x0; + inst.inst.bh = bh; + inst.inst.op2 = op2; + inst.inst.lk = lk; + emit_instruction(p, inst.bits); +} + +static INLINE void +dump_xl(const char *name, uint inst) +{ + union xl_inst i; + + i.bits = inst; + debug_printf("%s = 0x%08x\n", name, inst); + debug_printf(" op: %d 0x%x\n", i.inst.op, i.inst.op); + debug_printf(" bo: %d 0x%x\n", i.inst.bo, i.inst.bo); + debug_printf(" bi: %d 0x%x\n", i.inst.bi, i.inst.bi); + debug_printf(" unused: %d 0x%x\n", i.inst.unused, i.inst.unused); + debug_printf(" bh: %d 0x%x\n", i.inst.bh, i.inst.bh); + debug_printf(" op2: %d 0x%x\n", i.inst.op2, i.inst.op2); + debug_printf(" lk: %d 0x%x\n", i.inst.lk, i.inst.lk); +} + + +union x_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned vrs:5; + unsigned ra:5; + unsigned rb:5; + unsigned op2:10; + unsigned unused:1; + } inst; +}; + +static INLINE void +emit_x(struct ppc_function *p, uint op, uint vrs, uint ra, uint rb, uint op2) +{ + union x_inst inst; + inst.inst.op = op; + inst.inst.vrs = vrs; + inst.inst.ra = ra; + inst.inst.rb = rb; + inst.inst.op2 = op2; + inst.inst.unused = 0x0; + emit_instruction(p, inst.bits); +} + + +union d_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned rt:5; + unsigned ra:5; + unsigned si:16; + } inst; +}; + +static INLINE void +emit_d(struct ppc_function *p, uint op, uint rt, uint ra, int si) +{ + union d_inst inst; + assert(si >= -32768); + assert(si <= 32767); + inst.inst.op = op; + inst.inst.rt = rt; + inst.inst.ra = ra; + inst.inst.si = (unsigned) (si & 0xffff); + emit_instruction(p, inst.bits); +}; + + +union a_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned frt:5; + unsigned fra:5; + unsigned frb:5; + unsigned unused:5; + unsigned op2:5; + unsigned rc:1; + } inst; +}; + +static INLINE void +emit_a(struct ppc_function *p, uint op, uint frt, uint fra, uint frb, uint op2, + uint rc) +{ + union a_inst inst; + inst.inst.op = op; + inst.inst.frt = frt; + inst.inst.fra = fra; + inst.inst.frb = frb; + inst.inst.unused = 0x0; + inst.inst.op2 = op2; + inst.inst.rc = rc; + emit_instruction(p, inst.bits); +}; + + +union xo_inst { + uint32_t bits; + struct { + unsigned op:6; + unsigned rt:5; + unsigned ra:5; + unsigned rb:5; + unsigned oe:1; + unsigned op2:9; + unsigned rc:1; + } inst; +}; + +static INLINE void +emit_xo(struct ppc_function *p, uint op, uint rt, uint ra, uint rb, uint oe, + uint op2, uint rc) +{ + union xo_inst inst; + inst.inst.op = op; + inst.inst.rt = rt; + inst.inst.ra = ra; + inst.inst.rb = rb; + inst.inst.oe = oe; + inst.inst.op2 = op2; + inst.inst.rc = rc; + emit_instruction(p, inst.bits); +} + + + + + +/** + ** float vector arithmetic + **/ + +/** vector float add */ +void +ppc_vaddfp(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 10, vD, vA, vB); +} + +/** vector float substract */ +void +ppc_vsubfp(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 74, vD, vA, vB); +} + +/** vector float min */ +void +ppc_vminfp(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 1098, vD, vA, vB); +} + +/** vector float max */ +void +ppc_vmaxfp(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 1034, vD, vA, vB); +} + +/** vector float mult add: vD = vA * vB + vC */ +void +ppc_vmaddfp(struct ppc_function *p, uint vD, uint vA, uint vB, uint vC) +{ + emit_va(p, 46, vD, vA, vC, vB); /* note arg order */ +} + +/** vector float negative mult subtract: vD = vA - vB * vC */ +void +ppc_vnmsubfp(struct ppc_function *p, uint vD, uint vA, uint vB, uint vC) +{ + emit_va(p, 47, vD, vB, vA, vC); /* note arg order */ +} + +/** vector float compare greater than */ +void +ppc_vcmpgtfpx(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vxr(p, 710, vD, vA, vB); +} + +/** vector float compare greater than or equal to */ +void +ppc_vcmpgefpx(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vxr(p, 454, vD, vA, vB); +} + +/** vector float compare equal */ +void +ppc_vcmpeqfpx(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vxr(p, 198, vD, vA, vB); +} + +/** vector float 2^x */ +void +ppc_vexptefp(struct ppc_function *p, uint vD, uint vB) +{ + emit_vx(p, 394, vD, 0, vB); +} + +/** vector float log2(x) */ +void +ppc_vlogefp(struct ppc_function *p, uint vD, uint vB) +{ + emit_vx(p, 458, vD, 0, vB); +} + +/** vector float reciprocol */ +void +ppc_vrefp(struct ppc_function *p, uint vD, uint vB) +{ + emit_vx(p, 266, vD, 0, vB); +} + +/** vector float reciprocol sqrt estimate */ +void +ppc_vrsqrtefp(struct ppc_function *p, uint vD, uint vB) +{ + emit_vx(p, 330, vD, 0, vB); +} + +/** vector float round to negative infinity */ +void +ppc_vrfim(struct ppc_function *p, uint vD, uint vB) +{ + emit_vx(p, 714, vD, 0, vB); +} + +/** vector float round to positive infinity */ +void +ppc_vrfip(struct ppc_function *p, uint vD, uint vB) +{ + emit_vx(p, 650, vD, 0, vB); +} + +/** vector float round to nearest int */ +void +ppc_vrfin(struct ppc_function *p, uint vD, uint vB) +{ + emit_vx(p, 522, vD, 0, vB); +} + +/** vector float round to int toward zero */ +void +ppc_vrfiz(struct ppc_function *p, uint vD, uint vB) +{ + emit_vx(p, 586, vD, 0, vB); +} + +/** vector store: store vR at mem[vA+vB] */ +void +ppc_stvx(struct ppc_function *p, uint vR, uint vA, uint vB) +{ + emit_x(p, 31, vR, vA, vB, 231); +} + +/** vector load: vR = mem[vA+vB] */ +void +ppc_lvx(struct ppc_function *p, uint vR, uint vA, uint vB) +{ + emit_x(p, 31, vR, vA, vB, 103); +} + +/** load vector element word: vR = mem_word[ra+rb] */ +void +ppc_lvewx(struct ppc_function *p, uint vr, uint ra, uint rb) +{ + emit_x(p, 31, vr, ra, rb, 71); +} + + + + +/** + ** vector bitwise operations + **/ + +/** vector and */ +void +ppc_vand(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 1028, vD, vA, vB); +} + +/** vector and complement */ +void +ppc_vandc(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 1092, vD, vA, vB); +} + +/** vector or */ +void +ppc_vor(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 1156, vD, vA, vB); +} + +/** vector nor */ +void +ppc_vnor(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 1284, vD, vA, vB); +} + +/** vector xor */ +void +ppc_vxor(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 1220, vD, vA, vB); +} + +/** Pseudo-instruction: vector move */ +void +ppc_vmove(struct ppc_function *p, uint vD, uint vA) +{ + ppc_vor(p, vD, vA, vA); +} + +/** Set vector register to {0,0,0,0} */ +void +ppc_vzero(struct ppc_function *p, uint vr) +{ + ppc_vxor(p, vr, vr, vr); +} + + + + +/** + ** Vector shuffle / select / splat / etc + **/ + +/** vector permute */ +void +ppc_vperm(struct ppc_function *p, uint vD, uint vA, uint vB, uint vC) +{ + emit_va(p, 43, vD, vA, vB, vC); +} + +/** vector select */ +void +ppc_vsel(struct ppc_function *p, uint vD, uint vA, uint vB, uint vC) +{ + emit_va(p, 42, vD, vA, vB, vC); +} + +/** vector splat byte */ +void +ppc_vspltb(struct ppc_function *p, uint vD, uint vB, uint imm) +{ + emit_vx(p, 42, vD, imm, vB); +} + +/** vector splat half word */ +void +ppc_vsplthw(struct ppc_function *p, uint vD, uint vB, uint imm) +{ + emit_vx(p, 588, vD, imm, vB); +} + +/** vector splat word */ +void +ppc_vspltw(struct ppc_function *p, uint vD, uint vB, uint imm) +{ + emit_vx(p, 652, vD, imm, vB); +} + +/** vector splat signed immediate word */ +void +ppc_vspltisw(struct ppc_function *p, uint vD, int imm) +{ + assert(imm >= -16); + assert(imm < 15); + emit_vx(p, 908, vD, imm, 0); +} + +/** vector shift left word: vD[word] = vA[word] << (vB[word] & 0x1f) */ +void +ppc_vslw(struct ppc_function *p, uint vD, uint vA, uint vB) +{ + emit_vx(p, 388, vD, vA, vB); +} + + + + +/** + ** integer arithmetic + **/ + +/** rt = ra + imm */ +void +ppc_addi(struct ppc_function *p, uint rt, uint ra, int imm) +{ + emit_d(p, 14, rt, ra, imm); +} + +/** rt = ra + (imm << 16) */ +void +ppc_addis(struct ppc_function *p, uint rt, uint ra, int imm) +{ + emit_d(p, 15, rt, ra, imm); +} + +/** rt = ra + rb */ +void +ppc_add(struct ppc_function *p, uint rt, uint ra, uint rb) +{ + emit_xo(p, 31, rt, ra, rb, 0, 266, 0); +} + +/** rt = ra AND ra */ +void +ppc_and(struct ppc_function *p, uint rt, uint ra, uint rb) +{ + emit_x(p, 31, ra, rt, rb, 28); /* note argument order */ +} + +/** rt = ra AND imm */ +void +ppc_andi(struct ppc_function *p, uint rt, uint ra, int imm) +{ + emit_d(p, 28, ra, rt, imm); /* note argument order */ +} + +/** rt = ra OR ra */ +void +ppc_or(struct ppc_function *p, uint rt, uint ra, uint rb) +{ + emit_x(p, 31, ra, rt, rb, 444); /* note argument order */ +} + +/** rt = ra OR imm */ +void +ppc_ori(struct ppc_function *p, uint rt, uint ra, int imm) +{ + emit_d(p, 24, ra, rt, imm); /* note argument order */ +} + +/** rt = ra XOR ra */ +void +ppc_xor(struct ppc_function *p, uint rt, uint ra, uint rb) +{ + emit_x(p, 31, ra, rt, rb, 316); /* note argument order */ +} + +/** rt = ra XOR imm */ +void +ppc_xori(struct ppc_function *p, uint rt, uint ra, int imm) +{ + emit_d(p, 26, ra, rt, imm); /* note argument order */ +} + +/** pseudo instruction: move: rt = ra */ +void +ppc_mr(struct ppc_function *p, uint rt, uint ra) +{ + ppc_or(p, rt, ra, ra); +} + +/** pseudo instruction: load immediate: rt = imm */ +void +ppc_li(struct ppc_function *p, uint rt, int imm) +{ + ppc_addi(p, rt, 0, imm); +} + +/** rt = imm << 16 */ +void +ppc_lis(struct ppc_function *p, uint rt, int imm) +{ + ppc_addis(p, rt, 0, imm); +} + +/** rt = imm */ +void +ppc_load_int(struct ppc_function *p, uint rt, int imm) +{ + ppc_lis(p, rt, (imm >> 16)); /* rt = imm >> 16 */ + ppc_ori(p, rt, rt, (imm & 0xffff)); /* rt = rt | (imm & 0xffff) */ +} + + + + +/** + ** integer load/store + **/ + +/** store rs at memory[(ra)+d], + * then update ra = (ra)+d + */ +void +ppc_stwu(struct ppc_function *p, uint rs, uint ra, int d) +{ + emit_d(p, 37, rs, ra, d); +} + +/** store rs at memory[(ra)+d] */ +void +ppc_stw(struct ppc_function *p, uint rs, uint ra, int d) +{ + emit_d(p, 36, rs, ra, d); +} + +/** Load rt = mem[(ra)+d]; then zero set high 32 bits to zero. */ +void +ppc_lwz(struct ppc_function *p, uint rt, uint ra, int d) +{ + emit_d(p, 32, rt, ra, d); +} + + + +/** + ** Float (non-vector) arithmetic + **/ + +/** add: frt = fra + frb */ +void +ppc_fadd(struct ppc_function *p, uint frt, uint fra, uint frb) +{ + emit_a(p, 63, frt, fra, frb, 21, 0); +} + +/** sub: frt = fra - frb */ +void +ppc_fsub(struct ppc_function *p, uint frt, uint fra, uint frb) +{ + emit_a(p, 63, frt, fra, frb, 20, 0); +} + +/** convert to int: rt = (int) ra */ +void +ppc_fctiwz(struct ppc_function *p, uint rt, uint fra) +{ + emit_x(p, 63, rt, 0, fra, 15); +} + +/** store frs at mem[(ra)+offset] */ +void +ppc_stfs(struct ppc_function *p, uint frs, uint ra, int offset) +{ + emit_d(p, 52, frs, ra, offset); +} + +/** store frs at mem[(ra)+(rb)] */ +void +ppc_stfiwx(struct ppc_function *p, uint frs, uint ra, uint rb) +{ + emit_x(p, 31, frs, ra, rb, 983); +} + +/** load frt = mem[(ra)+offset] */ +void +ppc_lfs(struct ppc_function *p, uint frt, uint ra, int offset) +{ + emit_d(p, 48, frt, ra, offset); +} + + + + + +/** + ** branch instructions + **/ + +/** BLR: Branch to link register (p. 35) */ +void +ppc_blr(struct ppc_function *p) +{ + emit_i(p, 18, 0, 0, 1); +} + +/** Branch Conditional to Link Register (p. 36) */ +void +ppc_bclr(struct ppc_function *p, uint condOp, uint branchHint, uint condReg) +{ + emit_xl(p, 19, condOp, condReg, branchHint, 16, 0); +} + +/** Pseudo instruction: return from subroutine */ +void +ppc_return(struct ppc_function *p) +{ + ppc_bclr(p, BRANCH_COND_ALWAYS, BRANCH_HINT_SUB_RETURN, 0); +} diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc.h b/src/gallium/auxiliary/rtasm/rtasm_ppc.h new file mode 100644 index 0000000000..08212a2a25 --- /dev/null +++ b/src/gallium/auxiliary/rtasm/rtasm_ppc.h @@ -0,0 +1,335 @@ +/************************************************************************** + * + * Copyright (C) 2008 Tungsten Graphics, Inc. All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + +/** + * PPC code generation. + * \author Brian Paul + */ + + +#ifndef RTASM_PPC_H +#define RTASM_PPC_H + + +#include "pipe/p_compiler.h" + + +#define PPC_INST_SIZE 4 /**< 4 bytes / instruction */ + +#define PPC_NUM_REGS 32 +#define PPC_NUM_FP_REGS 32 +#define PPC_NUM_VEC_REGS 32 + +/** Stack pointer register */ +#define PPC_REG_SP 1 + +/** Branch conditions */ +#define BRANCH_COND_ALWAYS 0x14 /* binary 1z1zz (z=ignored) */ + +/** Branch hints */ +#define BRANCH_HINT_SUB_RETURN 0x0 /* binary 00 */ + + +struct ppc_function +{ + uint32_t *store; /**< instruction buffer */ + uint num_inst; + uint max_inst; + uint32_t reg_used; /** used/free general-purpose registers bitmask */ + uint32_t fp_used; /** used/free floating point registers bitmask */ + uint32_t vec_used; /** used/free vector registers bitmask */ +}; + + + +extern void ppc_init_func(struct ppc_function *p); +extern void ppc_release_func(struct ppc_function *p); +extern uint ppc_num_instructions(const struct ppc_function *p); +extern void (*ppc_get_func( struct ppc_function *p ))( void ); +extern void ppc_dump_func(const struct ppc_function *p); + +extern int ppc_reserve_register(struct ppc_function *p, int reg); +extern int ppc_allocate_register(struct ppc_function *p); +extern void ppc_release_register(struct ppc_function *p, int reg); +extern int ppc_allocate_fp_register(struct ppc_function *p); +extern void ppc_release_fp_register(struct ppc_function *p, int reg); +extern int ppc_allocate_vec_register(struct ppc_function *p); +extern void ppc_release_vec_register(struct ppc_function *p, int reg); + + + +/** + ** float vector arithmetic + **/ + +/** vector float add */ +extern void +ppc_vaddfp(struct ppc_function *p,uint vD, uint vA, uint vB); + +/** vector float substract */ +extern void +ppc_vsubfp(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector float min */ +extern void +ppc_vminfp(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector float max */ +extern void +ppc_vmaxfp(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector float mult add: vD = vA * vB + vC */ +extern void +ppc_vmaddfp(struct ppc_function *p, uint vD, uint vA, uint vB, uint vC); + +/** vector float negative mult subtract: vD = vA - vB * vC */ +extern void +ppc_vnmsubfp(struct ppc_function *p, uint vD, uint vA, uint vB, uint vC); + +/** vector float compare greater than */ +extern void +ppc_vcmpgtfpx(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector float compare greater than or equal to */ +extern void +ppc_vcmpgefpx(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector float compare equal */ +extern void +ppc_vcmpeqfpx(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector float 2^x */ +extern void +ppc_vexptefp(struct ppc_function *p, uint vD, uint vB); + +/** vector float log2(x) */ +extern void +ppc_vlogefp(struct ppc_function *p, uint vD, uint vB); + +/** vector float reciprocol */ +extern void +ppc_vrefp(struct ppc_function *p, uint vD, uint vB); + +/** vector float reciprocol sqrt estimate */ +extern void +ppc_vrsqrtefp(struct ppc_function *p, uint vD, uint vB); + +/** vector float round to negative infinity */ +extern void +ppc_vrfim(struct ppc_function *p, uint vD, uint vB); + +/** vector float round to positive infinity */ +extern void +ppc_vrfip(struct ppc_function *p, uint vD, uint vB); + +/** vector float round to nearest int */ +extern void +ppc_vrfin(struct ppc_function *p, uint vD, uint vB); + +/** vector float round to int toward zero */ +extern void +ppc_vrfiz(struct ppc_function *p, uint vD, uint vB); + + +/** vector store: store vR at mem[vA+vB] */ +extern void +ppc_stvx(struct ppc_function *p, uint vR, uint vA, uint vB); + +/** vector load: vR = mem[vA+vB] */ +extern void +ppc_lvx(struct ppc_function *p, uint vR, uint vA, uint vB); + +/** load vector element word: vR = mem_word[vA+vB] */ +extern void +ppc_lvewx(struct ppc_function *p, uint vR, uint vA, uint vB); + + + +/** + ** vector bitwise operations + **/ + + +/** vector and */ +extern void +ppc_vand(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector and complement */ +extern void +ppc_vandc(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector or */ +extern void +ppc_vor(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector nor */ +extern void +ppc_vnor(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** vector xor */ +extern void +ppc_vxor(struct ppc_function *p, uint vD, uint vA, uint vB); + +/** Pseudo-instruction: vector move */ +extern void +ppc_vmove(struct ppc_function *p, uint vD, uint vA); + +/** Set vector register to {0,0,0,0} */ +extern void +ppc_vzero(struct ppc_function *p, uint vr); + + + +/** + ** Vector shuffle / select / splat / etc + **/ + +/** vector permute */ +extern void +ppc_vperm(struct ppc_function *p, uint vD, uint vA, uint vB, uint vC); + +/** vector select */ +extern void +ppc_vsel(struct ppc_function *p, uint vD, uint vA, uint vB, uint vC); + +/** vector splat byte */ +extern void +ppc_vspltb(struct ppc_function *p, uint vD, uint vB, uint imm); + +/** vector splat half word */ +extern void +ppc_vsplthw(struct ppc_function *p, uint vD, uint vB, uint imm); + +/** vector splat word */ +extern void +ppc_vspltw(struct ppc_function *p, uint vD, uint vB, uint imm); + +/** vector splat signed immediate word */ +extern void +ppc_vspltisw(struct ppc_function *p, uint vD, int imm); + +/** vector shift left word: vD[word] = vA[word] << (vB[word] & 0x1f) */ +extern void +ppc_vslw(struct ppc_function *p, uint vD, uint vA, uint vB); + + + +/** + ** scalar arithmetic + **/ + +extern void +ppc_add(struct ppc_function *p, uint rt, uint ra, uint rb); + +extern void +ppc_addi(struct ppc_function *p, uint rt, uint ra, int imm); + +extern void +ppc_addis(struct ppc_function *p, uint rt, uint ra, int imm); + +extern void +ppc_and(struct ppc_function *p, uint rt, uint ra, uint rb); + +extern void +ppc_andi(struct ppc_function *p, uint rt, uint ra, int imm); + +extern void +ppc_or(struct ppc_function *p, uint rt, uint ra, uint rb); + +extern void +ppc_ori(struct ppc_function *p, uint rt, uint ra, int imm); + +extern void +ppc_xor(struct ppc_function *p, uint rt, uint ra, uint rb); + +extern void +ppc_xori(struct ppc_function *p, uint rt, uint ra, int imm); + +extern void +ppc_mr(struct ppc_function *p, uint rt, uint ra); + +extern void +ppc_li(struct ppc_function *p, uint rt, int imm); + +extern void +ppc_lis(struct ppc_function *p, uint rt, int imm); + +extern void +ppc_load_int(struct ppc_function *p, uint rt, int imm); + + + +/** + ** scalar load/store + **/ + +extern void +ppc_stwu(struct ppc_function *p, uint rs, uint ra, int d); + +extern void +ppc_stw(struct ppc_function *p, uint rs, uint ra, int d); + +extern void +ppc_lwz(struct ppc_function *p, uint rs, uint ra, int d); + + + +/** + ** Float (non-vector) arithmetic + **/ + +extern void +ppc_fadd(struct ppc_function *p, uint frt, uint fra, uint frb); + +extern void +ppc_fsub(struct ppc_function *p, uint frt, uint fra, uint frb); + +extern void +ppc_fctiwz(struct ppc_function *p, uint rt, uint ra); + +extern void +ppc_stfs(struct ppc_function *p, uint frs, uint ra, int offset); + +extern void +ppc_stfiwx(struct ppc_function *p, uint frs, uint ra, uint rb); + +extern void +ppc_lfs(struct ppc_function *p, uint frt, uint ra, int offset); + + + +/** + ** branch instructions + **/ + +extern void +ppc_blr(struct ppc_function *p); + +void +ppc_bclr(struct ppc_function *p, uint condOp, uint branchHint, uint condReg); + +extern void +ppc_return(struct ppc_function *p); + + +#endif /* RTASM_PPC_H */ diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c index a04cc6c4ff..b9a75ae559 100644 --- a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c +++ b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c @@ -27,12 +27,16 @@ * Real-time assembly generation interface for Cell B.E. SPEs. * * \author Ian Romanick <idr@us.ibm.com> + * \author Brian Paul */ + +#include <stdio.h> #include "pipe/p_compiler.h" #include "util/u_memory.h" #include "rtasm_ppc_spe.h" + #ifdef GALLIUM_CELL /** * SPE instruction types @@ -143,21 +147,91 @@ union spe_inst_RI18 { /*@}*/ +static void +indent(const struct spe_function *p) +{ + int i; + for (i = 0; i < p->indent; i++) { + putchar(' '); + } +} + + +static const char * +rem_prefix(const char *longname) +{ + return longname + 4; +} + + +static const char * +reg_name(int reg) +{ + switch (reg) { + case SPE_REG_SP: + return "$sp"; + case SPE_REG_RA: + return "$lr"; + default: + { + /* cycle through four buffers to handle multiple calls per printf */ + static char buf[4][10]; + static int b = 0; + b = (b + 1) % 4; + sprintf(buf[b], "$%d", reg); + return buf[b]; + } + } +} + + +static void +emit_instruction(struct spe_function *p, uint32_t inst_bits) +{ + if (!p->store) + return; /* out of memory, drop the instruction */ + + if (p->num_inst == p->max_inst) { + /* allocate larger buffer */ + uint32_t *newbuf; + p->max_inst *= 2; /* 2x larger */ + newbuf = align_malloc(p->max_inst * SPE_INST_SIZE, 16); + if (newbuf) { + memcpy(newbuf, p->store, p->num_inst * SPE_INST_SIZE); + } + align_free(p->store); + p->store = newbuf; + if (!p->store) { + /* out of memory */ + p->num_inst = 0; + return; + } + } + + p->store[p->num_inst++] = inst_bits; +} + + + static void emit_RR(struct spe_function *p, unsigned op, unsigned rT, - unsigned rA, unsigned rB) + unsigned rA, unsigned rB, const char *name) { union spe_inst_RR inst; inst.inst.op = op; inst.inst.rB = rB; inst.inst.rA = rA; inst.inst.rT = rT; - p->store[p->num_inst++] = inst.bits; - assert(p->num_inst <= p->max_inst); + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, %s\n", + rem_prefix(name), reg_name(rT), reg_name(rA), reg_name(rB)); + } } static void emit_RRR(struct spe_function *p, unsigned op, unsigned rT, - unsigned rA, unsigned rB, unsigned rC) + unsigned rA, unsigned rB, unsigned rC, const char *name) { union spe_inst_RRR inst; inst.inst.op = op; @@ -165,155 +239,212 @@ static void emit_RRR(struct spe_function *p, unsigned op, unsigned rT, inst.inst.rB = rB; inst.inst.rA = rA; inst.inst.rC = rC; - p->store[p->num_inst++] = inst.bits; - assert(p->num_inst <= p->max_inst); + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, %s, %s\n", rem_prefix(name), reg_name(rT), + reg_name(rA), reg_name(rB), reg_name(rC)); + } } static void emit_RI7(struct spe_function *p, unsigned op, unsigned rT, - unsigned rA, int imm) + unsigned rA, int imm, const char *name) { union spe_inst_RI7 inst; inst.inst.op = op; inst.inst.i7 = imm; inst.inst.rA = rA; inst.inst.rT = rT; - p->store[p->num_inst++] = inst.bits; - assert(p->num_inst <= p->max_inst); + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, 0x%x\n", + rem_prefix(name), reg_name(rT), reg_name(rA), imm); + } } static void emit_RI8(struct spe_function *p, unsigned op, unsigned rT, - unsigned rA, int imm) + unsigned rA, int imm, const char *name) { union spe_inst_RI8 inst; inst.inst.op = op; inst.inst.i8 = imm; inst.inst.rA = rA; inst.inst.rT = rT; - p->store[p->num_inst++] = inst.bits; - assert(p->num_inst <= p->max_inst); + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, 0x%x\n", + rem_prefix(name), reg_name(rT), reg_name(rA), imm); + } } static void emit_RI10(struct spe_function *p, unsigned op, unsigned rT, - unsigned rA, int imm) + unsigned rA, int imm, const char *name) { union spe_inst_RI10 inst; inst.inst.op = op; inst.inst.i10 = imm; inst.inst.rA = rA; inst.inst.rT = rT; - p->store[p->num_inst++] = inst.bits; - assert(p->num_inst <= p->max_inst); + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, 0x%x\n", + rem_prefix(name), reg_name(rT), reg_name(rA), imm); + } +} + + +/** As above, but do range checking on signed immediate value */ +static void emit_RI10s(struct spe_function *p, unsigned op, unsigned rT, + unsigned rA, int imm, const char *name) +{ + assert(imm <= 511); + assert(imm >= -512); + emit_RI10(p, op, rT, rA, imm, name); } static void emit_RI16(struct spe_function *p, unsigned op, unsigned rT, - int imm) + int imm, const char *name) { union spe_inst_RI16 inst; inst.inst.op = op; inst.inst.i16 = imm; inst.inst.rT = rT; - p->store[p->num_inst++] = inst.bits; - assert(p->num_inst <= p->max_inst); + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm); + } } static void emit_RI18(struct spe_function *p, unsigned op, unsigned rT, - int imm) + int imm, const char *name) { union spe_inst_RI18 inst; inst.inst.op = op; inst.inst.i18 = imm; inst.inst.rT = rT; - p->store[p->num_inst++] = inst.bits; - assert(p->num_inst <= p->max_inst); + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm); + } } - +#define EMIT(_name, _op) \ +void _name (struct spe_function *p) \ +{ \ + emit_RR(p, _op, 0, 0, 0, __FUNCTION__); \ +} #define EMIT_(_name, _op) \ void _name (struct spe_function *p, unsigned rT) \ { \ - emit_RR(p, _op, rT, 0, 0); \ + emit_RR(p, _op, rT, 0, 0, __FUNCTION__); \ } #define EMIT_R(_name, _op) \ void _name (struct spe_function *p, unsigned rT, unsigned rA) \ { \ - emit_RR(p, _op, rT, rA, 0); \ + emit_RR(p, _op, rT, rA, 0, __FUNCTION__); \ } #define EMIT_RR(_name, _op) \ void _name (struct spe_function *p, unsigned rT, unsigned rA, unsigned rB) \ { \ - emit_RR(p, _op, rT, rA, rB); \ + emit_RR(p, _op, rT, rA, rB, __FUNCTION__); \ } #define EMIT_RRR(_name, _op) \ void _name (struct spe_function *p, unsigned rT, unsigned rA, unsigned rB, unsigned rC) \ { \ - emit_RRR(p, _op, rT, rA, rB, rC); \ + emit_RRR(p, _op, rT, rA, rB, rC, __FUNCTION__); \ } #define EMIT_RI7(_name, _op) \ void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \ { \ - emit_RI7(p, _op, rT, rA, imm); \ + emit_RI7(p, _op, rT, rA, imm, __FUNCTION__); \ } #define EMIT_RI8(_name, _op, bias) \ void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \ { \ - emit_RI8(p, _op, rT, rA, bias - imm); \ + emit_RI8(p, _op, rT, rA, bias - imm, __FUNCTION__); \ } #define EMIT_RI10(_name, _op) \ void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \ { \ - emit_RI10(p, _op, rT, rA, imm); \ + emit_RI10(p, _op, rT, rA, imm, __FUNCTION__); \ +} + +#define EMIT_RI10s(_name, _op) \ +void _name (struct spe_function *p, unsigned rT, unsigned rA, int imm) \ +{ \ + emit_RI10s(p, _op, rT, rA, imm, __FUNCTION__); \ } #define EMIT_RI16(_name, _op) \ void _name (struct spe_function *p, unsigned rT, int imm) \ { \ - emit_RI16(p, _op, rT, imm); \ + emit_RI16(p, _op, rT, imm, __FUNCTION__); \ } #define EMIT_RI18(_name, _op) \ void _name (struct spe_function *p, unsigned rT, int imm) \ { \ - emit_RI18(p, _op, rT, imm); \ + emit_RI18(p, _op, rT, imm, __FUNCTION__); \ } #define EMIT_I16(_name, _op) \ void _name (struct spe_function *p, int imm) \ { \ - emit_RI16(p, _op, 0, imm); \ + emit_RI16(p, _op, 0, imm, __FUNCTION__); \ } #include "rtasm_ppc_spe.h" + /** * Initialize an spe_function. - * \param code_size size of instruction buffer to allocate, in bytes. + * \param code_size initial size of instruction buffer to allocate, in bytes. + * If zero, use a default. */ void spe_init_func(struct spe_function *p, unsigned code_size) { - p->store = align_malloc(code_size, 16); + unsigned int i; + + if (!code_size) + code_size = 64; + p->num_inst = 0; p->max_inst = code_size / SPE_INST_SIZE; + p->store = align_malloc(code_size, 16); + + p->set_count = 0; + memset(p->regs, 0, SPE_NUM_REGS * sizeof(p->regs[0])); /* Conservatively treat R0 - R2 and R80 - R127 as non-volatile. */ - p->regs[0] = ~7; - p->regs[1] = (1U << (80 - 64)) - 1; + p->regs[0] = p->regs[1] = p->regs[2] = 1; + for (i = 80; i <= 127; i++) { + p->regs[i] = 1; + } + + p->print = false; + p->indent = 0; } @@ -327,20 +458,23 @@ void spe_release_func(struct spe_function *p) } +/** Return current code size in bytes. */ +unsigned spe_code_size(const struct spe_function *p) +{ + return p->num_inst * SPE_INST_SIZE; +} + + /** - * Alloate a SPE register. + * Allocate a SPE register. * \return register index or -1 if none left. */ int spe_allocate_available_register(struct spe_function *p) { unsigned i; for (i = 0; i < SPE_NUM_REGS; i++) { - const uint64_t mask = (1ULL << (i % 64)); - const unsigned idx = i / 64; - - assert(idx < 2); - if ((p->regs[idx] & mask) != 0) { - p->regs[idx] &= ~mask; + if (p->regs[i] == 0) { + p->regs[i] = 1; return i; } } @@ -354,31 +488,160 @@ int spe_allocate_available_register(struct spe_function *p) */ int spe_allocate_register(struct spe_function *p, int reg) { - const unsigned idx = reg / 64; - const unsigned bit = reg % 64; - assert(reg < SPE_NUM_REGS); - assert((p->regs[idx] & (1ULL << bit)) != 0); - - p->regs[idx] &= ~(1ULL << bit); + assert(p->regs[reg] == 0); + p->regs[reg] = 1; return reg; } /** - * Mark the given SPE register as "unallocated". + * Mark the given SPE register as "unallocated". Note that this should + * only be used on registers allocated in the current register set; an + * assertion will fail if an attempt is made to deallocate a register + * allocated in an earlier register set. */ void spe_release_register(struct spe_function *p, int reg) { - const unsigned idx = reg / 64; - const unsigned bit = reg % 64; + assert(reg < SPE_NUM_REGS); + assert(p->regs[reg] == 1); - assert(idx < 2); + p->regs[reg] = 0; +} + +/** + * Start a new set of registers. This can be called if + * it will be difficult later to determine exactly what + * registers were actually allocated during a code generation + * sequence, and you really just want to deallocate all of them. + */ +void spe_allocate_register_set(struct spe_function *p) +{ + unsigned int i; + + /* Keep track of the set count. If it ever wraps around to 0, + * we're in trouble. + */ + p->set_count++; + assert(p->set_count > 0); + + /* Increment the allocation count of all registers currently + * allocated. Then any registers that are allocated in this set + * will be the only ones with a count of 1; they'll all be released + * when the register set is released. + */ + for (i = 0; i < SPE_NUM_REGS; i++) { + if (p->regs[i] > 0) + p->regs[i]++; + } +} + +void spe_release_register_set(struct spe_function *p) +{ + unsigned int i; + + /* If the set count drops below zero, we're in trouble. */ + assert(p->set_count > 0); + p->set_count--; + + /* Drop the allocation level of all registers. Any allocated + * during this register set will drop to 0 and then become + * available. + */ + for (i = 0; i < SPE_NUM_REGS; i++) { + if (p->regs[i] > 0) + p->regs[i]--; + } +} + + +unsigned +spe_get_registers_used(const struct spe_function *p, ubyte used[]) +{ + unsigned i, num = 0; + /* only count registers in the range available to callers */ + for (i = 2; i < 80; i++) { + if (p->regs[i]) { + used[num++] = i; + } + } + return num; +} + + +void +spe_print_code(struct spe_function *p, boolean enable) +{ + p->print = enable; +} - assert(reg < SPE_NUM_REGS); - assert((p->regs[idx] & (1ULL << bit)) == 0); - p->regs[idx] |= (1ULL << bit); +void +spe_indent(struct spe_function *p, int spaces) +{ + p->indent += spaces; +} + + +void +spe_comment(struct spe_function *p, int rel_indent, const char *s) +{ + if (p->print) { + p->indent += rel_indent; + indent(p); + p->indent -= rel_indent; + printf("# %s\n", s); + } +} + + +/** + * Load quad word. + * NOTE: offset is in bytes and the least significant 4 bits must be zero! + */ +void spe_lqd(struct spe_function *p, unsigned rT, unsigned rA, int offset) +{ + const boolean pSave = p->print; + + /* offset must be a multiple of 16 */ + assert(offset % 16 == 0); + /* offset must fit in 10-bit signed int field, after shifting */ + assert((offset >> 4) <= 511); + assert((offset >> 4) >= -512); + + p->print = FALSE; + emit_RI10(p, 0x034, rT, rA, offset >> 4, "spe_lqd"); + p->print = pSave; + + if (p->print) { + indent(p); + printf("lqd\t%s, %d(%s)\n", reg_name(rT), offset, reg_name(rA)); + } +} + + +/** + * Store quad word. + * NOTE: offset is in bytes and the least significant 4 bits must be zero! + */ +void spe_stqd(struct spe_function *p, unsigned rT, unsigned rA, int offset) +{ + const boolean pSave = p->print; + + /* offset must be a multiple of 16 */ + assert(offset % 16 == 0); + /* offset must fit in 10-bit signed int field, after shifting */ + assert((offset >> 4) <= 511); + assert((offset >> 4) >= -512); + + p->print = FALSE; + emit_RI10(p, 0x024, rT, rA, offset >> 4, "spe_stqd"); + p->print = pSave; + + if (p->print) { + indent(p); + printf("stqd\t%s, %d(%s)\n", reg_name(rT), offset, reg_name(rA)); + } } @@ -392,51 +655,51 @@ void spe_release_register(struct spe_function *p, int reg) /** Branch Indirect to address in rA */ void spe_bi(struct spe_function *p, unsigned rA, int d, int e) { - emit_RI7(p, 0x1a8, 0, rA, (d << 5) | (e << 4)); + emit_RI7(p, 0x1a8, 0, rA, (d << 5) | (e << 4), __FUNCTION__); } /** Interupt Return */ void spe_iret(struct spe_function *p, unsigned rA, int d, int e) { - emit_RI7(p, 0x1aa, 0, rA, (d << 5) | (e << 4)); + emit_RI7(p, 0x1aa, 0, rA, (d << 5) | (e << 4), __FUNCTION__); } /** Branch indirect and set link on external data */ void spe_bisled(struct spe_function *p, unsigned rT, unsigned rA, int d, int e) { - emit_RI7(p, 0x1ab, rT, rA, (d << 5) | (e << 4)); + emit_RI7(p, 0x1ab, rT, rA, (d << 5) | (e << 4), __FUNCTION__); } /** Branch indirect and set link. Save PC in rT, jump to rA. */ void spe_bisl(struct spe_function *p, unsigned rT, unsigned rA, int d, int e) { - emit_RI7(p, 0x1a9, rT, rA, (d << 5) | (e << 4)); + emit_RI7(p, 0x1a9, rT, rA, (d << 5) | (e << 4), __FUNCTION__); } /** Branch indirect if zero word. If rT.word[0]==0, jump to rA. */ void spe_biz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e) { - emit_RI7(p, 0x128, rT, rA, (d << 5) | (e << 4)); + emit_RI7(p, 0x128, rT, rA, (d << 5) | (e << 4), __FUNCTION__); } /** Branch indirect if non-zero word. If rT.word[0]!=0, jump to rA. */ void spe_binz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e) { - emit_RI7(p, 0x129, rT, rA, (d << 5) | (e << 4)); + emit_RI7(p, 0x129, rT, rA, (d << 5) | (e << 4), __FUNCTION__); } /** Branch indirect if zero halfword. If rT.halfword[1]==0, jump to rA. */ void spe_bihz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e) { - emit_RI7(p, 0x12a, rT, rA, (d << 5) | (e << 4)); + emit_RI7(p, 0x12a, rT, rA, (d << 5) | (e << 4), __FUNCTION__); } /** Branch indirect if non-zero halfword. If rT.halfword[1]!=0, jump to rA. */ void spe_bihnz(struct spe_function *p, unsigned rT, unsigned rA, int d, int e) { - emit_RI7(p, 0x12b, rT, rA, (d << 5) | (e << 4)); + emit_RI7(p, 0x12b, rT, rA, (d << 5) | (e << 4), __FUNCTION__); } @@ -454,7 +717,6 @@ hbrr; #if 0 stop; EMIT_RR (spe_stopd, 0x140); -EMIT_ (spe_lnop, 0x001); EMIT_ (spe_nop, 0x201); sync; EMIT_ (spe_dsync, 0x003); @@ -505,30 +767,226 @@ spe_load_int(struct spe_function *p, unsigned rT, int i) } else { spe_ilhu(p, rT, i >> 16); - spe_iohl(p, rT, i & 0xffff); + if (i & 0xffff) + spe_iohl(p, rT, i & 0xffff); + } +} + +void spe_load_uint(struct spe_function *p, unsigned rT, unsigned int ui) +{ + /* If the whole value is in the lower 18 bits, use ila, which + * doesn't sign-extend. Otherwise, if the two halfwords of + * the constant are identical, use ilh. Otherwise, if every byte of + * the desired value is 0x00 or 0xff, we can use Form Select Mask for + * Bytes Immediate (fsmbi) to load the value in a single instruction. + * Otherwise, in the general case, we have to use ilhu followed by iohl. + */ + if ((ui & 0x0003ffff) == ui) { + spe_ila(p, rT, ui); + } + else if ((ui >> 16) == (ui & 0xffff)) { + spe_ilh(p, rT, ui & 0xffff); + } + else if ( + ((ui & 0x000000ff) == 0 || (ui & 0x000000ff) == 0x000000ff) && + ((ui & 0x0000ff00) == 0 || (ui & 0x0000ff00) == 0x0000ff00) && + ((ui & 0x00ff0000) == 0 || (ui & 0x00ff0000) == 0x00ff0000) && + ((ui & 0xff000000) == 0 || (ui & 0xff000000) == 0xff000000) + ) { + unsigned int mask = 0; + /* fsmbi duplicates each bit in the given mask eight times, + * using a 16-bit value to initialize a 16-byte quadword. + * Each 4-bit nybble of the mask corresponds to a full word + * of the result; look at the value and figure out the mask + * (replicated for each word in the quadword), and then + * form the "select mask" to get the value. + */ + if ((ui & 0x000000ff) == 0x000000ff) mask |= 0x1111; + if ((ui & 0x0000ff00) == 0x0000ff00) mask |= 0x2222; + if ((ui & 0x00ff0000) == 0x00ff0000) mask |= 0x4444; + if ((ui & 0xff000000) == 0xff000000) mask |= 0x8888; + spe_fsmbi(p, rT, mask); + } + else { + /* The general case: this usually uses two instructions, but + * may use only one if the low-order 16 bits of each word are 0. + */ + spe_ilhu(p, rT, ui >> 16); + if (ui & 0xffff) + spe_iohl(p, rT, ui & 0xffff); + } +} + +/** + * This function is constructed identically to spe_xor_uint() below. + * Changes to one should be made in the other. + */ +void +spe_and_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui) +{ + /* If we can, emit a single instruction, either And Byte Immediate + * (which uses the same constant across each byte), And Halfword Immediate + * (which sign-extends a 10-bit immediate to 16 bits and uses that + * across each halfword), or And Word Immediate (which sign-extends + * a 10-bit immediate to 32 bits). + * + * Otherwise, we'll need to use a temporary register. + */ + unsigned int tmp; + + /* If the upper 23 bits are all 0s or all 1s, sign extension + * will work and we can use And Word Immediate + */ + tmp = ui & 0xfffffe00; + if (tmp == 0xfffffe00 || tmp == 0) { + spe_andi(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric along halfword boundaries and + * the upper 7 bits of each halfword are all 0s or 1s, we + * can use And Halfword Immediate + */ + tmp = ui & 0xfe00fe00; + if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) { + spe_andhi(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric in each byte, then we can use + * the And Byte Immediate instruction. + */ + tmp = ui & 0x000000ff; + if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) { + spe_andbi(p, rT, rA, tmp); + return; + } + + /* Otherwise, we'll have to use a temporary register. */ + unsigned int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_and(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); +} + + +/** + * This function is constructed identically to spe_and_uint() above. + * Changes to one should be made in the other. + */ +void +spe_xor_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui) +{ + /* If we can, emit a single instruction, either Exclusive Or Byte + * Immediate (which uses the same constant across each byte), Exclusive + * Or Halfword Immediate (which sign-extends a 10-bit immediate to + * 16 bits and uses that across each halfword), or Exclusive Or Word + * Immediate (which sign-extends a 10-bit immediate to 32 bits). + * + * Otherwise, we'll need to use a temporary register. + */ + unsigned int tmp; + + /* If the upper 23 bits are all 0s or all 1s, sign extension + * will work and we can use Exclusive Or Word Immediate + */ + tmp = ui & 0xfffffe00; + if (tmp == 0xfffffe00 || tmp == 0) { + spe_xori(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric along halfword boundaries and + * the upper 7 bits of each halfword are all 0s or 1s, we + * can use Exclusive Or Halfword Immediate + */ + tmp = ui & 0xfe00fe00; + if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) { + spe_xorhi(p, rT, rA, ui & 0x000003ff); + return; } + + /* If the ui field is symmetric in each byte, then we can use + * the Exclusive Or Byte Immediate instruction. + */ + tmp = ui & 0x000000ff; + if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) { + spe_xorbi(p, rT, rA, tmp); + return; + } + + /* Otherwise, we'll have to use a temporary register. */ + unsigned int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_xor(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); } +void +spe_compare_equal_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui) +{ + /* If the comparison value is 9 bits or less, it fits inside a + * Compare Equal Word Immediate instruction. + */ + if ((ui & 0x000001ff) == ui) { + spe_ceqi(p, rT, rA, ui); + } + /* Otherwise, we're going to have to load a word first. */ + else { + unsigned int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_ceq(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); + } +} + +void +spe_compare_greater_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui) +{ + /* If the comparison value is 10 bits or less, it fits inside a + * Compare Logical Greater Than Word Immediate instruction. + */ + if ((ui & 0x000003ff) == ui) { + spe_clgti(p, rT, rA, ui); + } + /* Otherwise, we're going to have to load a word first. */ + else { + unsigned int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_clgt(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); + } +} void spe_splat(struct spe_function *p, unsigned rT, unsigned rA) { - spe_ila(p, rT, 66051); - spe_shufb(p, rT, rA, rA, rT); + /* Use a temporary, just in case rT == rA */ + unsigned int tmp_reg = spe_allocate_available_register(p); + /* Duplicate bytes 0, 1, 2, and 3 across the whole register */ + spe_ila(p, tmp_reg, 0x00010203); + spe_shufb(p, rT, rA, rA, tmp_reg); + spe_release_register(p, tmp_reg); } void -spe_complement(struct spe_function *p, unsigned rT) +spe_complement(struct spe_function *p, unsigned rT, unsigned rA) { - spe_nor(p, rT, rT, rT); + spe_nor(p, rT, rA, rA); } void spe_move(struct spe_function *p, unsigned rT, unsigned rA) { - spe_ori(p, rT, rA, 0); + /* Use different instructions depending on the instruction address + * to take advantage of the dual pipelines. + */ + if (p->num_inst & 1) + spe_shlqbyi(p, rT, rA, 0); /* odd pipe */ + else + spe_ori(p, rT, rA, 0); /* even pipe */ } @@ -539,4 +997,70 @@ spe_zero(struct spe_function *p, unsigned rT) } +void +spe_splat_word(struct spe_function *p, unsigned rT, unsigned rA, int word) +{ + assert(word >= 0); + assert(word <= 3); + + if (word == 0) { + int tmp1 = rT; + spe_ila(p, tmp1, 66051); + spe_shufb(p, rT, rA, rA, tmp1); + } + else { + /* XXX review this, we may not need the rotqbyi instruction */ + int tmp1 = rT; + int tmp2 = spe_allocate_available_register(p); + + spe_ila(p, tmp1, 66051); + spe_rotqbyi(p, tmp2, rA, 4 * word); + spe_shufb(p, rT, tmp2, tmp2, tmp1); + + spe_release_register(p, tmp2); + } +} + +/** + * For each 32-bit float element of rA and rB, choose the smaller of the + * two, compositing them into the rT register. + * + * The Float Compare Greater Than (fcgt) instruction will put 1s into + * compare_reg where rA > rB, and 0s where rA <= rB. + * + * Then the Select Bits (selb) instruction will take bits from rA where + * compare_reg is 0, and from rB where compare_reg is 1; i.e., from rA + * where rA <= rB and from rB where rB > rA, which is exactly the + * "min" operation. + * + * The compare_reg could in many cases be the same as rT, unless + * rT == rA || rt == rB. But since this is common in constructions + * like "x = min(x, a)", we always allocate a new register to be safe. + */ +void +spe_float_min(struct spe_function *p, unsigned rT, unsigned rA, unsigned rB) +{ + unsigned int compare_reg = spe_allocate_available_register(p); + spe_fcgt(p, compare_reg, rA, rB); + spe_selb(p, rT, rA, rB, compare_reg); + spe_release_register(p, compare_reg); +} + +/** + * For each 32-bit float element of rA and rB, choose the greater of the + * two, compositing them into the rT register. + * + * The logic is similar to that of spe_float_min() above; the only + * difference is that the registers on spe_selb() have been reversed, + * so that the larger of the two is selected instead of the smaller. + */ +void +spe_float_max(struct spe_function *p, unsigned rT, unsigned rA, unsigned rB) +{ + unsigned int compare_reg = spe_allocate_available_register(p); + spe_fcgt(p, compare_reg, rA, rB); + spe_selb(p, rT, rB, rA, compare_reg); + spe_release_register(p, compare_reg); +} + #endif /* GALLIUM_CELL */ diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h index d95e5aace3..f9ad2acacd 100644 --- a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h +++ b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h @@ -28,6 +28,7 @@ * For details, see /opt/cell/sdk/docs/arch/SPU_ISA_v1.2_27Jan2007_pub.pdf * * \author Ian Romanick <idr@us.ibm.com> + * \author Brian Paul */ #ifndef RTASM_PPC_SPE_H @@ -39,10 +40,10 @@ /** number of general-purpose SIMD registers */ #define SPE_NUM_REGS 128 -/** Return Address register */ +/** Return Address register (aka $lr / Link Register) */ #define SPE_REG_RA 0 -/** Stack Pointer register */ +/** Stack Pointer register (aka $sp) */ #define SPE_REG_SP 1 @@ -52,221 +53,258 @@ struct spe_function uint num_inst; uint max_inst; - /** - * Mask of used / unused registers - * - * Each set bit corresponds to an available register. Each cleared bit - * corresponds to an allocated register. + /** + * The "set count" reflects the number of nested register sets + * are allowed. In the unlikely case that we exceed the set count, + * register allocation will start to be confused, which is critical + * enough that we check for it. + */ + unsigned char set_count; + + /** + * Flags for used and unused registers. Each byte corresponds to a + * register; a 0 in that byte means that the register is available. + * A value of 1 means that the register was allocated in the current + * register set. Any other value N means that the register was allocated + * N register sets ago. * * \sa * spe_allocate_register, spe_allocate_available_register, - * spe_release_register + * spe_allocate_register_set, spe_release_register_set, spe_release_register, */ - uint64_t regs[SPE_NUM_REGS / 64]; + unsigned char regs[SPE_NUM_REGS]; + + boolean print; /**< print/dump instructions as they're emitted? */ + int indent; /**< number of spaces to indent */ }; + extern void spe_init_func(struct spe_function *p, unsigned code_size); extern void spe_release_func(struct spe_function *p); +extern unsigned spe_code_size(const struct spe_function *p); extern int spe_allocate_available_register(struct spe_function *p); extern int spe_allocate_register(struct spe_function *p, int reg); extern void spe_release_register(struct spe_function *p, int reg); +extern void spe_allocate_register_set(struct spe_function *p); +extern void spe_release_register_set(struct spe_function *p); + +extern unsigned +spe_get_registers_used(const struct spe_function *p, ubyte used[]); + +extern void spe_print_code(struct spe_function *p, boolean enable); +extern void spe_indent(struct spe_function *p, int spaces); +extern void spe_comment(struct spe_function *p, int rel_indent, const char *s); + #endif /* RTASM_PPC_SPE_H */ -#ifndef EMIT_ -#define EMIT_(name, _op) \ - extern void _name (struct spe_function *p, unsigned rT) +#ifndef EMIT +#define EMIT(_name, _op) \ + extern void _name (struct spe_function *p); +#define EMIT_(_name, _op) \ + extern void _name (struct spe_function *p, unsigned rT); #define EMIT_R(_name, _op) \ - extern void _name (struct spe_function *p, unsigned rT, unsigned rA) + extern void _name (struct spe_function *p, unsigned rT, unsigned rA); #define EMIT_RR(_name, _op) \ extern void _name (struct spe_function *p, unsigned rT, unsigned rA, \ - unsigned rB) + unsigned rB); #define EMIT_RRR(_name, _op) \ extern void _name (struct spe_function *p, unsigned rT, unsigned rA, \ - unsigned rB, unsigned rC) + unsigned rB, unsigned rC); #define EMIT_RI7(_name, _op) \ extern void _name (struct spe_function *p, unsigned rT, unsigned rA, \ - int imm) + int imm); #define EMIT_RI8(_name, _op, bias) \ extern void _name (struct spe_function *p, unsigned rT, unsigned rA, \ - int imm) + int imm); #define EMIT_RI10(_name, _op) \ extern void _name (struct spe_function *p, unsigned rT, unsigned rA, \ - int imm) + int imm); +#define EMIT_RI10s(_name, _op) \ + extern void _name (struct spe_function *p, unsigned rT, unsigned rA, \ + int imm); #define EMIT_RI16(_name, _op) \ - extern void _name (struct spe_function *p, unsigned rT, int imm) + extern void _name (struct spe_function *p, unsigned rT, int imm); #define EMIT_RI18(_name, _op) \ - extern void _name (struct spe_function *p, unsigned rT, int imm) + extern void _name (struct spe_function *p, unsigned rT, int imm); #define EMIT_I16(_name, _op) \ - extern void _name (struct spe_function *p, int imm) + extern void _name (struct spe_function *p, int imm); #define UNDEF_EMIT_MACROS -#endif /* EMIT_ */ +#endif /* EMIT */ /* Memory load / store instructions */ -EMIT_RI10(spe_lqd, 0x034); -EMIT_RR (spe_lqx, 0x1c4); -EMIT_RI16(spe_lqa, 0x061); -EMIT_RI16(spe_lqr, 0x067); -EMIT_RI10(spe_stqd, 0x024); -EMIT_RR (spe_stqx, 0x144); -EMIT_RI16(spe_stqa, 0x041); -EMIT_RI16(spe_stqr, 0x047); -EMIT_RI7 (spe_cbd, 0x1f4); -EMIT_RR (spe_cbx, 0x1d4); -EMIT_RI7 (spe_chd, 0x1f5); -EMIT_RI7 (spe_chx, 0x1d5); -EMIT_RI7 (spe_cwd, 0x1f6); -EMIT_RI7 (spe_cwx, 0x1d6); -EMIT_RI7 (spe_cdd, 0x1f7); -EMIT_RI7 (spe_cdx, 0x1d7); +EMIT_RR (spe_lqx, 0x1c4) +EMIT_RI16(spe_lqa, 0x061) +EMIT_RI16(spe_lqr, 0x067) +EMIT_RR (spe_stqx, 0x144) +EMIT_RI16(spe_stqa, 0x041) +EMIT_RI16(spe_stqr, 0x047) +EMIT_RI7 (spe_cbd, 0x1f4) +EMIT_RR (spe_cbx, 0x1d4) +EMIT_RI7 (spe_chd, 0x1f5) +EMIT_RI7 (spe_chx, 0x1d5) +EMIT_RI7 (spe_cwd, 0x1f6) +EMIT_RI7 (spe_cwx, 0x1d6) +EMIT_RI7 (spe_cdd, 0x1f7) +EMIT_RI7 (spe_cdx, 0x1d7) /* Constant formation instructions */ -EMIT_RI16(spe_ilh, 0x083); -EMIT_RI16(spe_ilhu, 0x082); -EMIT_RI16(spe_il, 0x081); -EMIT_RI18(spe_ila, 0x021); -EMIT_RI16(spe_iohl, 0x0c1); -EMIT_RI16(spe_fsmbi, 0x065); +EMIT_RI16(spe_ilh, 0x083) +EMIT_RI16(spe_ilhu, 0x082) +EMIT_RI16(spe_il, 0x081) +EMIT_RI18(spe_ila, 0x021) +EMIT_RI16(spe_iohl, 0x0c1) +EMIT_RI16(spe_fsmbi, 0x065) /* Integer and logical instructions */ -EMIT_RR (spe_ah, 0x0c8); -EMIT_RI10(spe_ahi, 0x01d); -EMIT_RR (spe_a, 0x0c0); -EMIT_RI10(spe_ai, 0x01c); -EMIT_RR (spe_sfh, 0x048); -EMIT_RI10(spe_sfhi, 0x00d); -EMIT_RR (spe_sf, 0x040); -EMIT_RI10(spe_sfi, 0x00c); -EMIT_RR (spe_addx, 0x340); -EMIT_RR (spe_cg, 0x0c2); -EMIT_RR (spe_cgx, 0x342); -EMIT_RR (spe_sfx, 0x341); -EMIT_RR (spe_bg, 0x042); -EMIT_RR (spe_bgx, 0x343); -EMIT_RR (spe_mpy, 0x3c4); -EMIT_RR (spe_mpyu, 0x3cc); -EMIT_RI10(spe_mpyi, 0x074); -EMIT_RI10(spe_mpyui, 0x075); -EMIT_RRR (spe_mpya, 0x00c); -EMIT_RR (spe_mpyh, 0x3c5); -EMIT_RR (spe_mpys, 0x3c7); -EMIT_RR (spe_mpyhh, 0x3c6); -EMIT_RR (spe_mpyhha, 0x346); -EMIT_RR (spe_mpyhhu, 0x3ce); -EMIT_RR (spe_mpyhhau, 0x34e); -EMIT_R (spe_clz, 0x2a5); -EMIT_R (spe_cntb, 0x2b4); -EMIT_R (spe_fsmb, 0x1b6); -EMIT_R (spe_fsmh, 0x1b5); -EMIT_R (spe_fsm, 0x1b4); -EMIT_R (spe_gbb, 0x1b2); -EMIT_R (spe_gbh, 0x1b1); -EMIT_R (spe_gb, 0x1b0); -EMIT_RR (spe_avgb, 0x0d3); -EMIT_RR (spe_absdb, 0x053); -EMIT_RR (spe_sumb, 0x253); -EMIT_R (spe_xsbh, 0x2b6); -EMIT_R (spe_xshw, 0x2ae); -EMIT_R (spe_xswd, 0x2a6); -EMIT_RR (spe_and, 0x0c1); -EMIT_RR (spe_andc, 0x2c1); -EMIT_RI10(spe_andbi, 0x016); -EMIT_RI10(spe_andhi, 0x015); -EMIT_RI10(spe_andi, 0x014); -EMIT_RR (spe_or, 0x041); -EMIT_RR (spe_orc, 0x2c9); -EMIT_RI10(spe_orbi, 0x006); -EMIT_RI10(spe_orhi, 0x005); -EMIT_RI10(spe_ori, 0x004); -EMIT_R (spe_orx, 0x1f0); -EMIT_RR (spe_xor, 0x241); -EMIT_RI10(spe_xorbi, 0x026); -EMIT_RI10(spe_xorhi, 0x025); -EMIT_RI10(spe_xori, 0x024); -EMIT_RR (spe_nand, 0x0c9); -EMIT_RR (spe_nor, 0x049); -EMIT_RR (spe_eqv, 0x249); -EMIT_RRR (spe_selb, 0x008); -EMIT_RRR (spe_shufb, 0x00b); +EMIT_RR (spe_ah, 0x0c8) +EMIT_RI10(spe_ahi, 0x01d) +EMIT_RR (spe_a, 0x0c0) +EMIT_RI10s(spe_ai, 0x01c) +EMIT_RR (spe_sfh, 0x048) +EMIT_RI10(spe_sfhi, 0x00d) +EMIT_RR (spe_sf, 0x040) +EMIT_RI10(spe_sfi, 0x00c) +EMIT_RR (spe_addx, 0x340) +EMIT_RR (spe_cg, 0x0c2) +EMIT_RR (spe_cgx, 0x342) +EMIT_RR (spe_sfx, 0x341) +EMIT_RR (spe_bg, 0x042) +EMIT_RR (spe_bgx, 0x343) +EMIT_RR (spe_mpy, 0x3c4) +EMIT_RR (spe_mpyu, 0x3cc) +EMIT_RI10(spe_mpyi, 0x074) +EMIT_RI10(spe_mpyui, 0x075) +EMIT_RRR (spe_mpya, 0x00c) +EMIT_RR (spe_mpyh, 0x3c5) +EMIT_RR (spe_mpys, 0x3c7) +EMIT_RR (spe_mpyhh, 0x3c6) +EMIT_RR (spe_mpyhha, 0x346) +EMIT_RR (spe_mpyhhu, 0x3ce) +EMIT_RR (spe_mpyhhau, 0x34e) +EMIT_R (spe_clz, 0x2a5) +EMIT_R (spe_cntb, 0x2b4) +EMIT_R (spe_fsmb, 0x1b6) +EMIT_R (spe_fsmh, 0x1b5) +EMIT_R (spe_fsm, 0x1b4) +EMIT_R (spe_gbb, 0x1b2) +EMIT_R (spe_gbh, 0x1b1) +EMIT_R (spe_gb, 0x1b0) +EMIT_RR (spe_avgb, 0x0d3) +EMIT_RR (spe_absdb, 0x053) +EMIT_RR (spe_sumb, 0x253) +EMIT_R (spe_xsbh, 0x2b6) +EMIT_R (spe_xshw, 0x2ae) +EMIT_R (spe_xswd, 0x2a6) +EMIT_RR (spe_and, 0x0c1) +EMIT_RR (spe_andc, 0x2c1) +EMIT_RI10s(spe_andbi, 0x016) +EMIT_RI10s(spe_andhi, 0x015) +EMIT_RI10s(spe_andi, 0x014) +EMIT_RR (spe_or, 0x041) +EMIT_RR (spe_orc, 0x2c9) +EMIT_RI10s(spe_orbi, 0x006) +EMIT_RI10s(spe_orhi, 0x005) +EMIT_RI10s(spe_ori, 0x004) +EMIT_R (spe_orx, 0x1f0) +EMIT_RR (spe_xor, 0x241) +EMIT_RI10s(spe_xorbi, 0x046) +EMIT_RI10s(spe_xorhi, 0x045) +EMIT_RI10s(spe_xori, 0x044) +EMIT_RR (spe_nand, 0x0c9) +EMIT_RR (spe_nor, 0x049) +EMIT_RR (spe_eqv, 0x249) +EMIT_RRR (spe_selb, 0x008) +EMIT_RRR (spe_shufb, 0x00b) /* Shift and rotate instructions */ -EMIT_RR (spe_shlh, 0x05f); -EMIT_RI7 (spe_shlhi, 0x07f); -EMIT_RR (spe_shl, 0x05b); -EMIT_RI7 (spe_shli, 0x07b); -EMIT_RR (spe_shlqbi, 0x1db); -EMIT_RI7 (spe_shlqbii, 0x1fb); -EMIT_RR (spe_shlqby, 0x1df); -EMIT_RI7 (spe_shlqbyi, 0x1ff); -EMIT_RR (spe_shlqbybi, 0x1cf); -EMIT_RR (spe_roth, 0x05c); -EMIT_RI7 (spe_rothi, 0x07c); -EMIT_RR (spe_rot, 0x058); -EMIT_RI7 (spe_roti, 0x078); -EMIT_RR (spe_rotqby, 0x1dc); -EMIT_RI7 (spe_rotqbyi, 0x1fc); -EMIT_RR (spe_rotqbybi, 0x1cc); -EMIT_RR (spe_rotqbi, 0x1d8); -EMIT_RI7 (spe_rotqbii, 0x1f8); -EMIT_RR (spe_rothm, 0x05d); -EMIT_RI7 (spe_rothmi, 0x07d); -EMIT_RR (spe_rotm, 0x059); -EMIT_RI7 (spe_rotmi, 0x079); -EMIT_RR (spe_rotqmby, 0x1dd); -EMIT_RI7 (spe_rotqmbyi, 0x1fd); -EMIT_RR (spe_rotqmbybi, 0x1cd); -EMIT_RR (spe_rotqmbi, 0x1c9); -EMIT_RI7 (spe_rotqmbii, 0x1f9); -EMIT_RR (spe_rotmah, 0x05e); -EMIT_RI7 (spe_rotmahi, 0x07e); -EMIT_RR (spe_rotma, 0x05a); -EMIT_RI7 (spe_rotmai, 0x07a); +EMIT_RR (spe_shlh, 0x05f) +EMIT_RI7 (spe_shlhi, 0x07f) +EMIT_RR (spe_shl, 0x05b) +EMIT_RI7 (spe_shli, 0x07b) +EMIT_RR (spe_shlqbi, 0x1db) +EMIT_RI7 (spe_shlqbii, 0x1fb) +EMIT_RR (spe_shlqby, 0x1df) +EMIT_RI7 (spe_shlqbyi, 0x1ff) +EMIT_RR (spe_shlqbybi, 0x1cf) +EMIT_RR (spe_roth, 0x05c) +EMIT_RI7 (spe_rothi, 0x07c) +EMIT_RR (spe_rot, 0x058) +EMIT_RI7 (spe_roti, 0x078) +EMIT_RR (spe_rotqby, 0x1dc) +EMIT_RI7 (spe_rotqbyi, 0x1fc) +EMIT_RR (spe_rotqbybi, 0x1cc) +EMIT_RR (spe_rotqbi, 0x1d8) +EMIT_RI7 (spe_rotqbii, 0x1f8) +EMIT_RR (spe_rothm, 0x05d) +EMIT_RI7 (spe_rothmi, 0x07d) +EMIT_RR (spe_rotm, 0x059) +EMIT_RI7 (spe_rotmi, 0x079) +EMIT_RR (spe_rotqmby, 0x1dd) +EMIT_RI7 (spe_rotqmbyi, 0x1fd) +EMIT_RR (spe_rotqmbybi, 0x1cd) +EMIT_RR (spe_rotqmbi, 0x1c9) +EMIT_RI7 (spe_rotqmbii, 0x1f9) +EMIT_RR (spe_rotmah, 0x05e) +EMIT_RI7 (spe_rotmahi, 0x07e) +EMIT_RR (spe_rotma, 0x05a) +EMIT_RI7 (spe_rotmai, 0x07a) /* Compare, branch, and halt instructions */ -EMIT_RR (spe_heq, 0x3d8); -EMIT_RI10(spe_heqi, 0x07f); -EMIT_RR (spe_hgt, 0x258); -EMIT_RI10(spe_hgti, 0x04f); -EMIT_RR (spe_hlgt, 0x2d8); -EMIT_RI10(spe_hlgti, 0x05f); -EMIT_RR (spe_ceqb, 0x3d0); -EMIT_RI10(spe_ceqbi, 0x07e); -EMIT_RR (spe_ceqh, 0x3c8); -EMIT_RI10(spe_ceqhi, 0x07d); -EMIT_RR (spe_ceq, 0x3c0); -EMIT_RI10(spe_ceqi, 0x07c); -EMIT_RR (spe_cgtb, 0x250); -EMIT_RI10(spe_cgtbi, 0x04e); -EMIT_RR (spe_cgth, 0x248); -EMIT_RI10(spe_cgthi, 0x04d); -EMIT_RR (spe_cgt, 0x240); -EMIT_RI10(spe_cgti, 0x04c); -EMIT_RR (spe_clgtb, 0x2d0); -EMIT_RI10(spe_clgtbi, 0x05e); -EMIT_RR (spe_clgth, 0x2c8); -EMIT_RI10(spe_clgthi, 0x05d); -EMIT_RR (spe_clgt, 0x2c0); -EMIT_RI10(spe_clgti, 0x05c); -EMIT_I16 (spe_br, 0x064); -EMIT_I16 (spe_bra, 0x060); -EMIT_RI16(spe_brsl, 0x066); -EMIT_RI16(spe_brasl, 0x062); -EMIT_RI16(spe_brnz, 0x042); -EMIT_RI16(spe_brz, 0x040); -EMIT_RI16(spe_brhnz, 0x046); -EMIT_RI16(spe_brhz, 0x044); +EMIT_RR (spe_heq, 0x3d8) +EMIT_RI10(spe_heqi, 0x07f) +EMIT_RR (spe_hgt, 0x258) +EMIT_RI10(spe_hgti, 0x04f) +EMIT_RR (spe_hlgt, 0x2d8) +EMIT_RI10(spe_hlgti, 0x05f) +EMIT_RR (spe_ceqb, 0x3d0) +EMIT_RI10(spe_ceqbi, 0x07e) +EMIT_RR (spe_ceqh, 0x3c8) +EMIT_RI10(spe_ceqhi, 0x07d) +EMIT_RR (spe_ceq, 0x3c0) +EMIT_RI10(spe_ceqi, 0x07c) +EMIT_RR (spe_cgtb, 0x250) +EMIT_RI10(spe_cgtbi, 0x04e) +EMIT_RR (spe_cgth, 0x248) +EMIT_RI10(spe_cgthi, 0x04d) +EMIT_RR (spe_cgt, 0x240) +EMIT_RI10(spe_cgti, 0x04c) +EMIT_RR (spe_clgtb, 0x2d0) +EMIT_RI10(spe_clgtbi, 0x05e) +EMIT_RR (spe_clgth, 0x2c8) +EMIT_RI10(spe_clgthi, 0x05d) +EMIT_RR (spe_clgt, 0x2c0) +EMIT_RI10(spe_clgti, 0x05c) +EMIT_I16 (spe_br, 0x064) +EMIT_I16 (spe_bra, 0x060) +EMIT_RI16(spe_brsl, 0x066) +EMIT_RI16(spe_brasl, 0x062) +EMIT_RI16(spe_brnz, 0x042) +EMIT_RI16(spe_brz, 0x040) +EMIT_RI16(spe_brhnz, 0x046) +EMIT_RI16(spe_brhz, 0x044) + +/* Control instructions + */ +EMIT (spe_lnop, 0x001) + +extern void +spe_lqd(struct spe_function *p, unsigned rT, unsigned rA, int offset); + +extern void +spe_stqd(struct spe_function *p, unsigned rT, unsigned rA, int offset); extern void spe_bi(struct spe_function *p, unsigned rA, int d, int e); extern void spe_iret(struct spe_function *p, unsigned rA, int d, int e); @@ -292,13 +330,33 @@ spe_load_float(struct spe_function *p, unsigned rT, float x); extern void spe_load_int(struct spe_function *p, unsigned rT, int i); +/** Load/splat immediate unsigned int into rT. */ +extern void +spe_load_uint(struct spe_function *p, unsigned rT, unsigned int ui); + +/** And immediate value into rT. */ +extern void +spe_and_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui); + +/** Xor immediate value into rT. */ +extern void +spe_xor_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui); + +/** Compare equal with immediate value. */ +extern void +spe_compare_equal_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui); + +/** Compare greater with immediate value. */ +extern void +spe_compare_greater_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui); + /** Replicate word 0 of rA across rT. */ extern void spe_splat(struct spe_function *p, unsigned rT, unsigned rA); -/** Complement/invert all bits in rT. */ +/** rT = complement_all_bits(rA). */ extern void -spe_complement(struct spe_function *p, unsigned rT); +spe_complement(struct spe_function *p, unsigned rT, unsigned rA); /** rT = rA. */ extern void @@ -308,52 +366,65 @@ spe_move(struct spe_function *p, unsigned rT, unsigned rA); extern void spe_zero(struct spe_function *p, unsigned rT); +/** rT = splat(rA, word) */ +extern void +spe_splat_word(struct spe_function *p, unsigned rT, unsigned rA, int word); + +/** rT = float min(rA, rB) */ +extern void +spe_float_min(struct spe_function *p, unsigned rT, unsigned rA, unsigned rB); + +/** rT = float max(rA, rB) */ +extern void +spe_float_max(struct spe_function *p, unsigned rT, unsigned rA, unsigned rB); + /* Floating-point instructions */ -EMIT_RR (spe_fa, 0x2c4); -EMIT_RR (spe_dfa, 0x2cc); -EMIT_RR (spe_fs, 0x2c5); -EMIT_RR (spe_dfs, 0x2cd); -EMIT_RR (spe_fm, 0x2c6); -EMIT_RR (spe_dfm, 0x2ce); -EMIT_RRR (spe_fma, 0x00e); -EMIT_RR (spe_dfma, 0x35c); -EMIT_RRR (spe_fnms, 0x00d); -EMIT_RR (spe_dfnms, 0x35e); -EMIT_RRR (spe_fms, 0x00f); -EMIT_RR (spe_dfms, 0x35d); -EMIT_RR (spe_dfnma, 0x35f); -EMIT_R (spe_frest, 0x1b8); -EMIT_R (spe_frsqest, 0x1b9); -EMIT_RR (spe_fi, 0x3d4); -EMIT_RI8 (spe_csflt, 0x1da, 155); -EMIT_RI8 (spe_cflts, 0x1d8, 173); -EMIT_RI8 (spe_cuflt, 0x1db, 155); -EMIT_RI8 (spe_cfltu, 0x1d9, 173); -EMIT_R (spe_frds, 0x3b9); -EMIT_R (spe_fesd, 0x3b8); -EMIT_RR (spe_dfceq, 0x3c3); -EMIT_RR (spe_dfcmeq, 0x3cb); -EMIT_RR (spe_dfcgt, 0x2c3); -EMIT_RR (spe_dfcmgt, 0x2cb); -EMIT_RI7 (spe_dftsv, 0x3bf); -EMIT_RR (spe_fceq, 0x3c2); -EMIT_RR (spe_fcmeq, 0x3ca); -EMIT_RR (spe_fcgt, 0x2c2); -EMIT_RR (spe_fcmgt, 0x2ca); -EMIT_R (spe_fscrwr, 0x3ba); -EMIT_ (spe_fscrrd, 0x398); +EMIT_RR (spe_fa, 0x2c4) +EMIT_RR (spe_dfa, 0x2cc) +EMIT_RR (spe_fs, 0x2c5) +EMIT_RR (spe_dfs, 0x2cd) +EMIT_RR (spe_fm, 0x2c6) +EMIT_RR (spe_dfm, 0x2ce) +EMIT_RRR (spe_fma, 0x00e) +EMIT_RR (spe_dfma, 0x35c) +EMIT_RRR (spe_fnms, 0x00d) +EMIT_RR (spe_dfnms, 0x35e) +EMIT_RRR (spe_fms, 0x00f) +EMIT_RR (spe_dfms, 0x35d) +EMIT_RR (spe_dfnma, 0x35f) +EMIT_R (spe_frest, 0x1b8) +EMIT_R (spe_frsqest, 0x1b9) +EMIT_RR (spe_fi, 0x3d4) +EMIT_RI8 (spe_csflt, 0x1da, 155) +EMIT_RI8 (spe_cflts, 0x1d8, 173) +EMIT_RI8 (spe_cuflt, 0x1db, 155) +EMIT_RI8 (spe_cfltu, 0x1d9, 173) +EMIT_R (spe_frds, 0x3b9) +EMIT_R (spe_fesd, 0x3b8) +EMIT_RR (spe_dfceq, 0x3c3) +EMIT_RR (spe_dfcmeq, 0x3cb) +EMIT_RR (spe_dfcgt, 0x2c3) +EMIT_RR (spe_dfcmgt, 0x2cb) +EMIT_RI7 (spe_dftsv, 0x3bf) +EMIT_RR (spe_fceq, 0x3c2) +EMIT_RR (spe_fcmeq, 0x3ca) +EMIT_RR (spe_fcgt, 0x2c2) +EMIT_RR (spe_fcmgt, 0x2ca) +EMIT_R (spe_fscrwr, 0x3ba) +EMIT_ (spe_fscrrd, 0x398) /* Channel instructions */ -EMIT_R (spe_rdch, 0x00d); -EMIT_R (spe_rdchcnt, 0x00f); -EMIT_R (spe_wrch, 0x10d); +EMIT_R (spe_rdch, 0x00d) +EMIT_R (spe_rdchcnt, 0x00f) +EMIT_R (spe_wrch, 0x10d) #ifdef UNDEF_EMIT_MACROS +#undef EMIT #undef EMIT_ #undef EMIT_R #undef EMIT_RR @@ -361,6 +432,7 @@ EMIT_R (spe_wrch, 0x10d); #undef EMIT_RI7 #undef EMIT_RI8 #undef EMIT_RI10 +#undef EMIT_RI10s #undef EMIT_RI16 #undef EMIT_RI18 #undef EMIT_I16 diff --git a/src/gallium/auxiliary/rtasm/rtasm_x86sse.c b/src/gallium/auxiliary/rtasm/rtasm_x86sse.c index ad9d8f8ced..99ee74cf14 100644 --- a/src/gallium/auxiliary/rtasm/rtasm_x86sse.c +++ b/src/gallium/auxiliary/rtasm/rtasm_x86sse.c @@ -240,7 +240,8 @@ static void emit_modrm( struct x86_function *p, /* Oh-oh we've stumbled into the SIB thing. */ if (regmem.file == file_REG32 && - regmem.idx == reg_SP) { + regmem.idx == reg_SP && + regmem.mod != mod_REG) { emit_1ub(p, 0x24); /* simplistic! */ } @@ -439,25 +440,70 @@ void x86_call( struct x86_function *p, struct x86_reg reg) } -/* michal: - * Temporary. As I need immediate operands, and dont want to mess with the codegen, - * I load the immediate into general purpose register and use it. - */ void x86_mov_reg_imm( struct x86_function *p, struct x86_reg dst, int imm ) { DUMP_RI( dst, imm ); + assert(dst.file == file_REG32); assert(dst.mod == mod_REG); emit_1ub(p, 0xb8 + dst.idx); emit_1i(p, imm); } -void x86_add_reg_imm8( struct x86_function *p, struct x86_reg dst, ubyte imm ) +/** + * Immediate group 1 instructions. + */ +static INLINE void +x86_group1_imm( struct x86_function *p, + unsigned op, struct x86_reg dst, int imm ) { - DUMP_RI( dst, imm ); + assert(dst.file == file_REG32); assert(dst.mod == mod_REG); - emit_1ub(p, 0x80); - emit_modrm_noreg(p, 0, dst); - emit_1ub(p, imm); + if(-0x80 <= imm && imm < 0x80) { + emit_1ub(p, 0x83); + emit_modrm_noreg(p, op, dst); + emit_1b(p, (char)imm); + } + else { + emit_1ub(p, 0x81); + emit_modrm_noreg(p, op, dst); + emit_1i(p, imm); + } +} + +void x86_add_imm( struct x86_function *p, struct x86_reg dst, int imm ) +{ + DUMP_RI( dst, imm ); + x86_group1_imm(p, 0, dst, imm); +} + +void x86_or_imm( struct x86_function *p, struct x86_reg dst, int imm ) +{ + DUMP_RI( dst, imm ); + x86_group1_imm(p, 1, dst, imm); +} + +void x86_and_imm( struct x86_function *p, struct x86_reg dst, int imm ) +{ + DUMP_RI( dst, imm ); + x86_group1_imm(p, 4, dst, imm); +} + +void x86_sub_imm( struct x86_function *p, struct x86_reg dst, int imm ) +{ + DUMP_RI( dst, imm ); + x86_group1_imm(p, 5, dst, imm); +} + +void x86_xor_imm( struct x86_function *p, struct x86_reg dst, int imm ) +{ + DUMP_RI( dst, imm ); + x86_group1_imm(p, 6, dst, imm); +} + +void x86_cmp_imm( struct x86_function *p, struct x86_reg dst, int imm ) +{ + DUMP_RI( dst, imm ); + x86_group1_imm(p, 7, dst, imm); } diff --git a/src/gallium/auxiliary/rtasm/rtasm_x86sse.h b/src/gallium/auxiliary/rtasm/rtasm_x86sse.h index af79f07dd3..1b5eaaca85 100644 --- a/src/gallium/auxiliary/rtasm/rtasm_x86sse.h +++ b/src/gallium/auxiliary/rtasm/rtasm_x86sse.h @@ -152,12 +152,13 @@ void x86_jmp( struct x86_function *p, int label ); /* void x86_call( struct x86_function *p, void (*label)() ); */ void x86_call( struct x86_function *p, struct x86_reg reg); -/* michal: - * Temporary. As I need immediate operands, and dont want to mess with the codegen, - * I load the immediate into general purpose register and use it. - */ void x86_mov_reg_imm( struct x86_function *p, struct x86_reg dst, int imm ); -void x86_add_reg_imm8( struct x86_function *p, struct x86_reg dst, ubyte imm ); +void x86_add_imm( struct x86_function *p, struct x86_reg dst, int imm ); +void x86_or_imm( struct x86_function *p, struct x86_reg dst, int imm ); +void x86_and_imm( struct x86_function *p, struct x86_reg dst, int imm ); +void x86_sub_imm( struct x86_function *p, struct x86_reg dst, int imm ); +void x86_xor_imm( struct x86_function *p, struct x86_reg dst, int imm ); +void x86_cmp_imm( struct x86_function *p, struct x86_reg dst, int imm ); /* Macro for sse_shufps() and sse2_pshufd(): |