diff options
Diffstat (limited to 'src/gallium/auxiliary')
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c | 246 | ||||
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h | 41 |
2 files changed, 257 insertions, 30 deletions
diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c index 491141f190..8a87e9abb1 100644 --- a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c +++ b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c @@ -359,14 +359,21 @@ void _name (struct spe_function *p, int imm) \ */ void spe_init_func(struct spe_function *p, unsigned code_size) { + register unsigned int i; + p->store = align_malloc(code_size, 16); p->num_inst = 0; p->max_inst = code_size / SPE_INST_SIZE; + p->set_count = 0; + memset(p->regs, 0, SPE_NUM_REGS * sizeof(p->regs[0])); + /* Conservatively treat R0 - R2 and R80 - R127 as non-volatile. */ - p->regs[0] = ~7; - p->regs[1] = (1U << (80 - 64)) - 1; + p->regs[0] = p->regs[1] = p->regs[2] = 1; + for (i = 80; i <= 127; i++) { + p->regs[i] = 1; + } p->print = false; p->indent = 0; @@ -398,12 +405,8 @@ int spe_allocate_available_register(struct spe_function *p) { unsigned i; for (i = 0; i < SPE_NUM_REGS; i++) { - const uint64_t mask = (1ULL << (i % 64)); - const unsigned idx = i / 64; - - assert(idx < 2); - if ((p->regs[idx] & mask) != 0) { - p->regs[idx] &= ~mask; + if (p->regs[i] == 0) { + p->regs[i] = 1; return i; } } @@ -417,31 +420,68 @@ int spe_allocate_available_register(struct spe_function *p) */ int spe_allocate_register(struct spe_function *p, int reg) { - const unsigned idx = reg / 64; - const unsigned bit = reg % 64; - assert(reg < SPE_NUM_REGS); - assert((p->regs[idx] & (1ULL << bit)) != 0); - - p->regs[idx] &= ~(1ULL << bit); + assert(p->regs[reg] == 0); + p->regs[reg] = 1; return reg; } /** - * Mark the given SPE register as "unallocated". + * Mark the given SPE register as "unallocated". Note that this should + * only be used on registers allocated in the current register set; an + * assertion will fail if an attempt is made to deallocate a register + * allocated in an earlier register set. */ void spe_release_register(struct spe_function *p, int reg) { - const unsigned idx = reg / 64; - const unsigned bit = reg % 64; + assert(reg < SPE_NUM_REGS); + assert(p->regs[reg] == 1); - assert(idx < 2); + p->regs[reg] = 0; +} - assert(reg < SPE_NUM_REGS); - assert((p->regs[idx] & (1ULL << bit)) == 0); +/** + * Start a new set of registers. This can be called if + * it will be difficult later to determine exactly what + * registers were actually allocated during a code generation + * sequence, and you really just want to deallocate all of them. + */ +void spe_allocate_register_set(struct spe_function *p) +{ + register unsigned int i; + + /* Keep track of the set count. If it ever wraps around to 0, + * we're in trouble. + */ + p->set_count++; + assert(p->set_count > 0); + + /* Increment the allocation count of all registers currently + * allocated. Then any registers that are allocated in this set + * will be the only ones with a count of 1; they'll all be released + * when the register set is released. + */ + for (i = 0; i < SPE_NUM_REGS; i++) { + if (p->regs[i] > 0) p->regs[i]++; + } +} + +void spe_release_register_set(struct spe_function *p) +{ + unsigned int i; + + /* If the set count drops below zero, we're in trouble. */ + assert(p->set_count > 0); + p->set_count--; - p->regs[idx] |= (1ULL << bit); + /* Drop the allocation level of all registers. Any allocated + * during this register set will drop to 0 and then become + * available. + */ + for (i = 0; i < SPE_NUM_REGS; i++) { + if (p->regs[i] > 0) p->regs[i]--; + } } @@ -603,8 +643,10 @@ void spe_load_uint(struct spe_function *p, unsigned rT, unsigned int ui) { /* If the whole value is in the lower 18 bits, use ila, which * doesn't sign-extend. Otherwise, if the two halfwords of - * the constant are identical, use ilh. Otherwise, we have - * to use ilhu followed by iohl. + * the constant are identical, use ilh. Otherwise, if every byte of + * the desired value is 0x00 or 0xff, we can use Form Select Mask for + * Bytes Immediate (fsmbi) to load the value in a single instruction. + * Otherwise, in the general case, we have to use ilhu followed by iohl. */ if ((ui & 0xfffc0000) == ui) { spe_ila(p, rT, ui); @@ -612,13 +654,171 @@ void spe_load_uint(struct spe_function *p, unsigned rT, unsigned int ui) else if ((ui >> 16) == (ui & 0xffff)) { spe_ilh(p, rT, ui & 0xffff); } + else if ( + ((ui & 0x000000ff) == 0 || (ui & 0x000000ff) == 0x000000ff) && + ((ui & 0x0000ff00) == 0 || (ui & 0x0000ff00) == 0x0000ff00) && + ((ui & 0x00ff0000) == 0 || (ui & 0x00ff0000) == 0x00ff0000) && + ((ui & 0xff000000) == 0 || (ui & 0xff000000) == 0xff000000) + ) { + unsigned int mask = 0; + /* fsmbi duplicates each bit in the given mask eight times, + * using a 16-bit value to initialize a 16-byte quadword. + * Each 4-bit nybble of the mask corresponds to a full word + * of the result; look at the value and figure out the mask + * (replicated for each word in the quadword), and then + * form the "select mask" to get the value. + */ + if ((ui & 0x000000ff) == 0x000000ff) mask |= 0x1111; + if ((ui & 0x0000ff00) == 0x0000ff00) mask |= 0x2222; + if ((ui & 0x00ff0000) == 0x00ff0000) mask |= 0x4444; + if ((ui & 0xff000000) == 0xff000000) mask |= 0x8888; + spe_fsmbi(p, rT, mask); + } else { + /* The general case: this usually uses two instructions, but + * may use only one if the low-order 16 bits of each word are 0. + */ spe_ilhu(p, rT, ui >> 16); if (ui & 0xffff) spe_iohl(p, rT, ui & 0xffff); } } +/* This function is constructed identically to spe_sor_uint() below. + * Changes to one should be made in the other. + */ +void spe_and_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui) +{ + /* If we can, emit a single instruction, either And Byte Immediate + * (which uses the same constant across each byte), And Halfword Immediate + * (which sign-extends a 10-bit immediate to 16 bits and uses that + * across each halfword), or And Word Immediate (which sign-extends + * a 10-bit immediate to 32 bits). + * + * Otherwise, we'll need to use a temporary register. + */ + register unsigned int tmp; + + /* If the upper 23 bits are all 0s or all 1s, sign extension + * will work and we can use And Word Immediate + */ + tmp = ui & 0xfffffe00; + if (tmp == 0xfffffe00 || tmp == 0) { + spe_andi(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric along halfword boundaries and + * the upper 7 bits of each halfword are all 0s or 1s, we + * can use And Halfword Immediate + */ + tmp = ui & 0xfe00fe00; + if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) { + spe_andhi(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric in each byte, then we can use + * the And Byte Immediate instruction. + */ + tmp = ui & 0x000000ff; + if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) { + spe_andbi(p, rT, rA, tmp); + return; + } + + /* Otherwise, we'll have to use a temporary register. */ + unsigned int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_and(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); +} + +/* This function is constructed identically to spe_and_uint() above. + * Changes to one should be made in the other. + */ +void spe_xor_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui) +{ + /* If we can, emit a single instruction, either Exclusive Or Byte + * Immediate (which uses the same constant across each byte), Exclusive + * Or Halfword Immediate (which sign-extends a 10-bit immediate to + * 16 bits and uses that across each halfword), or Exclusive Or Word + * Immediate (which sign-extends a 10-bit immediate to 32 bits). + * + * Otherwise, we'll need to use a temporary register. + */ + register unsigned int tmp; + + /* If the upper 23 bits are all 0s or all 1s, sign extension + * will work and we can use Exclusive Or Word Immediate + */ + tmp = ui & 0xfffffe00; + if (tmp == 0xfffffe00 || tmp == 0) { + spe_xori(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric along halfword boundaries and + * the upper 7 bits of each halfword are all 0s or 1s, we + * can use Exclusive Or Halfword Immediate + */ + tmp = ui & 0xfe00fe00; + if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) { + spe_xorhi(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric in each byte, then we can use + * the Exclusive Or Byte Immediate instruction. + */ + tmp = ui & 0x000000ff; + if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) { + spe_xorbi(p, rT, rA, tmp); + return; + } + + /* Otherwise, we'll have to use a temporary register. */ + unsigned int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_xor(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); +} + +void +spe_compare_equal_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui) +{ + /* If the comparison value is 9 bits or less, it fits inside a + * Compare Equal Word Immediate instruction. + */ + if ((ui & 0x000001ff) == ui) { + spe_ceqi(p, rT, rA, ui); + } + /* Otherwise, we're going to have to load a word first. */ + else { + unsigned int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_ceq(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); + } +} + +void +spe_compare_greater_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui) +{ + /* If the comparison value is 10 bits or less, it fits inside a + * Compare Logical Greater Than Word Immediate instruction. + */ + if ((ui & 0x000003ff) == ui) { + spe_clgti(p, rT, rA, ui); + } + /* Otherwise, we're going to have to load a word first. */ + else { + unsigned int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_clgt(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); + } +} void spe_splat(struct spe_function *p, unsigned rT, unsigned rA) diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h index 61c7edeb60..cd2e245409 100644 --- a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h +++ b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.h @@ -53,17 +53,26 @@ struct spe_function uint num_inst; uint max_inst; - /** - * Mask of used / unused registers - * - * Each set bit corresponds to an available register. Each cleared bit - * corresponds to an allocated register. + /** + * The "set count" reflects the number of nested register sets + * are allowed. In the unlikely case that we exceed the set count, + * register allocation will start to be confused, which is critical + * enough that we check for it. + */ + unsigned char set_count; + + /** + * Flags for used and unused registers. Each byte corresponds to a + * register; a 0 in that byte means that the register is available. + * A value of 1 means that the register was allocated in the current + * register set. Any other value N means that the register was allocated + * N register sets ago. * * \sa * spe_allocate_register, spe_allocate_available_register, - * spe_release_register + * spe_allocate_register_set, spe_release_register_set, spe_release_register, */ - uint64_t regs[SPE_NUM_REGS / 64]; + unsigned char regs[SPE_NUM_REGS]; boolean print; /**< print/dump instructions as they're emitted? */ int indent; /**< number of spaces to indent */ @@ -77,6 +86,8 @@ extern unsigned spe_code_size(const struct spe_function *p); extern int spe_allocate_available_register(struct spe_function *p); extern int spe_allocate_register(struct spe_function *p, int reg); extern void spe_release_register(struct spe_function *p, int reg); +extern void spe_allocate_register_set(struct spe_function *p); +extern void spe_release_register_set(struct spe_function *p); extern void spe_print_code(struct spe_function *p, boolean enable); extern void spe_indent(struct spe_function *p, int spaces); @@ -307,6 +318,22 @@ spe_load_int(struct spe_function *p, unsigned rT, int i); extern void spe_load_uint(struct spe_function *p, unsigned rT, unsigned int ui); +/** And immediate value into rT. */ +extern void +spe_and_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui); + +/** Xor immediate value into rT. */ +extern void +spe_xor_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui); + +/** Compare equal with immediate value. */ +extern void +spe_compare_equal_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui); + +/** Compare greater with immediate value. */ +extern void +spe_compare_greater_uint(struct spe_function *p, unsigned rT, unsigned rA, unsigned int ui); + /** Replicate word 0 of rA across rT. */ extern void spe_splat(struct spe_function *p, unsigned rT, unsigned rA); |