summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/cell/ppu/cell_gen_fragment.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/gallium/drivers/cell/ppu/cell_gen_fragment.c')
-rw-r--r--src/gallium/drivers/cell/ppu/cell_gen_fragment.c2181
1 files changed, 2181 insertions, 0 deletions
diff --git a/src/gallium/drivers/cell/ppu/cell_gen_fragment.c b/src/gallium/drivers/cell/ppu/cell_gen_fragment.c
new file mode 100644
index 0000000000..66d4b3b6a3
--- /dev/null
+++ b/src/gallium/drivers/cell/ppu/cell_gen_fragment.c
@@ -0,0 +1,2181 @@
+/**************************************************************************
+ *
+ * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
+ * All Rights Reserved.
+ * Copyright 2009 VMware, Inc. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+/**
+ * Generate SPU per-fragment code (actually per-quad code).
+ * \author Brian Paul
+ * \author Bob Ellison
+ */
+
+
+#include "pipe/p_defines.h"
+#include "pipe/p_state.h"
+#include "rtasm/rtasm_ppc_spe.h"
+#include "cell_context.h"
+#include "cell_gen_fragment.h"
+
+
+
+/** Do extra optimizations? */
+#define OPTIMIZATIONS 1
+
+
+/**
+ * Generate SPE code to perform Z/depth testing.
+ *
+ * \param dsa Gallium depth/stencil/alpha state to gen code for
+ * \param f SPE function to append instruction onto.
+ * \param mask_reg register containing quad/pixel "alive" mask (in/out)
+ * \param ifragZ_reg register containing integer fragment Z values (in)
+ * \param ifbZ_reg register containing integer frame buffer Z values (in/out)
+ * \param zmask_reg register containing result of Z test/comparison (out)
+ *
+ * Returns TRUE if the Z-buffer needs to be updated.
+ */
+static boolean
+gen_depth_test(struct spe_function *f,
+ const struct pipe_depth_stencil_alpha_state *dsa,
+ int mask_reg, int ifragZ_reg, int ifbZ_reg, int zmask_reg)
+{
+ /* NOTE: we use clgt below, not cgt, because we want to compare _unsigned_
+ * quantities. This only makes a difference for 32-bit Z values though.
+ */
+ ASSERT(dsa->depth.enabled);
+
+ switch (dsa->depth.func) {
+ case PIPE_FUNC_EQUAL:
+ /* zmask = (ifragZ == ref) */
+ spe_ceq(f, zmask_reg, ifragZ_reg, ifbZ_reg);
+ /* mask = (mask & zmask) */
+ spe_and(f, mask_reg, mask_reg, zmask_reg);
+ break;
+
+ case PIPE_FUNC_NOTEQUAL:
+ /* zmask = (ifragZ == ref) */
+ spe_ceq(f, zmask_reg, ifragZ_reg, ifbZ_reg);
+ /* mask = (mask & ~zmask) */
+ spe_andc(f, mask_reg, mask_reg, zmask_reg);
+ break;
+
+ case PIPE_FUNC_GREATER:
+ /* zmask = (ifragZ > ref) */
+ spe_clgt(f, zmask_reg, ifragZ_reg, ifbZ_reg);
+ /* mask = (mask & zmask) */
+ spe_and(f, mask_reg, mask_reg, zmask_reg);
+ break;
+
+ case PIPE_FUNC_LESS:
+ /* zmask = (ref > ifragZ) */
+ spe_clgt(f, zmask_reg, ifbZ_reg, ifragZ_reg);
+ /* mask = (mask & zmask) */
+ spe_and(f, mask_reg, mask_reg, zmask_reg);
+ break;
+
+ case PIPE_FUNC_LEQUAL:
+ /* zmask = (ifragZ > ref) */
+ spe_clgt(f, zmask_reg, ifragZ_reg, ifbZ_reg);
+ /* mask = (mask & ~zmask) */
+ spe_andc(f, mask_reg, mask_reg, zmask_reg);
+ break;
+
+ case PIPE_FUNC_GEQUAL:
+ /* zmask = (ref > ifragZ) */
+ spe_clgt(f, zmask_reg, ifbZ_reg, ifragZ_reg);
+ /* mask = (mask & ~zmask) */
+ spe_andc(f, mask_reg, mask_reg, zmask_reg);
+ break;
+
+ case PIPE_FUNC_NEVER:
+ spe_il(f, mask_reg, 0); /* mask = {0,0,0,0} */
+ spe_move(f, zmask_reg, mask_reg); /* zmask = mask */
+ break;
+
+ case PIPE_FUNC_ALWAYS:
+ /* mask unchanged */
+ spe_il(f, zmask_reg, ~0); /* zmask = {~0,~0,~0,~0} */
+ break;
+
+ default:
+ ASSERT(0);
+ break;
+ }
+
+ if (dsa->depth.writemask) {
+ /*
+ * If (ztest passed) {
+ * framebufferZ = fragmentZ;
+ * }
+ * OR,
+ * framebufferZ = (ztest_passed ? fragmentZ : framebufferZ;
+ */
+ spe_selb(f, ifbZ_reg, ifbZ_reg, ifragZ_reg, mask_reg);
+ return TRUE;
+ }
+
+ return FALSE;
+}
+
+
+/**
+ * Generate SPE code to perform alpha testing.
+ *
+ * \param dsa Gallium depth/stencil/alpha state to gen code for
+ * \param f SPE function to append instruction onto.
+ * \param mask_reg register containing quad/pixel "alive" mask (in/out)
+ * \param fragA_reg register containing four fragment alpha values (in)
+ */
+static void
+gen_alpha_test(const struct pipe_depth_stencil_alpha_state *dsa,
+ struct spe_function *f, int mask_reg, int fragA_reg)
+{
+ int ref_reg = spe_allocate_available_register(f);
+ int amask_reg = spe_allocate_available_register(f);
+
+ ASSERT(dsa->alpha.enabled);
+
+ if ((dsa->alpha.func != PIPE_FUNC_NEVER) &&
+ (dsa->alpha.func != PIPE_FUNC_ALWAYS)) {
+ /* load/splat the alpha reference float value */
+ spe_load_float(f, ref_reg, dsa->alpha.ref_value);
+ }
+
+ /* emit code to do the alpha comparison, updating 'mask' */
+ switch (dsa->alpha.func) {
+ case PIPE_FUNC_EQUAL:
+ /* amask = (fragA == ref) */
+ spe_fceq(f, amask_reg, fragA_reg, ref_reg);
+ /* mask = (mask & amask) */
+ spe_and(f, mask_reg, mask_reg, amask_reg);
+ break;
+
+ case PIPE_FUNC_NOTEQUAL:
+ /* amask = (fragA == ref) */
+ spe_fceq(f, amask_reg, fragA_reg, ref_reg);
+ /* mask = (mask & ~amask) */
+ spe_andc(f, mask_reg, mask_reg, amask_reg);
+ break;
+
+ case PIPE_FUNC_GREATER:
+ /* amask = (fragA > ref) */
+ spe_fcgt(f, amask_reg, fragA_reg, ref_reg);
+ /* mask = (mask & amask) */
+ spe_and(f, mask_reg, mask_reg, amask_reg);
+ break;
+
+ case PIPE_FUNC_LESS:
+ /* amask = (ref > fragA) */
+ spe_fcgt(f, amask_reg, ref_reg, fragA_reg);
+ /* mask = (mask & amask) */
+ spe_and(f, mask_reg, mask_reg, amask_reg);
+ break;
+
+ case PIPE_FUNC_LEQUAL:
+ /* amask = (fragA > ref) */
+ spe_fcgt(f, amask_reg, fragA_reg, ref_reg);
+ /* mask = (mask & ~amask) */
+ spe_andc(f, mask_reg, mask_reg, amask_reg);
+ break;
+
+ case PIPE_FUNC_GEQUAL:
+ /* amask = (ref > fragA) */
+ spe_fcgt(f, amask_reg, ref_reg, fragA_reg);
+ /* mask = (mask & ~amask) */
+ spe_andc(f, mask_reg, mask_reg, amask_reg);
+ break;
+
+ case PIPE_FUNC_NEVER:
+ spe_il(f, mask_reg, 0); /* mask = [0,0,0,0] */
+ break;
+
+ case PIPE_FUNC_ALWAYS:
+ /* no-op, mask unchanged */
+ break;
+
+ default:
+ ASSERT(0);
+ break;
+ }
+
+#if OPTIMIZATIONS
+ /* if mask == {0,0,0,0} we're all done, return */
+ {
+ /* re-use amask reg here */
+ int tmp_reg = amask_reg;
+ /* tmp[0] = (mask[0] | mask[1] | mask[2] | mask[3]) */
+ spe_orx(f, tmp_reg, mask_reg);
+ /* if tmp[0] == 0 then return from function call */
+ spe_biz(f, tmp_reg, SPE_REG_RA, 0, 0);
+ }
+#endif
+
+ spe_release_register(f, ref_reg);
+ spe_release_register(f, amask_reg);
+}
+
+
+/**
+ * This pair of functions is used inline to allocate and deallocate
+ * optional constant registers. Once a constant is discovered to be
+ * needed, we will likely need it again, so we don't want to deallocate
+ * it and have to allocate and load it again unnecessarily.
+ */
+static INLINE void
+setup_optional_register(struct spe_function *f,
+ int *r)
+{
+ if (*r < 0)
+ *r = spe_allocate_available_register(f);
+}
+
+static INLINE void
+release_optional_register(struct spe_function *f,
+ int r)
+{
+ if (r >= 0)
+ spe_release_register(f, r);
+}
+
+static INLINE void
+setup_const_register(struct spe_function *f,
+ int *r,
+ float value)
+{
+ if (*r >= 0)
+ return;
+ setup_optional_register(f, r);
+ spe_load_float(f, *r, value);
+}
+
+static INLINE void
+release_const_register(struct spe_function *f,
+ int r)
+{
+ release_optional_register(f, r);
+}
+
+
+
+/**
+ * Unpack/convert framebuffer colors from four 32-bit packed colors
+ * (fbRGBA) to four float RGBA vectors (fbR, fbG, fbB, fbA).
+ * Each 8-bit color component is expanded into a float in [0.0, 1.0].
+ */
+static void
+unpack_colors(struct spe_function *f,
+ enum pipe_format color_format,
+ int fbRGBA_reg,
+ int fbR_reg, int fbG_reg, int fbB_reg, int fbA_reg)
+{
+ int mask0_reg = spe_allocate_available_register(f);
+ int mask1_reg = spe_allocate_available_register(f);
+ int mask2_reg = spe_allocate_available_register(f);
+ int mask3_reg = spe_allocate_available_register(f);
+
+ spe_load_int(f, mask0_reg, 0xff);
+ spe_load_int(f, mask1_reg, 0xff00);
+ spe_load_int(f, mask2_reg, 0xff0000);
+ spe_load_int(f, mask3_reg, 0xff000000);
+
+ spe_comment(f, 0, "Unpack framebuffer colors, convert to floats");
+
+ switch (color_format) {
+ case PIPE_FORMAT_A8R8G8B8_UNORM:
+ /* fbB = fbRGBA & mask */
+ spe_and(f, fbB_reg, fbRGBA_reg, mask0_reg);
+
+ /* fbG = fbRGBA & mask */
+ spe_and(f, fbG_reg, fbRGBA_reg, mask1_reg);
+
+ /* fbR = fbRGBA & mask */
+ spe_and(f, fbR_reg, fbRGBA_reg, mask2_reg);
+
+ /* fbA = fbRGBA & mask */
+ spe_and(f, fbA_reg, fbRGBA_reg, mask3_reg);
+
+ /* fbG = fbG >> 8 */
+ spe_roti(f, fbG_reg, fbG_reg, -8);
+
+ /* fbR = fbR >> 16 */
+ spe_roti(f, fbR_reg, fbR_reg, -16);
+
+ /* fbA = fbA >> 24 */
+ spe_roti(f, fbA_reg, fbA_reg, -24);
+ break;
+
+ case PIPE_FORMAT_B8G8R8A8_UNORM:
+ /* fbA = fbRGBA & mask */
+ spe_and(f, fbA_reg, fbRGBA_reg, mask0_reg);
+
+ /* fbR = fbRGBA & mask */
+ spe_and(f, fbR_reg, fbRGBA_reg, mask1_reg);
+
+ /* fbG = fbRGBA & mask */
+ spe_and(f, fbG_reg, fbRGBA_reg, mask2_reg);
+
+ /* fbB = fbRGBA & mask */
+ spe_and(f, fbB_reg, fbRGBA_reg, mask3_reg);
+
+ /* fbR = fbR >> 8 */
+ spe_roti(f, fbR_reg, fbR_reg, -8);
+
+ /* fbG = fbG >> 16 */
+ spe_roti(f, fbG_reg, fbG_reg, -16);
+
+ /* fbB = fbB >> 24 */
+ spe_roti(f, fbB_reg, fbB_reg, -24);
+ break;
+
+ default:
+ ASSERT(0);
+ }
+
+ /* convert int[4] in [0,255] to float[4] in [0.0, 1.0] */
+ spe_cuflt(f, fbR_reg, fbR_reg, 8);
+ spe_cuflt(f, fbG_reg, fbG_reg, 8);
+ spe_cuflt(f, fbB_reg, fbB_reg, 8);
+ spe_cuflt(f, fbA_reg, fbA_reg, 8);
+
+ spe_release_register(f, mask0_reg);
+ spe_release_register(f, mask1_reg);
+ spe_release_register(f, mask2_reg);
+ spe_release_register(f, mask3_reg);
+}
+
+
+/**
+ * Generate SPE code to implement the given blend mode for a quad of pixels.
+ * \param f SPE function to append instruction onto.
+ * \param fragR_reg register with fragment red values (float) (in/out)
+ * \param fragG_reg register with fragment green values (float) (in/out)
+ * \param fragB_reg register with fragment blue values (float) (in/out)
+ * \param fragA_reg register with fragment alpha values (float) (in/out)
+ * \param fbRGBA_reg register with packed framebuffer colors (integer) (in)
+ */
+static void
+gen_blend(const struct pipe_blend_state *blend,
+ const struct pipe_blend_color *blend_color,
+ struct spe_function *f,
+ enum pipe_format color_format,
+ int fragR_reg, int fragG_reg, int fragB_reg, int fragA_reg,
+ int fbRGBA_reg)
+{
+ int term1R_reg = spe_allocate_available_register(f);
+ int term1G_reg = spe_allocate_available_register(f);
+ int term1B_reg = spe_allocate_available_register(f);
+ int term1A_reg = spe_allocate_available_register(f);
+
+ int term2R_reg = spe_allocate_available_register(f);
+ int term2G_reg = spe_allocate_available_register(f);
+ int term2B_reg = spe_allocate_available_register(f);
+ int term2A_reg = spe_allocate_available_register(f);
+
+ int fbR_reg = spe_allocate_available_register(f);
+ int fbG_reg = spe_allocate_available_register(f);
+ int fbB_reg = spe_allocate_available_register(f);
+ int fbA_reg = spe_allocate_available_register(f);
+
+ int tmp_reg = spe_allocate_available_register(f);
+
+ /* Optional constant registers we might or might not end up using;
+ * if we do use them, make sure we only allocate them once by
+ * keeping a flag on each one.
+ */
+ int one_reg = -1;
+ int constR_reg = -1, constG_reg = -1, constB_reg = -1, constA_reg = -1;
+
+ ASSERT(blend->blend_enable);
+
+ /* packed RGBA -> float colors */
+ unpack_colors(f, color_format, fbRGBA_reg,
+ fbR_reg, fbG_reg, fbB_reg, fbA_reg);
+
+ /*
+ * Compute Src RGB terms. We're actually looking for the value
+ * of (the appropriate RGB factors) * (the incoming source RGB color),
+ * because in some cases (like PIPE_BLENDFACTOR_ONE and
+ * PIPE_BLENDFACTOR_ZERO) we can avoid doing unnecessary math.
+ */
+ switch (blend->rgb_src_factor) {
+ case PIPE_BLENDFACTOR_ONE:
+ /* factors = (1,1,1), so term = (R,G,B) */
+ spe_move(f, term1R_reg, fragR_reg);
+ spe_move(f, term1G_reg, fragG_reg);
+ spe_move(f, term1B_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_ZERO:
+ /* factors = (0,0,0), so term = (0,0,0) */
+ spe_load_float(f, term1R_reg, 0.0f);
+ spe_load_float(f, term1G_reg, 0.0f);
+ spe_load_float(f, term1B_reg, 0.0f);
+ break;
+ case PIPE_BLENDFACTOR_SRC_COLOR:
+ /* factors = (R,G,B), so term = (R*R, G*G, B*B) */
+ spe_fm(f, term1R_reg, fragR_reg, fragR_reg);
+ spe_fm(f, term1G_reg, fragG_reg, fragG_reg);
+ spe_fm(f, term1B_reg, fragB_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_SRC_ALPHA:
+ /* factors = (A,A,A), so term = (R*A, G*A, B*A) */
+ spe_fm(f, term1R_reg, fragR_reg, fragA_reg);
+ spe_fm(f, term1G_reg, fragG_reg, fragA_reg);
+ spe_fm(f, term1B_reg, fragB_reg, fragA_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_SRC_COLOR:
+ /* factors = (1-R,1-G,1-B), so term = (R*(1-R), G*(1-G), B*(1-B))
+ * or in other words term = (R-R*R, G-G*G, B-B*B)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term1R_reg, fragR_reg, fragR_reg, fragR_reg);
+ spe_fnms(f, term1G_reg, fragG_reg, fragG_reg, fragG_reg);
+ spe_fnms(f, term1B_reg, fragB_reg, fragB_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_DST_COLOR:
+ /* factors = (Rfb,Gfb,Bfb), so term = (R*Rfb, G*Gfb, B*Bfb) */
+ spe_fm(f, term1R_reg, fragR_reg, fbR_reg);
+ spe_fm(f, term1G_reg, fragG_reg, fbG_reg);
+ spe_fm(f, term1B_reg, fragB_reg, fbB_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_DST_COLOR:
+ /* factors = (1-Rfb,1-Gfb,1-Bfb), so term = (R*(1-Rfb),G*(1-Gfb),B*(1-Bfb))
+ * or term = (R-R*Rfb, G-G*Gfb, B-B*Bfb)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term1R_reg, fragR_reg, fbR_reg, fragR_reg);
+ spe_fnms(f, term1G_reg, fragG_reg, fbG_reg, fragG_reg);
+ spe_fnms(f, term1B_reg, fragB_reg, fbB_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
+ /* factors = (1-A,1-A,1-A), so term = (R*(1-A),G*(1-A),B*(1-A))
+ * or term = (R-R*A,G-G*A,B-B*A)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term1R_reg, fragR_reg, fragA_reg, fragR_reg);
+ spe_fnms(f, term1G_reg, fragG_reg, fragA_reg, fragG_reg);
+ spe_fnms(f, term1B_reg, fragB_reg, fragA_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_DST_ALPHA:
+ /* factors = (Afb, Afb, Afb), so term = (R*Afb, G*Afb, B*Afb) */
+ spe_fm(f, term1R_reg, fragR_reg, fbA_reg);
+ spe_fm(f, term1G_reg, fragG_reg, fbA_reg);
+ spe_fm(f, term1B_reg, fragB_reg, fbA_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_DST_ALPHA:
+ /* factors = (1-Afb, 1-Afb, 1-Afb), so term = (R*(1-Afb),G*(1-Afb),B*(1-Afb))
+ * or term = (R-R*Afb,G-G*Afb,b-B*Afb)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term1R_reg, fragR_reg, fbA_reg, fragR_reg);
+ spe_fnms(f, term1G_reg, fragG_reg, fbA_reg, fragG_reg);
+ spe_fnms(f, term1B_reg, fragB_reg, fbA_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_CONST_COLOR:
+ /* We need the optional constant color registers */
+ setup_const_register(f, &constR_reg, blend_color->color[0]);
+ setup_const_register(f, &constG_reg, blend_color->color[1]);
+ setup_const_register(f, &constB_reg, blend_color->color[2]);
+ /* now, factor = (Rc,Gc,Bc), so term = (R*Rc,G*Gc,B*Bc) */
+ spe_fm(f, term1R_reg, fragR_reg, constR_reg);
+ spe_fm(f, term1G_reg, fragG_reg, constG_reg);
+ spe_fm(f, term1B_reg, fragB_reg, constB_reg);
+ break;
+ case PIPE_BLENDFACTOR_CONST_ALPHA:
+ /* we'll need the optional constant alpha register */
+ setup_const_register(f, &constA_reg, blend_color->color[3]);
+ /* factor = (Ac,Ac,Ac), so term = (R*Ac,G*Ac,B*Ac) */
+ spe_fm(f, term1R_reg, fragR_reg, constA_reg);
+ spe_fm(f, term1G_reg, fragG_reg, constA_reg);
+ spe_fm(f, term1B_reg, fragB_reg, constA_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_CONST_COLOR:
+ /* We need the optional constant color registers */
+ setup_const_register(f, &constR_reg, blend_color->color[0]);
+ setup_const_register(f, &constG_reg, blend_color->color[1]);
+ setup_const_register(f, &constB_reg, blend_color->color[2]);
+ /* factor = (1-Rc,1-Gc,1-Bc), so term = (R*(1-Rc),G*(1-Gc),B*(1-Bc))
+ * or term = (R-R*Rc, G-G*Gc, B-B*Bc)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term1R_reg, fragR_reg, constR_reg, fragR_reg);
+ spe_fnms(f, term1G_reg, fragG_reg, constG_reg, fragG_reg);
+ spe_fnms(f, term1B_reg, fragB_reg, constB_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
+ /* We need the optional constant color registers */
+ setup_const_register(f, &constR_reg, blend_color->color[0]);
+ setup_const_register(f, &constG_reg, blend_color->color[1]);
+ setup_const_register(f, &constB_reg, blend_color->color[2]);
+ /* factor = (1-Ac,1-Ac,1-Ac), so term = (R*(1-Ac),G*(1-Ac),B*(1-Ac))
+ * or term = (R-R*Ac,G-G*Ac,B-B*Ac)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term1R_reg, fragR_reg, constA_reg, fragR_reg);
+ spe_fnms(f, term1G_reg, fragG_reg, constA_reg, fragG_reg);
+ spe_fnms(f, term1B_reg, fragB_reg, constA_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE:
+ /* We'll need the optional {1,1,1,1} register */
+ setup_const_register(f, &one_reg, 1.0f);
+ /* factor = (min(A,1-Afb),min(A,1-Afb),min(A,1-Afb)), so
+ * term = (R*min(A,1-Afb), G*min(A,1-Afb), B*min(A,1-Afb))
+ * We could expand the term (as a*min(b,c) == min(a*b,a*c)
+ * as long as a is positive), but then we'd have to do three
+ * spe_float_min() functions instead of one, so this is simpler.
+ */
+ /* tmp = 1 - Afb */
+ spe_fs(f, tmp_reg, one_reg, fbA_reg);
+ /* tmp = min(A,tmp) */
+ spe_float_min(f, tmp_reg, fragA_reg, tmp_reg);
+ /* term = R*tmp */
+ spe_fm(f, term1R_reg, fragR_reg, tmp_reg);
+ spe_fm(f, term1G_reg, fragG_reg, tmp_reg);
+ spe_fm(f, term1B_reg, fragB_reg, tmp_reg);
+ break;
+
+ /* These are special D3D cases involving a second color output
+ * from the fragment shader. I'm not sure we can support them
+ * yet... XXX
+ */
+ case PIPE_BLENDFACTOR_SRC1_COLOR:
+ case PIPE_BLENDFACTOR_SRC1_ALPHA:
+ case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
+ case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
+
+ default:
+ ASSERT(0);
+ }
+
+ /*
+ * Compute Src Alpha term. Like the above, we're looking for
+ * the full term A*factor, not just the factor itself, because
+ * in many cases we can avoid doing unnecessary multiplies.
+ */
+ switch (blend->alpha_src_factor) {
+ case PIPE_BLENDFACTOR_ZERO:
+ /* factor = 0, so term = 0 */
+ spe_load_float(f, term1A_reg, 0.0f);
+ break;
+
+ case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* fall through */
+ case PIPE_BLENDFACTOR_ONE:
+ /* factor = 1, so term = A */
+ spe_move(f, term1A_reg, fragA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_SRC_COLOR:
+ /* factor = A, so term = A*A */
+ spe_fm(f, term1A_reg, fragA_reg, fragA_reg);
+ break;
+ case PIPE_BLENDFACTOR_SRC_ALPHA:
+ spe_fm(f, term1A_reg, fragA_reg, fragA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_INV_SRC_COLOR:
+ /* factor = 1-A, so term = A*(1-A) = A-A*A */
+ /* fnms(a,b,c,d) computes a = d - b*c */
+ spe_fnms(f, term1A_reg, fragA_reg, fragA_reg, fragA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_DST_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_DST_COLOR:
+ /* factor = Afb, so term = A*Afb */
+ spe_fm(f, term1A_reg, fragA_reg, fbA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_INV_DST_COLOR:
+ /* factor = 1-Afb, so term = A*(1-Afb) = A - A*Afb */
+ /* fnms(a,b,c,d) computes a = d - b*c */
+ spe_fnms(f, term1A_reg, fragA_reg, fbA_reg, fragA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_CONST_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_CONST_COLOR:
+ /* We need the optional constA_reg register */
+ setup_const_register(f, &constA_reg, blend_color->color[3]);
+ /* factor = Ac, so term = A*Ac */
+ spe_fm(f, term1A_reg, fragA_reg, constA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_INV_CONST_COLOR:
+ /* We need the optional constA_reg register */
+ setup_const_register(f, &constA_reg, blend_color->color[3]);
+ /* factor = 1-Ac, so term = A*(1-Ac) = A-A*Ac */
+ /* fnms(a,b,c,d) computes a = d - b*c */
+ spe_fnms(f, term1A_reg, fragA_reg, constA_reg, fragA_reg);
+ break;
+
+ /* These are special D3D cases involving a second color output
+ * from the fragment shader. I'm not sure we can support them
+ * yet... XXX
+ */
+ case PIPE_BLENDFACTOR_SRC1_COLOR:
+ case PIPE_BLENDFACTOR_SRC1_ALPHA:
+ case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
+ case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
+ default:
+ ASSERT(0);
+ }
+
+ /*
+ * Compute Dest RGB term. Like the above, we're looking for
+ * the full term (Rfb,Gfb,Bfb)*(factor), not just the factor itself, because
+ * in many cases we can avoid doing unnecessary multiplies.
+ */
+ switch (blend->rgb_dst_factor) {
+ case PIPE_BLENDFACTOR_ONE:
+ /* factors = (1,1,1), so term = (Rfb,Gfb,Bfb) */
+ spe_move(f, term2R_reg, fbR_reg);
+ spe_move(f, term2G_reg, fbG_reg);
+ spe_move(f, term2B_reg, fbB_reg);
+ break;
+ case PIPE_BLENDFACTOR_ZERO:
+ /* factor s= (0,0,0), so term = (0,0,0) */
+ spe_load_float(f, term2R_reg, 0.0f);
+ spe_load_float(f, term2G_reg, 0.0f);
+ spe_load_float(f, term2B_reg, 0.0f);
+ break;
+ case PIPE_BLENDFACTOR_SRC_COLOR:
+ /* factors = (R,G,B), so term = (R*Rfb, G*Gfb, B*Bfb) */
+ spe_fm(f, term2R_reg, fbR_reg, fragR_reg);
+ spe_fm(f, term2G_reg, fbG_reg, fragG_reg);
+ spe_fm(f, term2B_reg, fbB_reg, fragB_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_SRC_COLOR:
+ /* factors = (1-R,1-G,1-B), so term = (Rfb*(1-R), Gfb*(1-G), Bfb*(1-B))
+ * or in other words term = (Rfb-Rfb*R, Gfb-Gfb*G, Bfb-Bfb*B)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term2R_reg, fragR_reg, fbR_reg, fbR_reg);
+ spe_fnms(f, term2G_reg, fragG_reg, fbG_reg, fbG_reg);
+ spe_fnms(f, term2B_reg, fragB_reg, fbB_reg, fbB_reg);
+ break;
+ case PIPE_BLENDFACTOR_SRC_ALPHA:
+ /* factors = (A,A,A), so term = (Rfb*A, Gfb*A, Bfb*A) */
+ spe_fm(f, term2R_reg, fbR_reg, fragA_reg);
+ spe_fm(f, term2G_reg, fbG_reg, fragA_reg);
+ spe_fm(f, term2B_reg, fbB_reg, fragA_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_SRC_ALPHA:
+ /* factors = (1-A,1-A,1-A) so term = (Rfb-Rfb*A,Gfb-Gfb*A,Bfb-Bfb*A) */
+ /* fnms(a,b,c,d) computes a = d - b*c */
+ spe_fnms(f, term2R_reg, fbR_reg, fragA_reg, fbR_reg);
+ spe_fnms(f, term2G_reg, fbG_reg, fragA_reg, fbG_reg);
+ spe_fnms(f, term2B_reg, fbB_reg, fragA_reg, fbB_reg);
+ break;
+ case PIPE_BLENDFACTOR_DST_COLOR:
+ /* factors = (Rfb,Gfb,Bfb), so term = (Rfb*Rfb, Gfb*Gfb, Bfb*Bfb) */
+ spe_fm(f, term2R_reg, fbR_reg, fbR_reg);
+ spe_fm(f, term2G_reg, fbG_reg, fbG_reg);
+ spe_fm(f, term2B_reg, fbB_reg, fbB_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_DST_COLOR:
+ /* factors = (1-Rfb,1-Gfb,1-Bfb), so term = (Rfb*(1-Rfb),Gfb*(1-Gfb),Bfb*(1-Bfb))
+ * or term = (Rfb-Rfb*Rfb, Gfb-Gfb*Gfb, Bfb-Bfb*Bfb)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term2R_reg, fbR_reg, fbR_reg, fbR_reg);
+ spe_fnms(f, term2G_reg, fbG_reg, fbG_reg, fbG_reg);
+ spe_fnms(f, term2B_reg, fbB_reg, fbB_reg, fbB_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_DST_ALPHA:
+ /* factors = (Afb, Afb, Afb), so term = (Rfb*Afb, Gfb*Afb, Bfb*Afb) */
+ spe_fm(f, term2R_reg, fbR_reg, fbA_reg);
+ spe_fm(f, term2G_reg, fbG_reg, fbA_reg);
+ spe_fm(f, term2B_reg, fbB_reg, fbA_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_DST_ALPHA:
+ /* factors = (1-Afb, 1-Afb, 1-Afb), so term = (Rfb*(1-Afb),Gfb*(1-Afb),Bfb*(1-Afb))
+ * or term = (Rfb-Rfb*Afb,Gfb-Gfb*Afb,Bfb-Bfb*Afb)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term2R_reg, fbR_reg, fbA_reg, fbR_reg);
+ spe_fnms(f, term2G_reg, fbG_reg, fbA_reg, fbG_reg);
+ spe_fnms(f, term2B_reg, fbB_reg, fbA_reg, fbB_reg);
+ break;
+ case PIPE_BLENDFACTOR_CONST_COLOR:
+ /* We need the optional constant color registers */
+ setup_const_register(f, &constR_reg, blend_color->color[0]);
+ setup_const_register(f, &constG_reg, blend_color->color[1]);
+ setup_const_register(f, &constB_reg, blend_color->color[2]);
+ /* now, factor = (Rc,Gc,Bc), so term = (Rfb*Rc,Gfb*Gc,Bfb*Bc) */
+ spe_fm(f, term2R_reg, fbR_reg, constR_reg);
+ spe_fm(f, term2G_reg, fbG_reg, constG_reg);
+ spe_fm(f, term2B_reg, fbB_reg, constB_reg);
+ break;
+ case PIPE_BLENDFACTOR_CONST_ALPHA:
+ /* we'll need the optional constant alpha register */
+ setup_const_register(f, &constA_reg, blend_color->color[3]);
+ /* factor = (Ac,Ac,Ac), so term = (Rfb*Ac,Gfb*Ac,Bfb*Ac) */
+ spe_fm(f, term2R_reg, fbR_reg, constA_reg);
+ spe_fm(f, term2G_reg, fbG_reg, constA_reg);
+ spe_fm(f, term2B_reg, fbB_reg, constA_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_CONST_COLOR:
+ /* We need the optional constant color registers */
+ setup_const_register(f, &constR_reg, blend_color->color[0]);
+ setup_const_register(f, &constG_reg, blend_color->color[1]);
+ setup_const_register(f, &constB_reg, blend_color->color[2]);
+ /* factor = (1-Rc,1-Gc,1-Bc), so term = (Rfb*(1-Rc),Gfb*(1-Gc),Bfb*(1-Bc))
+ * or term = (Rfb-Rfb*Rc, Gfb-Gfb*Gc, Bfb-Bfb*Bc)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term2R_reg, fbR_reg, constR_reg, fbR_reg);
+ spe_fnms(f, term2G_reg, fbG_reg, constG_reg, fbG_reg);
+ spe_fnms(f, term2B_reg, fbB_reg, constB_reg, fbB_reg);
+ break;
+ case PIPE_BLENDFACTOR_INV_CONST_ALPHA:
+ /* We need the optional constant color registers */
+ setup_const_register(f, &constR_reg, blend_color->color[0]);
+ setup_const_register(f, &constG_reg, blend_color->color[1]);
+ setup_const_register(f, &constB_reg, blend_color->color[2]);
+ /* factor = (1-Ac,1-Ac,1-Ac), so term = (Rfb*(1-Ac),Gfb*(1-Ac),Bfb*(1-Ac))
+ * or term = (Rfb-Rfb*Ac,Gfb-Gfb*Ac,Bfb-Bfb*Ac)
+ * fnms(a,b,c,d) computes a = d - b*c
+ */
+ spe_fnms(f, term2R_reg, fbR_reg, constA_reg, fbR_reg);
+ spe_fnms(f, term2G_reg, fbG_reg, constA_reg, fbG_reg);
+ spe_fnms(f, term2B_reg, fbB_reg, constA_reg, fbB_reg);
+ break;
+ case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* not supported for dest RGB */
+ ASSERT(0);
+ break;
+
+ /* These are special D3D cases involving a second color output
+ * from the fragment shader. I'm not sure we can support them
+ * yet... XXX
+ */
+ case PIPE_BLENDFACTOR_SRC1_COLOR:
+ case PIPE_BLENDFACTOR_SRC1_ALPHA:
+ case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
+ case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
+
+ default:
+ ASSERT(0);
+ }
+
+ /*
+ * Compute Dest Alpha term. Like the above, we're looking for
+ * the full term Afb*factor, not just the factor itself, because
+ * in many cases we can avoid doing unnecessary multiplies.
+ */
+ switch (blend->alpha_dst_factor) {
+ case PIPE_BLENDFACTOR_ONE:
+ /* factor = 1, so term = Afb */
+ spe_move(f, term2A_reg, fbA_reg);
+ break;
+ case PIPE_BLENDFACTOR_ZERO:
+ /* factor = 0, so term = 0 */
+ spe_load_float(f, term2A_reg, 0.0f);
+ break;
+
+ case PIPE_BLENDFACTOR_SRC_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_SRC_COLOR:
+ /* factor = A, so term = Afb*A */
+ spe_fm(f, term2A_reg, fbA_reg, fragA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_INV_SRC_COLOR:
+ /* factor = 1-A, so term = Afb*(1-A) = Afb-Afb*A */
+ /* fnms(a,b,c,d) computes a = d - b*c */
+ spe_fnms(f, term2A_reg, fbA_reg, fragA_reg, fbA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_DST_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_DST_COLOR:
+ /* factor = Afb, so term = Afb*Afb */
+ spe_fm(f, term2A_reg, fbA_reg, fbA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_INV_DST_COLOR:
+ /* factor = 1-Afb, so term = Afb*(1-Afb) = Afb - Afb*Afb */
+ /* fnms(a,b,c,d) computes a = d - b*c */
+ spe_fnms(f, term2A_reg, fbA_reg, fbA_reg, fbA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_CONST_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_CONST_COLOR:
+ /* We need the optional constA_reg register */
+ setup_const_register(f, &constA_reg, blend_color->color[3]);
+ /* factor = Ac, so term = Afb*Ac */
+ spe_fm(f, term2A_reg, fbA_reg, constA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* fall through */
+ case PIPE_BLENDFACTOR_INV_CONST_COLOR:
+ /* We need the optional constA_reg register */
+ setup_const_register(f, &constA_reg, blend_color->color[3]);
+ /* factor = 1-Ac, so term = Afb*(1-Ac) = Afb-Afb*Ac */
+ /* fnms(a,b,c,d) computes a = d - b*c */
+ spe_fnms(f, term2A_reg, fbA_reg, constA_reg, fbA_reg);
+ break;
+
+ case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* not supported for dest alpha */
+ ASSERT(0);
+ break;
+
+ /* These are special D3D cases involving a second color output
+ * from the fragment shader. I'm not sure we can support them
+ * yet... XXX
+ */
+ case PIPE_BLENDFACTOR_SRC1_COLOR:
+ case PIPE_BLENDFACTOR_SRC1_ALPHA:
+ case PIPE_BLENDFACTOR_INV_SRC1_COLOR:
+ case PIPE_BLENDFACTOR_INV_SRC1_ALPHA:
+ default:
+ ASSERT(0);
+ }
+
+ /*
+ * Combine Src/Dest RGB terms as per the blend equation.
+ */
+ switch (blend->rgb_func) {
+ case PIPE_BLEND_ADD:
+ spe_fa(f, fragR_reg, term1R_reg, term2R_reg);
+ spe_fa(f, fragG_reg, term1G_reg, term2G_reg);
+ spe_fa(f, fragB_reg, term1B_reg, term2B_reg);
+ break;
+ case PIPE_BLEND_SUBTRACT:
+ spe_fs(f, fragR_reg, term1R_reg, term2R_reg);
+ spe_fs(f, fragG_reg, term1G_reg, term2G_reg);
+ spe_fs(f, fragB_reg, term1B_reg, term2B_reg);
+ break;
+ case PIPE_BLEND_REVERSE_SUBTRACT:
+ spe_fs(f, fragR_reg, term2R_reg, term1R_reg);
+ spe_fs(f, fragG_reg, term2G_reg, term1G_reg);
+ spe_fs(f, fragB_reg, term2B_reg, term1B_reg);
+ break;
+ case PIPE_BLEND_MIN:
+ spe_float_min(f, fragR_reg, term1R_reg, term2R_reg);
+ spe_float_min(f, fragG_reg, term1G_reg, term2G_reg);
+ spe_float_min(f, fragB_reg, term1B_reg, term2B_reg);
+ break;
+ case PIPE_BLEND_MAX:
+ spe_float_max(f, fragR_reg, term1R_reg, term2R_reg);
+ spe_float_max(f, fragG_reg, term1G_reg, term2G_reg);
+ spe_float_max(f, fragB_reg, term1B_reg, term2B_reg);
+ break;
+ default:
+ ASSERT(0);
+ }
+
+ /*
+ * Combine Src/Dest A term
+ */
+ switch (blend->alpha_func) {
+ case PIPE_BLEND_ADD:
+ spe_fa(f, fragA_reg, term1A_reg, term2A_reg);
+ break;
+ case PIPE_BLEND_SUBTRACT:
+ spe_fs(f, fragA_reg, term1A_reg, term2A_reg);
+ break;
+ case PIPE_BLEND_REVERSE_SUBTRACT:
+ spe_fs(f, fragA_reg, term2A_reg, term1A_reg);
+ break;
+ case PIPE_BLEND_MIN:
+ spe_float_min(f, fragA_reg, term1A_reg, term2A_reg);
+ break;
+ case PIPE_BLEND_MAX:
+ spe_float_max(f, fragA_reg, term1A_reg, term2A_reg);
+ break;
+ default:
+ ASSERT(0);
+ }
+
+ spe_release_register(f, term1R_reg);
+ spe_release_register(f, term1G_reg);
+ spe_release_register(f, term1B_reg);
+ spe_release_register(f, term1A_reg);
+
+ spe_release_register(f, term2R_reg);
+ spe_release_register(f, term2G_reg);
+ spe_release_register(f, term2B_reg);
+ spe_release_register(f, term2A_reg);
+
+ spe_release_register(f, fbR_reg);
+ spe_release_register(f, fbG_reg);
+ spe_release_register(f, fbB_reg);
+ spe_release_register(f, fbA_reg);
+
+ spe_release_register(f, tmp_reg);
+
+ /* Free any optional registers that actually got used */
+ release_const_register(f, one_reg);
+ release_const_register(f, constR_reg);
+ release_const_register(f, constG_reg);
+ release_const_register(f, constB_reg);
+ release_const_register(f, constA_reg);
+}
+
+
+static void
+gen_logicop(const struct pipe_blend_state *blend,
+ struct spe_function *f,
+ int fragRGBA_reg, int fbRGBA_reg)
+{
+ /* We've got four 32-bit RGBA packed pixels in each of
+ * fragRGBA_reg and fbRGBA_reg, not sets of floating-point
+ * reds, greens, blues, and alphas.
+ * */
+ ASSERT(blend->logicop_enable);
+
+ switch(blend->logicop_func) {
+ case PIPE_LOGICOP_CLEAR: /* 0 */
+ spe_zero(f, fragRGBA_reg);
+ break;
+ case PIPE_LOGICOP_NOR: /* ~(s | d) */
+ spe_nor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_AND_INVERTED: /* ~s & d */
+ /* andc R, A, B computes R = A & ~B */
+ spe_andc(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg);
+ break;
+ case PIPE_LOGICOP_COPY_INVERTED: /* ~s */
+ spe_complement(f, fragRGBA_reg, fragRGBA_reg);
+ break;
+ case PIPE_LOGICOP_AND_REVERSE: /* s & ~d */
+ /* andc R, A, B computes R = A & ~B */
+ spe_andc(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_INVERT: /* ~d */
+ /* Note that (A nor A) == ~(A|A) == ~A */
+ spe_nor(f, fragRGBA_reg, fbRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_XOR: /* s ^ d */
+ spe_xor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_NAND: /* ~(s & d) */
+ spe_nand(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_AND: /* s & d */
+ spe_and(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_EQUIV: /* ~(s ^ d) */
+ spe_xor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
+ spe_complement(f, fragRGBA_reg, fragRGBA_reg);
+ break;
+ case PIPE_LOGICOP_NOOP: /* d */
+ spe_move(f, fragRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_OR_INVERTED: /* ~s | d */
+ /* orc R, A, B computes R = A | ~B */
+ spe_orc(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg);
+ break;
+ case PIPE_LOGICOP_COPY: /* s */
+ break;
+ case PIPE_LOGICOP_OR_REVERSE: /* s | ~d */
+ /* orc R, A, B computes R = A | ~B */
+ spe_orc(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_OR: /* s | d */
+ spe_or(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg);
+ break;
+ case PIPE_LOGICOP_SET: /* 1 */
+ spe_load_int(f, fragRGBA_reg, 0xffffffff);
+ break;
+ default:
+ ASSERT(0);
+ }
+}
+
+
+/**
+ * Generate code to pack a quad of float colors into four 32-bit integers.
+ *
+ * \param f SPE function to append instruction onto.
+ * \param color_format the dest color packing format
+ * \param r_reg register containing four red values (in/clobbered)
+ * \param g_reg register containing four green values (in/clobbered)
+ * \param b_reg register containing four blue values (in/clobbered)
+ * \param a_reg register containing four alpha values (in/clobbered)
+ * \param rgba_reg register to store the packed RGBA colors (out)
+ */
+static void
+gen_pack_colors(struct spe_function *f,
+ enum pipe_format color_format,
+ int r_reg, int g_reg, int b_reg, int a_reg,
+ int rgba_reg)
+{
+ int rg_reg = spe_allocate_available_register(f);
+ int ba_reg = spe_allocate_available_register(f);
+
+ /* Convert float[4] in [0.0,1.0] to int[4] in [0,~0], with clamping */
+ spe_cfltu(f, r_reg, r_reg, 32);
+ spe_cfltu(f, g_reg, g_reg, 32);
+ spe_cfltu(f, b_reg, b_reg, 32);
+ spe_cfltu(f, a_reg, a_reg, 32);
+
+ /* Shift the most significant bytes to the least significant positions.
+ * I.e.: reg = reg >> 24
+ */
+ spe_rotmi(f, r_reg, r_reg, -24);
+ spe_rotmi(f, g_reg, g_reg, -24);
+ spe_rotmi(f, b_reg, b_reg, -24);
+ spe_rotmi(f, a_reg, a_reg, -24);
+
+ /* Shift the color bytes according to the surface format */
+ if (color_format == PIPE_FORMAT_A8R8G8B8_UNORM) {
+ spe_roti(f, g_reg, g_reg, 8); /* green <<= 8 */
+ spe_roti(f, r_reg, r_reg, 16); /* red <<= 16 */
+ spe_roti(f, a_reg, a_reg, 24); /* alpha <<= 24 */
+ }
+ else if (color_format == PIPE_FORMAT_B8G8R8A8_UNORM) {
+ spe_roti(f, r_reg, r_reg, 8); /* red <<= 8 */
+ spe_roti(f, g_reg, g_reg, 16); /* green <<= 16 */
+ spe_roti(f, b_reg, b_reg, 24); /* blue <<= 24 */
+ }
+ else {
+ ASSERT(0);
+ }
+
+ /* Merge red, green, blue, alpha registers to make packed RGBA colors.
+ * Eg: after shifting according to color_format we might have:
+ * R = {0x00ff0000, 0x00110000, 0x00220000, 0x00330000}
+ * G = {0x0000ff00, 0x00004400, 0x00005500, 0x00006600}
+ * B = {0x000000ff, 0x00000077, 0x00000088, 0x00000099}
+ * A = {0xff000000, 0xaa000000, 0xbb000000, 0xcc000000}
+ * OR-ing all those together gives us four packed colors:
+ * RGBA = {0xffffffff, 0xaa114477, 0xbb225588, 0xcc336699}
+ */
+ spe_or(f, rg_reg, r_reg, g_reg);
+ spe_or(f, ba_reg, a_reg, b_reg);
+ spe_or(f, rgba_reg, rg_reg, ba_reg);
+
+ spe_release_register(f, rg_reg);
+ spe_release_register(f, ba_reg);
+}
+
+
+static void
+gen_colormask(struct spe_function *f,
+ uint colormask,
+ enum pipe_format color_format,
+ int fragRGBA_reg, int fbRGBA_reg)
+{
+ /* We've got four 32-bit RGBA packed pixels in each of
+ * fragRGBA_reg and fbRGBA_reg, not sets of floating-point
+ * reds, greens, blues, and alphas. Further, the pixels
+ * are packed according to the given color format, not
+ * necessarily RGBA...
+ */
+ uint r_mask;
+ uint g_mask;
+ uint b_mask;
+ uint a_mask;
+
+ /* Calculate exactly where the bits for any particular color
+ * end up, so we can mask them correctly.
+ */
+ switch(color_format) {
+ case PIPE_FORMAT_A8R8G8B8_UNORM:
+ /* ARGB */
+ a_mask = 0xff000000;
+ r_mask = 0x00ff0000;
+ g_mask = 0x0000ff00;
+ b_mask = 0x000000ff;
+ break;
+ case PIPE_FORMAT_B8G8R8A8_UNORM:
+ /* BGRA */
+ b_mask = 0xff000000;
+ g_mask = 0x00ff0000;
+ r_mask = 0x0000ff00;
+ a_mask = 0x000000ff;
+ break;
+ default:
+ ASSERT(0);
+ }
+
+ /* For each R, G, B, and A component we're supposed to mask out,
+ * clear its bits. Then our mask operation later will work
+ * as expected.
+ */
+ if (!(colormask & PIPE_MASK_R)) {
+ r_mask = 0;
+ }
+ if (!(colormask & PIPE_MASK_G)) {
+ g_mask = 0;
+ }
+ if (!(colormask & PIPE_MASK_B)) {
+ b_mask = 0;
+ }
+ if (!(colormask & PIPE_MASK_A)) {
+ a_mask = 0;
+ }
+
+ /* Get a temporary register to hold the mask that will be applied
+ * to the fragment
+ */
+ int colormask_reg = spe_allocate_available_register(f);
+
+ /* The actual mask we're going to use is an OR of the remaining R, G, B,
+ * and A masks. Load the result value into our temporary register.
+ */
+ spe_load_uint(f, colormask_reg, r_mask | g_mask | b_mask | a_mask);
+
+ /* Use the mask register to select between the fragment color
+ * values and the frame buffer color values. Wherever the
+ * mask has a 0 bit, the current frame buffer color should override
+ * the fragment color. Wherever the mask has a 1 bit, the
+ * fragment color should persevere. The Select Bits (selb rt, rA, rB, rM)
+ * instruction will select bits from its first operand rA wherever the
+ * the mask bits rM are 0, and from its second operand rB wherever the
+ * mask bits rM are 1. That means that the frame buffer color is the
+ * first operand, and the fragment color the second.
+ */
+ spe_selb(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg, colormask_reg);
+
+ /* Release the temporary register and we're done */
+ spe_release_register(f, colormask_reg);
+}
+
+
+/**
+ * This function is annoyingly similar to gen_depth_test(), above, except
+ * that instead of comparing two varying values (i.e. fragment and buffer),
+ * we're comparing a varying value with a static value. As such, we have
+ * access to the Compare Immediate instructions where we don't in
+ * gen_depth_test(), which is what makes us very different.
+ *
+ * There's some added complexity if there's a non-trivial state->mask
+ * value; then stencil and reference both must be masked
+ *
+ * The return value in the stencil_pass_reg is a bitmask of valid
+ * fragments that also passed the stencil test. The bitmask of valid
+ * fragments that failed would be found in
+ * (fragment_mask_reg & ~stencil_pass_reg).
+ */
+static void
+gen_stencil_test(struct spe_function *f,
+ const struct pipe_stencil_state *state,
+ uint stencil_max_value,
+ int fragment_mask_reg,
+ int fbS_reg,
+ int stencil_pass_reg)
+{
+ /* Generate code that puts the set of passing fragments into the
+ * stencil_pass_reg register, taking into account whether each fragment
+ * was active to begin with.
+ */
+ switch (state->func) {
+ case PIPE_FUNC_EQUAL:
+ if (state->valuemask == stencil_max_value) {
+ /* stencil_pass = fragment_mask & (s == reference) */
+ spe_compare_equal_uint(f, stencil_pass_reg, fbS_reg, state->ref_value);
+ spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ }
+ else {
+ /* stencil_pass = fragment_mask & ((s&mask) == (reference&mask)) */
+ uint tmp_masked_stencil = spe_allocate_available_register(f);
+ spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
+ spe_compare_equal_uint(f, stencil_pass_reg, tmp_masked_stencil,
+ state->valuemask & state->ref_value);
+ spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ spe_release_register(f, tmp_masked_stencil);
+ }
+ break;
+
+ case PIPE_FUNC_NOTEQUAL:
+ if (state->valuemask == stencil_max_value) {
+ /* stencil_pass = fragment_mask & ~(s == reference) */
+ spe_compare_equal_uint(f, stencil_pass_reg, fbS_reg, state->ref_value);
+ spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ }
+ else {
+ /* stencil_pass = fragment_mask & ~((s&mask) == (reference&mask)) */
+ int tmp_masked_stencil = spe_allocate_available_register(f);
+ spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
+ spe_compare_equal_uint(f, stencil_pass_reg, tmp_masked_stencil,
+ state->valuemask & state->ref_value);
+ spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ spe_release_register(f, tmp_masked_stencil);
+ }
+ break;
+
+ case PIPE_FUNC_LESS:
+ if (state->valuemask == stencil_max_value) {
+ /* stencil_pass = fragment_mask & (reference < s) */
+ spe_compare_greater_uint(f, stencil_pass_reg, fbS_reg, state->ref_value);
+ spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ }
+ else {
+ /* stencil_pass = fragment_mask & ((reference&mask) < (s & mask)) */
+ int tmp_masked_stencil = spe_allocate_available_register(f);
+ spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
+ spe_compare_greater_uint(f, stencil_pass_reg, tmp_masked_stencil,
+ state->valuemask & state->ref_value);
+ spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ spe_release_register(f, tmp_masked_stencil);
+ }
+ break;
+
+ case PIPE_FUNC_GREATER:
+ if (state->valuemask == stencil_max_value) {
+ /* stencil_pass = fragment_mask & (reference > s) */
+ /* There's no convenient Compare Less Than Immediate instruction, so
+ * we'll have to do this one the harder way, by loading a register and
+ * comparing directly. Compare Logical Greater Than Word (clgt)
+ * treats its operands as unsigned - no sign extension.
+ */
+ int tmp_reg = spe_allocate_available_register(f);
+ spe_load_uint(f, tmp_reg, state->ref_value);
+ spe_clgt(f, stencil_pass_reg, tmp_reg, fbS_reg);
+ spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ spe_release_register(f, tmp_reg);
+ }
+ else {
+ /* stencil_pass = fragment_mask & ((reference&mask) > (s&mask)) */
+ int tmp_reg = spe_allocate_available_register(f);
+ int tmp_masked_stencil = spe_allocate_available_register(f);
+ spe_load_uint(f, tmp_reg, state->valuemask & state->ref_value);
+ spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
+ spe_clgt(f, stencil_pass_reg, tmp_reg, tmp_masked_stencil);
+ spe_and(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ spe_release_register(f, tmp_reg);
+ spe_release_register(f, tmp_masked_stencil);
+ }
+ break;
+
+ case PIPE_FUNC_GEQUAL:
+ if (state->valuemask == stencil_max_value) {
+ /* stencil_pass = fragment_mask & (reference >= s)
+ * = fragment_mask & ~(s > reference) */
+ spe_compare_greater_uint(f, stencil_pass_reg, fbS_reg,
+ state->ref_value);
+ spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ }
+ else {
+ /* stencil_pass = fragment_mask & ~((s&mask) > (reference&mask)) */
+ int tmp_masked_stencil = spe_allocate_available_register(f);
+ spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
+ spe_compare_greater_uint(f, stencil_pass_reg, tmp_masked_stencil,
+ state->valuemask & state->ref_value);
+ spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ spe_release_register(f, tmp_masked_stencil);
+ }
+ break;
+
+ case PIPE_FUNC_LEQUAL:
+ if (state->valuemask == stencil_max_value) {
+ /* stencil_pass = fragment_mask & (reference <= s) ]
+ * = fragment_mask & ~(reference > s) */
+ /* As above, we have to do this by loading a register */
+ int tmp_reg = spe_allocate_available_register(f);
+ spe_load_uint(f, tmp_reg, state->ref_value);
+ spe_clgt(f, stencil_pass_reg, tmp_reg, fbS_reg);
+ spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ spe_release_register(f, tmp_reg);
+ }
+ else {
+ /* stencil_pass = fragment_mask & ~((reference&mask) > (s&mask)) */
+ int tmp_reg = spe_allocate_available_register(f);
+ int tmp_masked_stencil = spe_allocate_available_register(f);
+ spe_load_uint(f, tmp_reg, state->ref_value & state->valuemask);
+ spe_and_uint(f, tmp_masked_stencil, fbS_reg, state->valuemask);
+ spe_clgt(f, stencil_pass_reg, tmp_reg, tmp_masked_stencil);
+ spe_andc(f, stencil_pass_reg, fragment_mask_reg, stencil_pass_reg);
+ spe_release_register(f, tmp_reg);
+ spe_release_register(f, tmp_masked_stencil);
+ }
+ break;
+
+ case PIPE_FUNC_NEVER:
+ /* stencil_pass = fragment_mask & 0 = 0 */
+ spe_load_uint(f, stencil_pass_reg, 0);
+ break;
+
+ case PIPE_FUNC_ALWAYS:
+ /* stencil_pass = fragment_mask & 1 = fragment_mask */
+ spe_move(f, stencil_pass_reg, fragment_mask_reg);
+ break;
+ }
+
+ /* The fragments that passed the stencil test are now in stencil_pass_reg.
+ * The fragments that failed would be (fragment_mask_reg & ~stencil_pass_reg).
+ */
+}
+
+
+/**
+ * This function generates code that calculates a set of new stencil values
+ * given the earlier values and the operation to apply. It does not
+ * apply any tests. It is intended to be called up to 3 times
+ * (for the stencil fail operation, for the stencil pass-z fail operation,
+ * and for the stencil pass-z pass operation) to collect up to three
+ * possible sets of values, and for the caller to combine them based
+ * on the result of the tests.
+ *
+ * stencil_max_value should be (2^n - 1) where n is the number of bits
+ * in the stencil buffer - in other words, it should be usable as a mask.
+ */
+static void
+gen_stencil_values(struct spe_function *f,
+ uint stencil_op,
+ uint stencil_ref_value,
+ uint stencil_max_value,
+ int fbS_reg,
+ int newS_reg)
+{
+ /* The code below assumes that newS_reg and fbS_reg are not the same
+ * register; if they can be, the calculations below will have to use
+ * an additional temporary register. For now, mark the assumption
+ * with an assertion that will fail if they are the same.
+ */
+ ASSERT(fbS_reg != newS_reg);
+
+ /* The code also assumes the the stencil_max_value is of the form
+ * 2^n-1 and can therefore be used as a mask for the valid bits in
+ * addition to a maximum. Make sure this is the case as well.
+ * The clever math below exploits the fact that incrementing a
+ * binary number serves to flip all the bits of a number starting at
+ * the LSB and continuing to (and including) the first zero bit
+ * found. That means that a number and its increment will always
+ * have at least one bit in common (the high order bit, if nothing
+ * else) *unless* the number is zero, *or* the number is of a form
+ * consisting of some number of 1s in the low-order bits followed
+ * by nothing but 0s in the high-order bits. The latter case
+ * implies it's of the form 2^n-1.
+ */
+ ASSERT(stencil_max_value > 0 && ((stencil_max_value + 1) & stencil_max_value) == 0);
+
+ switch(stencil_op) {
+ case PIPE_STENCIL_OP_KEEP:
+ /* newS = S */
+ spe_move(f, newS_reg, fbS_reg);
+ break;
+
+ case PIPE_STENCIL_OP_ZERO:
+ /* newS = 0 */
+ spe_zero(f, newS_reg);
+ break;
+
+ case PIPE_STENCIL_OP_REPLACE:
+ /* newS = stencil reference value */
+ spe_load_uint(f, newS_reg, stencil_ref_value);
+ break;
+
+ case PIPE_STENCIL_OP_INCR: {
+ /* newS = (s == max ? max : s + 1) */
+ int equals_reg = spe_allocate_available_register(f);
+
+ spe_compare_equal_uint(f, equals_reg, fbS_reg, stencil_max_value);
+ /* Add Word Immediate computes rT = rA + 10-bit signed immediate */
+ spe_ai(f, newS_reg, fbS_reg, 1);
+ /* Select from the current value or the new value based on the equality test */
+ spe_selb(f, newS_reg, newS_reg, fbS_reg, equals_reg);
+
+ spe_release_register(f, equals_reg);
+ break;
+ }
+ case PIPE_STENCIL_OP_DECR: {
+ /* newS = (s == 0 ? 0 : s - 1) */
+ int equals_reg = spe_allocate_available_register(f);
+
+ spe_compare_equal_uint(f, equals_reg, fbS_reg, 0);
+ /* Add Word Immediate with a (-1) value works */
+ spe_ai(f, newS_reg, fbS_reg, -1);
+ /* Select from the current value or the new value based on the equality test */
+ spe_selb(f, newS_reg, newS_reg, fbS_reg, equals_reg);
+
+ spe_release_register(f, equals_reg);
+ break;
+ }
+ case PIPE_STENCIL_OP_INCR_WRAP:
+ /* newS = (s == max ? 0 : s + 1), but since max is 2^n-1, we can
+ * do a normal add and mask off the correct bits
+ */
+ spe_ai(f, newS_reg, fbS_reg, 1);
+ spe_and_uint(f, newS_reg, newS_reg, stencil_max_value);
+ break;
+
+ case PIPE_STENCIL_OP_DECR_WRAP:
+ /* newS = (s == 0 ? max : s - 1), but we'll pull the same mask trick as above */
+ spe_ai(f, newS_reg, fbS_reg, -1);
+ spe_and_uint(f, newS_reg, newS_reg, stencil_max_value);
+ break;
+
+ case PIPE_STENCIL_OP_INVERT:
+ /* newS = ~s. We take advantage of the mask/max value to invert only
+ * the valid bits for the field so we don't have to do an extra "and".
+ */
+ spe_xor_uint(f, newS_reg, fbS_reg, stencil_max_value);
+ break;
+
+ default:
+ ASSERT(0);
+ }
+}
+
+
+/**
+ * This function generates code to get all the necessary possible
+ * stencil values. For each of the output registers (fail_reg,
+ * zfail_reg, and zpass_reg), it either allocates a new register
+ * and calculates a new set of values based on the stencil operation,
+ * or it reuses a register allocation and calculation done for an
+ * earlier (matching) operation, or it reuses the fbS_reg register
+ * (if the stencil operation is KEEP, which doesn't change the
+ * stencil buffer).
+ *
+ * Since this function allocates a variable number of registers,
+ * to avoid incurring complex logic to free them, they should
+ * be allocated after a spe_allocate_register_set() call
+ * and released by the corresponding spe_release_register_set() call.
+ */
+static void
+gen_get_stencil_values(struct spe_function *f,
+ const struct pipe_stencil_state *stencil,
+ const uint depth_enabled,
+ int fbS_reg,
+ int *fail_reg,
+ int *zfail_reg,
+ int *zpass_reg)
+{
+ uint zfail_op;
+
+ /* Stenciling had better be enabled here */
+ ASSERT(stencil->enabled);
+
+ /* If the depth test is not enabled, it is treated as though it always
+ * passes, which means that the zfail_op is not considered - a
+ * failing stencil test triggers the fail_op, and a passing one
+ * triggers the zpass_op
+ *
+ * As an optimization, override calculation of the zfail_op values
+ * if they aren't going to be used. By setting the value of
+ * the operation to PIPE_STENCIL_OP_KEEP, its value will be assumed
+ * to match the incoming stencil values, and no calculation will
+ * be done.
+ */
+ if (depth_enabled) {
+ zfail_op = stencil->zfail_op;
+ }
+ else {
+ zfail_op = PIPE_STENCIL_OP_KEEP;
+ }
+
+ /* One-sided or front-facing stencil */
+ if (stencil->fail_op == PIPE_STENCIL_OP_KEEP) {
+ *fail_reg = fbS_reg;
+ }
+ else {
+ *fail_reg = spe_allocate_available_register(f);
+ gen_stencil_values(f, stencil->fail_op, stencil->ref_value,
+ 0xff, fbS_reg, *fail_reg);
+ }
+
+ /* Check the possibly overridden value, not the structure value */
+ if (zfail_op == PIPE_STENCIL_OP_KEEP) {
+ *zfail_reg = fbS_reg;
+ }
+ else if (zfail_op == stencil->fail_op) {
+ *zfail_reg = *fail_reg;
+ }
+ else {
+ *zfail_reg = spe_allocate_available_register(f);
+ gen_stencil_values(f, stencil->zfail_op, stencil->ref_value,
+ 0xff, fbS_reg, *zfail_reg);
+ }
+
+ if (stencil->zpass_op == PIPE_STENCIL_OP_KEEP) {
+ *zpass_reg = fbS_reg;
+ }
+ else if (stencil->zpass_op == stencil->fail_op) {
+ *zpass_reg = *fail_reg;
+ }
+ else if (stencil->zpass_op == zfail_op) {
+ *zpass_reg = *zfail_reg;
+ }
+ else {
+ *zpass_reg = spe_allocate_available_register(f);
+ gen_stencil_values(f, stencil->zpass_op, stencil->ref_value,
+ 0xff, fbS_reg, *zpass_reg);
+ }
+}
+
+/**
+ * Note that fbZ_reg may *not* be set on entry, if in fact
+ * the depth test is not enabled. This function must not use
+ * the register if depth is not enabled.
+ */
+static boolean
+gen_stencil_depth_test(struct spe_function *f,
+ const struct pipe_depth_stencil_alpha_state *dsa,
+ const uint facing,
+ const int mask_reg, const int fragZ_reg,
+ const int fbZ_reg, const int fbS_reg)
+{
+ /* True if we've generated code that could require writeback to the
+ * depth and/or stencil buffers
+ */
+ boolean modified_buffers = FALSE;
+
+ boolean need_to_calculate_stencil_values;
+ boolean need_to_writemask_stencil_values;
+
+ struct pipe_stencil_state *stencil;
+
+ /* Registers. We may or may not actually allocate these, depending
+ * on whether the state values indicate that we need them.
+ */
+ int stencil_pass_reg, stencil_fail_reg;
+ int stencil_fail_values, stencil_pass_depth_fail_values, stencil_pass_depth_pass_values;
+ int stencil_writemask_reg;
+ int zmask_reg;
+ int newS_reg;
+
+ /* Stenciling is quite complex: up to six different configurable stencil
+ * operations/calculations can be required (three each for front-facing
+ * and back-facing fragments). Many of those operations will likely
+ * be identical, so there's good reason to try to avoid calculating
+ * the same values more than once (which unfortunately makes the code less
+ * straightforward).
+ *
+ * To make register management easier, we start a new
+ * register set; we can release all the registers in the set at
+ * once, and avoid having to keep track of exactly which registers
+ * we allocate. We can still allocate and free registers as
+ * desired (if we know we no longer need a register), but we don't
+ * have to spend the complexity to track the more difficult variant
+ * register usage scenarios.
+ */
+ spe_comment(f, 0, "Allocating stencil register set");
+ spe_allocate_register_set(f);
+
+ /* The facing we're given is the fragment facing; it doesn't
+ * exactly match the stencil facing. If stencil is enabled,
+ * but two-sided stencil is *not* enabled, we use the same
+ * stencil settings for both front- and back-facing fragments.
+ * We only use the "back-facing" stencil for backfacing fragments
+ * if two-sided stenciling is enabled.
+ */
+ if (facing == CELL_FACING_BACK && dsa->stencil[1].enabled) {
+ stencil = &dsa->stencil[1];
+ }
+ else {
+ stencil = &dsa->stencil[0];
+ }
+
+ /* Calculate the writemask. If the writemask is trivial (either
+ * all 0s, meaning that we don't need to calculate any stencil values
+ * because they're not going to change the stencil anyway, or all 1s,
+ * meaning that we have to calculate the stencil values but do not
+ * need to mask them), we can avoid generating code. Don't forget
+ * that we need to consider backfacing stencil, if enabled.
+ *
+ * Note that if the backface stencil is *not* enabled, the backface
+ * stencil will have the same values as the frontface stencil.
+ */
+ if (stencil->fail_op == PIPE_STENCIL_OP_KEEP &&
+ stencil->zfail_op == PIPE_STENCIL_OP_KEEP &&
+ stencil->zpass_op == PIPE_STENCIL_OP_KEEP) {
+ need_to_calculate_stencil_values = FALSE;
+ need_to_writemask_stencil_values = FALSE;
+ }
+ else if (stencil->writemask == 0x0) {
+ /* All changes are writemasked out, so no need to calculate
+ * what those changes might be, and no need to write anything back.
+ */
+ need_to_calculate_stencil_values = FALSE;
+ need_to_writemask_stencil_values = FALSE;
+ }
+ else if (stencil->writemask == 0xff) {
+ /* Still trivial, but a little less so. We need to write the stencil
+ * values, but we don't need to mask them.
+ */
+ need_to_calculate_stencil_values = TRUE;
+ need_to_writemask_stencil_values = FALSE;
+ }
+ else {
+ /* The general case: calculate, mask, and write */
+ need_to_calculate_stencil_values = TRUE;
+ need_to_writemask_stencil_values = TRUE;
+
+ /* While we're here, generate code that calculates what the
+ * writemask should be. If backface stenciling is enabled,
+ * and the backface writemask is not the same as the frontface
+ * writemask, we'll have to generate code that merges the
+ * two masks into a single effective mask based on fragment facing.
+ */
+ spe_comment(f, 0, "Computing stencil writemask");
+ stencil_writemask_reg = spe_allocate_available_register(f);
+ spe_load_uint(f, stencil_writemask_reg, dsa->stencil[facing].writemask);
+ }
+
+ /* At least one-sided stenciling must be on. Generate code that
+ * runs the stencil test on the basic/front-facing stencil, leaving
+ * the mask of passing stencil bits in stencil_pass_reg. This mask will
+ * be used both to mask the set of active pixels, and also to
+ * determine how the stencil buffer changes.
+ *
+ * This test will *not* change the value in mask_reg (because we don't
+ * yet know whether to apply the two-sided stencil or one-sided stencil).
+ */
+ spe_comment(f, 0, "Running basic stencil test");
+ stencil_pass_reg = spe_allocate_available_register(f);
+ gen_stencil_test(f, stencil, 0xff, mask_reg, fbS_reg, stencil_pass_reg);
+
+ /* Generate code that, given the mask of valid fragments and the
+ * mask of valid fragments that passed the stencil test, computes
+ * the mask of valid fragments that failed the stencil test. We
+ * have to do this before we run a depth test (because the
+ * depth test should not be performed on fragments that failed the
+ * stencil test, and because the depth test will update the
+ * mask of valid fragments based on the results of the depth test).
+ */
+ spe_comment(f, 0, "Computing stencil fail mask and updating fragment mask");
+ stencil_fail_reg = spe_allocate_available_register(f);
+ spe_andc(f, stencil_fail_reg, mask_reg, stencil_pass_reg);
+ /* Now remove the stenciled-out pixels from the valid fragment mask,
+ * so we can later use the valid fragment mask in the depth test.
+ */
+ spe_and(f, mask_reg, mask_reg, stencil_pass_reg);
+
+ /* We may not need to calculate stencil values, if the writemask is off */
+ if (need_to_calculate_stencil_values) {
+ /* Generate code that calculates exactly which stencil values we need,
+ * without calculating the same value twice (say, if two different
+ * stencil ops have the same value). This code will work for one-sided
+ * and two-sided stenciling (so that we take into account that operations
+ * may match between front and back stencils), and will also take into
+ * account whether the depth test is enabled (if the depth test is off,
+ * we don't need any of the zfail results, because the depth test always
+ * is considered to pass if it is disabled). Any register value that
+ * does not need to be calculated will come back with the same value
+ * that's in fbS_reg.
+ *
+ * This function will allocate a variant number of registers that
+ * will be released as part of the register set.
+ */
+ spe_comment(f, 0, facing == CELL_FACING_FRONT
+ ? "Computing front-facing stencil values"
+ : "Computing back-facing stencil values");
+ gen_get_stencil_values(f, stencil, dsa->depth.enabled, fbS_reg,
+ &stencil_fail_values, &stencil_pass_depth_fail_values,
+ &stencil_pass_depth_pass_values);
+ }
+
+ /* We now have all the stencil values we need. We also need
+ * the results of the depth test to figure out which
+ * stencil values will become the new stencil values. (Even if
+ * we aren't actually calculating stencil values, we need to apply
+ * the depth test if it's enabled.)
+ *
+ * The code generated by gen_depth_test() returns the results of the
+ * test in the given register, but also alters the mask_reg based
+ * on the results of the test.
+ */
+ if (dsa->depth.enabled) {
+ spe_comment(f, 0, "Running stencil depth test");
+ zmask_reg = spe_allocate_available_register(f);
+ modified_buffers |= gen_depth_test(f, dsa, mask_reg, fragZ_reg,
+ fbZ_reg, zmask_reg);
+ }
+
+ if (need_to_calculate_stencil_values) {
+
+ /* If we need to writemask the stencil values before going into
+ * the stencil buffer, we'll have to use a new register to
+ * hold the new values. If not, we can just keep using the
+ * current register.
+ */
+ if (need_to_writemask_stencil_values) {
+ newS_reg = spe_allocate_available_register(f);
+ spe_comment(f, 0, "Saving current stencil values for writemasking");
+ spe_move(f, newS_reg, fbS_reg);
+ }
+ else {
+ newS_reg = fbS_reg;
+ }
+
+ /* Merge in the selected stencil fail values */
+ if (stencil_fail_values != fbS_reg) {
+ spe_comment(f, 0, "Loading stencil fail values");
+ spe_selb(f, newS_reg, newS_reg, stencil_fail_values, stencil_fail_reg);
+ modified_buffers = TRUE;
+ }
+
+ /* Same for the stencil pass/depth fail values. If this calculation
+ * is not needed (say, if depth test is off), then the
+ * stencil_pass_depth_fail_values register will be equal to fbS_reg
+ * and we'll skip the calculation.
+ */
+ if (stencil_pass_depth_fail_values != fbS_reg) {
+ /* We don't actually have a stencil pass/depth fail mask yet.
+ * Calculate it here from the stencil passing mask and the
+ * depth passing mask. Note that zmask_reg *must* have been
+ * set above if we're here.
+ */
+ uint stencil_pass_depth_fail_mask =
+ spe_allocate_available_register(f);
+
+ spe_comment(f, 0, "Loading stencil pass/depth fail values");
+ spe_andc(f, stencil_pass_depth_fail_mask, stencil_pass_reg, zmask_reg);
+
+ spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_fail_values,
+ stencil_pass_depth_fail_mask);
+
+ spe_release_register(f, stencil_pass_depth_fail_mask);
+ modified_buffers = TRUE;
+ }
+
+ /* Same for the stencil pass/depth pass mask. Note that we
+ * *can* get here with zmask_reg being unset (if the depth
+ * test is off but the stencil test is on). In this case,
+ * we assume the depth test passes, and don't need to mask
+ * the stencil pass mask with the Z mask.
+ */
+ if (stencil_pass_depth_pass_values != fbS_reg) {
+ if (dsa->depth.enabled) {
+ uint stencil_pass_depth_pass_mask = spe_allocate_available_register(f);
+ /* We'll need a separate register */
+ spe_comment(f, 0, "Loading stencil pass/depth pass values");
+ spe_and(f, stencil_pass_depth_pass_mask, stencil_pass_reg, zmask_reg);
+ spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_pass_values, stencil_pass_depth_pass_mask);
+ spe_release_register(f, stencil_pass_depth_pass_mask);
+ }
+ else {
+ /* We can use the same stencil-pass register */
+ spe_comment(f, 0, "Loading stencil pass values");
+ spe_selb(f, newS_reg, newS_reg, stencil_pass_depth_pass_values, stencil_pass_reg);
+ }
+ modified_buffers = TRUE;
+ }
+
+ /* Almost done. If we need to writemask, do it now, leaving the
+ * results in the fbS_reg register passed in. If we don't need
+ * to writemask, then the results are *already* in the fbS_reg,
+ * so there's nothing more to do.
+ */
+
+ if (need_to_writemask_stencil_values && modified_buffers) {
+ /* The Select Bytes command makes a fine writemask. Where
+ * the mask is 0, the first (original) values are retained,
+ * effectively masking out changes. Where the mask is 1, the
+ * second (new) values are retained, incorporating changes.
+ */
+ spe_comment(f, 0, "Writemasking new stencil values");
+ spe_selb(f, fbS_reg, fbS_reg, newS_reg, stencil_writemask_reg);
+ }
+
+ } /* done calculating stencil values */
+
+ /* The stencil and/or depth values have been applied, and the
+ * mask_reg, fbS_reg, and fbZ_reg values have been updated.
+ * We're all done, except that we've allocated a fair number
+ * of registers that we didn't bother tracking. Release all
+ * those registers as part of the register set, and go home.
+ */
+ spe_comment(f, 0, "Releasing stencil register set");
+ spe_release_register_set(f);
+
+ /* Return TRUE if we could have modified the stencil and/or
+ * depth buffers.
+ */
+ return modified_buffers;
+}
+
+
+/**
+ * Generate depth and/or stencil test code.
+ * \param cell context
+ * \param dsa depth/stencil/alpha state
+ * \param f spe function to emit
+ * \param facing either CELL_FACING_FRONT or CELL_FACING_BACK
+ * \param mask_reg register containing the pixel alive/dead mask
+ * \param depth_tile_reg register containing address of z/stencil tile
+ * \param quad_offset_reg offset to quad from start of tile
+ * \param fragZ_reg register containg fragment Z values
+ */
+static void
+gen_depth_stencil(struct cell_context *cell,
+ const struct pipe_depth_stencil_alpha_state *dsa,
+ struct spe_function *f,
+ uint facing,
+ int mask_reg,
+ int depth_tile_reg,
+ int quad_offset_reg,
+ int fragZ_reg)
+
+{
+ const enum pipe_format zs_format = cell->framebuffer.zsbuf->format;
+ boolean write_depth_stencil;
+
+ /* framebuffer's combined z/stencil values register */
+ int fbZS_reg = spe_allocate_available_register(f);
+
+ /* Framebufer Z values register */
+ int fbZ_reg = spe_allocate_available_register(f);
+
+ /* Framebuffer stencil values register (may not be used) */
+ int fbS_reg = spe_allocate_available_register(f);
+
+ /* 24-bit mask register (may not be used) */
+ int zmask_reg = spe_allocate_available_register(f);
+
+ /**
+ * The following code:
+ * 1. fetch quad of packed Z/S values from the framebuffer tile.
+ * 2. extract the separate the Z and S values from packed values
+ * 3. convert fragment Z values from float in [0,1] to 32/24/16-bit ints
+ *
+ * The instructions for doing this are interleaved for better performance.
+ */
+ spe_comment(f, 0, "Fetch Z/stencil quad from tile");
+
+ switch(zs_format) {
+ case PIPE_FORMAT_S8Z24_UNORM: /* fall through */
+ case PIPE_FORMAT_X8Z24_UNORM:
+ /* prepare mask to extract Z vals from ZS vals */
+ spe_load_uint(f, zmask_reg, 0x00ffffff);
+
+ /* convert fragment Z from [0,1] to 32-bit ints */
+ spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
+
+ /* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
+ spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
+
+ /* right shift 32-bit fragment Z to 24 bits */
+ spe_rotmi(f, fragZ_reg, fragZ_reg, -8);
+
+ /* extract 24-bit Z values from ZS values by masking */
+ spe_and(f, fbZ_reg, fbZS_reg, zmask_reg);
+
+ /* extract 8-bit stencil values by shifting */
+ spe_rotmi(f, fbS_reg, fbZS_reg, -24);
+ break;
+
+ case PIPE_FORMAT_Z24S8_UNORM: /* fall through */
+ case PIPE_FORMAT_Z24X8_UNORM:
+ /* convert fragment Z from [0,1] to 32-bit ints */
+ spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
+
+ /* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
+ spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
+
+ /* right shift 32-bit fragment Z to 24 bits */
+ spe_rotmi(f, fragZ_reg, fragZ_reg, -8);
+
+ /* extract 24-bit Z values from ZS values by shifting */
+ spe_rotmi(f, fbZ_reg, fbZS_reg, -8);
+
+ /* extract 8-bit stencil values by masking */
+ spe_and_uint(f, fbS_reg, fbZS_reg, 0x000000ff);
+ break;
+
+ case PIPE_FORMAT_Z32_UNORM:
+ /* Load: fbZ_reg = memory[depth_tile_reg + offset_reg] */
+ spe_lqx(f, fbZ_reg, depth_tile_reg, quad_offset_reg);
+
+ /* convert fragment Z from [0,1] to 32-bit ints */
+ spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
+
+ /* No stencil, so can't do anything there */
+ break;
+
+ case PIPE_FORMAT_Z16_UNORM:
+ /* XXX This code for 16bpp Z is broken! */
+
+ /* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */
+ spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
+
+ /* Copy over 4 32-bit values */
+ spe_move(f, fbZ_reg, fbZS_reg);
+
+ /* convert Z from [0,1] to 16-bit ints */
+ spe_cfltu(f, fragZ_reg, fragZ_reg, 32);
+ spe_rotmi(f, fragZ_reg, fragZ_reg, -16);
+ /* No stencil */
+ break;
+
+ default:
+ ASSERT(0); /* invalid format */
+ }
+
+ /* If stencil is enabled, use the stencil-specific code
+ * generator to generate both the stencil and depth (if needed)
+ * tests. Otherwise, if only depth is enabled, generate
+ * a quick depth test. The test generators themselves will
+ * report back whether the depth/stencil buffer has to be
+ * written back.
+ */
+ if (dsa->stencil[0].enabled) {
+ /* This will perform the stencil and depth tests, and update
+ * the mask_reg, fbZ_reg, and fbS_reg as required by the
+ * tests.
+ */
+ ASSERT(fbS_reg >= 0);
+ spe_comment(f, 0, "Perform stencil test");
+
+ /* Note that fbZ_reg may not be set on entry, if stenciling
+ * is enabled but there's no Z-buffer. The
+ * gen_stencil_depth_test() function must ignore the
+ * fbZ_reg register if depth is not enabled.
+ */
+ write_depth_stencil = gen_stencil_depth_test(f, dsa, facing,
+ mask_reg, fragZ_reg,
+ fbZ_reg, fbS_reg);
+ }
+ else if (dsa->depth.enabled) {
+ int zmask_reg = spe_allocate_available_register(f);
+ ASSERT(fbZ_reg >= 0);
+ spe_comment(f, 0, "Perform depth test");
+ write_depth_stencil = gen_depth_test(f, dsa, mask_reg, fragZ_reg,
+ fbZ_reg, zmask_reg);
+ spe_release_register(f, zmask_reg);
+ }
+ else {
+ write_depth_stencil = FALSE;
+ }
+
+ if (write_depth_stencil) {
+ /* Merge latest Z and Stencil values into fbZS_reg.
+ * fbZ_reg has four Z vals in bits [23..0] or bits [15..0].
+ * fbS_reg has four 8-bit Z values in bits [7..0].
+ */
+ spe_comment(f, 0, "Store quad's depth/stencil values in tile");
+ if (zs_format == PIPE_FORMAT_S8Z24_UNORM ||
+ zs_format == PIPE_FORMAT_X8Z24_UNORM) {
+ spe_shli(f, fbS_reg, fbS_reg, 24); /* fbS = fbS << 24 */
+ spe_or(f, fbZS_reg, fbS_reg, fbZ_reg); /* fbZS = fbS | fbZ */
+ }
+ else if (zs_format == PIPE_FORMAT_Z24S8_UNORM ||
+ zs_format == PIPE_FORMAT_Z24X8_UNORM) {
+ spe_shli(f, fbZ_reg, fbZ_reg, 8); /* fbZ = fbZ << 8 */
+ spe_or(f, fbZS_reg, fbS_reg, fbZ_reg); /* fbZS = fbS | fbZ */
+ }
+ else if (zs_format == PIPE_FORMAT_Z32_UNORM) {
+ spe_move(f, fbZS_reg, fbZ_reg); /* fbZS = fbZ */
+ }
+ else if (zs_format == PIPE_FORMAT_Z16_UNORM) {
+ spe_move(f, fbZS_reg, fbZ_reg); /* fbZS = fbZ */
+ }
+ else if (zs_format == PIPE_FORMAT_S8_UNORM) {
+ ASSERT(0); /* XXX to do */
+ }
+ else {
+ ASSERT(0); /* bad zs_format */
+ }
+
+ /* Store: memory[depth_tile_reg + quad_offset_reg] = fbZS */
+ spe_stqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg);
+ }
+
+ /* Don't need these any more */
+ spe_release_register(f, fbZS_reg);
+ spe_release_register(f, fbZ_reg);
+ spe_release_register(f, fbS_reg);
+ spe_release_register(f, zmask_reg);
+}
+
+
+
+/**
+ * Generate SPE code to implement the fragment operations (alpha test,
+ * depth test, stencil test, blending, colormask, and final
+ * framebuffer write) as specified by the current context state.
+ *
+ * Logically, this code will be called after running the fragment
+ * shader. But under some circumstances we could run some of this
+ * code before the fragment shader to cull fragments/quads that are
+ * totally occluded/discarded.
+ *
+ * XXX we only support PIPE_FORMAT_Z24S8_UNORM z/stencil buffer right now.
+ *
+ * See the spu_default_fragment_ops() function to see how the per-fragment
+ * operations would be done with ordinary C code.
+ * The code we generate here though has no branches, is SIMD, etc and
+ * should be much faster.
+ *
+ * \param cell the rendering context (in)
+ * \param facing whether the generated code is for front-facing or
+ * back-facing fragments
+ * \param f the generated function (in/out); on input, the function
+ * must already have been initialized. On exit, whatever
+ * instructions within the generated function have had
+ * the fragment ops appended.
+ */
+void
+cell_gen_fragment_function(struct cell_context *cell,
+ const uint facing,
+ struct spe_function *f)
+{
+ const struct pipe_depth_stencil_alpha_state *dsa = cell->depth_stencil;
+ const struct pipe_blend_state *blend = cell->blend;
+ const struct pipe_blend_color *blend_color = &cell->blend_color;
+ const enum pipe_format color_format = cell->framebuffer.cbufs[0]->format;
+
+ /* For SPE function calls: reg $3 = first param, $4 = second param, etc. */
+ const int x_reg = 3; /* uint */
+ const int y_reg = 4; /* uint */
+ const int color_tile_reg = 5; /* tile_t * */
+ const int depth_tile_reg = 6; /* tile_t * */
+ const int fragZ_reg = 7; /* vector float */
+ const int fragR_reg = 8; /* vector float */
+ const int fragG_reg = 9; /* vector float */
+ const int fragB_reg = 10; /* vector float */
+ const int fragA_reg = 11; /* vector float */
+ const int mask_reg = 12; /* vector uint */
+
+ ASSERT(facing == CELL_FACING_FRONT || facing == CELL_FACING_BACK);
+
+ /* offset of quad from start of tile
+ * XXX assuming 4-byte pixels for color AND Z/stencil!!!!
+ */
+ int quad_offset_reg;
+
+ int fbRGBA_reg; /**< framebuffer's RGBA colors for quad */
+
+ if (cell->debug_flags & CELL_DEBUG_ASM) {
+ spe_print_code(f, TRUE);
+ spe_indent(f, 8);
+ spe_comment(f, -4, facing == CELL_FACING_FRONT
+ ? "Begin front-facing per-fragment ops"
+ : "Begin back-facing per-fragment ops");
+ }
+
+ spe_allocate_register(f, x_reg);
+ spe_allocate_register(f, y_reg);
+ spe_allocate_register(f, color_tile_reg);
+ spe_allocate_register(f, depth_tile_reg);
+ spe_allocate_register(f, fragZ_reg);
+ spe_allocate_register(f, fragR_reg);
+ spe_allocate_register(f, fragG_reg);
+ spe_allocate_register(f, fragB_reg);
+ spe_allocate_register(f, fragA_reg);
+ spe_allocate_register(f, mask_reg);
+
+ quad_offset_reg = spe_allocate_available_register(f);
+ fbRGBA_reg = spe_allocate_available_register(f);
+
+ /* compute offset of quad from start of tile, in bytes */
+ {
+ int x2_reg = spe_allocate_available_register(f);
+ int y2_reg = spe_allocate_available_register(f);
+
+ ASSERT(TILE_SIZE == 32);
+
+ spe_comment(f, 0, "Compute quad offset within tile");
+ spe_rotmi(f, y2_reg, y_reg, -1); /* y2 = y / 2 */
+ spe_rotmi(f, x2_reg, x_reg, -1); /* x2 = x / 2 */
+ spe_shli(f, y2_reg, y2_reg, 4); /* y2 *= 16 */
+ spe_a(f, quad_offset_reg, y2_reg, x2_reg); /* offset = y2 + x2 */
+ spe_shli(f, quad_offset_reg, quad_offset_reg, 4); /* offset *= 16 */
+
+ spe_release_register(f, x2_reg);
+ spe_release_register(f, y2_reg);
+ }
+
+ /* Generate the alpha test, if needed. */
+ if (dsa->alpha.enabled) {
+ gen_alpha_test(dsa, f, mask_reg, fragA_reg);
+ }
+
+ /* generate depth and/or stencil test code */
+ if (dsa->depth.enabled || dsa->stencil[0].enabled) {
+ gen_depth_stencil(cell, dsa, f,
+ facing,
+ mask_reg,
+ depth_tile_reg,
+ quad_offset_reg,
+ fragZ_reg);
+ }
+
+ /* Get framebuffer quad/colors. We'll need these for blending,
+ * color masking, and to obey the quad/pixel mask.
+ * Load: fbRGBA_reg = memory[color_tile + quad_offset]
+ * Note: if mask={~0,~0,~0,~0} and we're not blending or colormasking
+ * we could skip this load.
+ */
+ spe_comment(f, 0, "Fetch quad colors from tile");
+ spe_lqx(f, fbRGBA_reg, color_tile_reg, quad_offset_reg);
+
+ if (blend->blend_enable) {
+ spe_comment(f, 0, "Perform blending");
+ gen_blend(blend, blend_color, f, color_format,
+ fragR_reg, fragG_reg, fragB_reg, fragA_reg, fbRGBA_reg);
+ }
+
+ /*
+ * Write fragment colors to framebuffer/tile.
+ * This involves converting the fragment colors from float[4] to the
+ * tile's specific format and obeying the quad/pixel mask.
+ */
+ {
+ int rgba_reg = spe_allocate_available_register(f);
+
+ /* Pack four float colors as four 32-bit int colors */
+ spe_comment(f, 0, "Convert float quad colors to packed int framebuffer colors");
+ gen_pack_colors(f, color_format,
+ fragR_reg, fragG_reg, fragB_reg, fragA_reg,
+ rgba_reg);
+
+ if (blend->logicop_enable) {
+ spe_comment(f, 0, "Compute logic op");
+ gen_logicop(blend, f, rgba_reg, fbRGBA_reg);
+ }
+
+ if (blend->colormask != PIPE_MASK_RGBA) {
+ spe_comment(f, 0, "Compute color mask");
+ gen_colormask(f, blend->colormask, color_format, rgba_reg, fbRGBA_reg);
+ }
+
+ /* Mix fragment colors with framebuffer colors using the quad/pixel mask:
+ * if (mask[i])
+ * rgba[i] = rgba[i];
+ * else
+ * rgba[i] = framebuffer[i];
+ */
+ spe_selb(f, rgba_reg, fbRGBA_reg, rgba_reg, mask_reg);
+
+ /* Store updated quad in tile:
+ * memory[color_tile + quad_offset] = rgba_reg;
+ */
+ spe_comment(f, 0, "Store quad colors into color tile");
+ spe_stqx(f, rgba_reg, color_tile_reg, quad_offset_reg);
+
+ spe_release_register(f, rgba_reg);
+ }
+
+ //printf("gen_fragment_ops nr instructions: %u\n", f->num_inst);
+
+ spe_bi(f, SPE_REG_RA, 0, 0); /* return from function call */
+
+ spe_release_register(f, fbRGBA_reg);
+ spe_release_register(f, quad_offset_reg);
+
+ if (cell->debug_flags & CELL_DEBUG_ASM) {
+ char buffer[1024];
+ sprintf(buffer, "End %s-facing per-fragment ops: %d instructions",
+ facing == CELL_FACING_FRONT ? "front" : "back", f->num_inst);
+ spe_comment(f, -4, buffer);
+ }
+}