diff options
Diffstat (limited to 'src/gallium/drivers/cell/spu')
-rw-r--r-- | src/gallium/drivers/cell/spu/.gitignore | 1 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/Makefile | 4 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_colorpack.h | 49 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_command.c | 815 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_command.h | 35 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_dcache.c | 4 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_funcs.c | 173 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_funcs.h | 35 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_main.c | 626 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_main.h | 87 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_per_fragment_op.c | 286 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_render.c | 38 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_texture.c | 635 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_texture.h | 28 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_tile.c | 37 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_tile.h | 6 | ||||
-rw-r--r-- | src/gallium/drivers/cell/spu/spu_tri.c | 573 |
17 files changed, 2238 insertions, 1194 deletions
diff --git a/src/gallium/drivers/cell/spu/.gitignore b/src/gallium/drivers/cell/spu/.gitignore new file mode 100644 index 0000000000..2be9a2d324 --- /dev/null +++ b/src/gallium/drivers/cell/spu/.gitignore @@ -0,0 +1 @@ +g3d_spu diff --git a/src/gallium/drivers/cell/spu/Makefile b/src/gallium/drivers/cell/spu/Makefile index 1ae0dfb8c1..116453b79c 100644 --- a/src/gallium/drivers/cell/spu/Makefile +++ b/src/gallium/drivers/cell/spu/Makefile @@ -16,8 +16,10 @@ PROG_SPU_EMBED_O = $(PROG)_spu-embed.o SOURCES = \ - spu_main.c \ + spu_command.c \ spu_dcache.c \ + spu_funcs.c \ + spu_main.c \ spu_per_fragment_op.c \ spu_render.c \ spu_texture.c \ diff --git a/src/gallium/drivers/cell/spu/spu_colorpack.h b/src/gallium/drivers/cell/spu/spu_colorpack.h index fd8dc6ded3..d7ce005524 100644 --- a/src/gallium/drivers/cell/spu/spu_colorpack.h +++ b/src/gallium/drivers/cell/spu/spu_colorpack.h @@ -31,6 +31,7 @@ #define SPU_COLORPACK_H +#include <transpose_matrix4x4.h> #include <spu_intrinsics.h> @@ -84,10 +85,10 @@ spu_unpack_B8G8R8A8(uint color) vector unsigned int color_u4 = spu_splats(color); color_u4 = spu_shuffle(color_u4, color_u4, ((vector unsigned char) { - 10, 10, 10, 10, - 5, 5, 5, 5, + 2, 2, 2, 2, + 1, 1, 1, 1, 0, 0, 0, 0, - 15, 15, 15, 15}) ); + 3, 3, 3, 3}) ); return spu_convtf(color_u4, 32); } @@ -98,13 +99,47 @@ spu_unpack_A8R8G8B8(uint color) vector unsigned int color_u4 = spu_splats(color); color_u4 = spu_shuffle(color_u4, color_u4, ((vector unsigned char) { - 5, 5, 5, 5, - 10, 10, 10, 10, - 15, 15, 15, 15, + 1, 1, 1, 1, + 2, 2, 2, 2, + 3, 3, 3, 3, 0, 0, 0, 0}) ); - return spu_convtf(color_u4, 32); } +/** + * \param color_in - array of 32-bit packed ARGB colors + * \param color_out - returns float colors in RRRR, GGGG, BBBB, AAAA order + */ +static INLINE void +spu_unpack_A8R8G8B8_transpose4(const vector unsigned int color_in[4], + vector float color_out[4]) +{ + vector unsigned int c0; + + c0 = spu_shuffle(color_in[0], color_in[0], + ((vector unsigned char) { + 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0}) ); + color_out[0] = spu_convtf(c0, 32); + + c0 = spu_shuffle(color_in[1], color_in[1], + ((vector unsigned char) { + 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0}) ); + color_out[1] = spu_convtf(c0, 32); + + c0 = spu_shuffle(color_in[2], color_in[2], + ((vector unsigned char) { + 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0}) ); + color_out[2] = spu_convtf(c0, 32); + + c0 = spu_shuffle(color_in[3], color_in[3], + ((vector unsigned char) { + 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 0, 0, 0, 0}) ); + color_out[3] = spu_convtf(c0, 32); + + _transpose_matrix4x4(color_out, color_out); +} + + + #endif /* SPU_COLORPACK_H */ diff --git a/src/gallium/drivers/cell/spu/spu_command.c b/src/gallium/drivers/cell/spu/spu_command.c new file mode 100644 index 0000000000..8500d19754 --- /dev/null +++ b/src/gallium/drivers/cell/spu/spu_command.c @@ -0,0 +1,815 @@ +/************************************************************************** + * + * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. + * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR + * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + + +/** + * SPU command processing code + */ + + +#include <stdio.h> +#include <libmisc.h> + +#include "pipe/p_defines.h" + +#include "spu_command.h" +#include "spu_main.h" +#include "spu_render.h" +#include "spu_per_fragment_op.h" +#include "spu_texture.h" +#include "spu_tile.h" +#include "spu_vertex_shader.h" +#include "spu_dcache.h" +#include "cell/common.h" + + +struct spu_vs_context draw; + + +/** + * Buffers containing dynamically generated SPU code: + */ +static unsigned char attribute_fetch_code_buffer[136 * PIPE_MAX_ATTRIBS] + ALIGN16_ATTRIB; + + + +static INLINE int +align(int value, int alignment) +{ + return (value + alignment - 1) & ~(alignment - 1); +} + + + +/** + * Tell the PPU that this SPU has finished copying a buffer to + * local store and that it may be reused by the PPU. + * This is done by writting a 16-byte batch-buffer-status block back into + * main memory (in cell_context->buffer_status[]). + */ +static void +release_buffer(uint buffer) +{ + /* Evidently, using less than a 16-byte status doesn't work reliably */ + static const vector unsigned int status = {CELL_BUFFER_STATUS_FREE, + CELL_BUFFER_STATUS_FREE, + CELL_BUFFER_STATUS_FREE, + CELL_BUFFER_STATUS_FREE}; + const uint index = 4 * (spu.init.id * CELL_NUM_BUFFERS + buffer); + uint *dst = spu.init.buffer_status + index; + + ASSERT(buffer < CELL_NUM_BUFFERS); + + mfc_put((void *) &status, /* src in local memory */ + (unsigned int) dst, /* dst in main memory */ + sizeof(status), /* size */ + TAG_MISC, /* tag is unimportant */ + 0, /* tid */ + 0 /* rid */); +} + + +/** + * Write CELL_FENCE_SIGNALLED back to the fence status qword in main memory. + * There's a qword of status per SPU. + */ +static void +cmd_fence(struct cell_command_fence *fence_cmd) +{ + static const vector unsigned int status = {CELL_FENCE_SIGNALLED, + CELL_FENCE_SIGNALLED, + CELL_FENCE_SIGNALLED, + CELL_FENCE_SIGNALLED}; + uint *dst = (uint *) fence_cmd->fence; + dst += 4 * spu.init.id; /* main store/memory address, not local store */ + ASSERT_ALIGN16(dst); + mfc_put((void *) &status, /* src in local memory */ + (unsigned int) dst, /* dst in main memory */ + sizeof(status), /* size */ + TAG_FENCE, /* tag */ + 0, /* tid */ + 0 /* rid */); +} + + +static void +cmd_clear_surface(const struct cell_command_clear_surface *clear) +{ + D_PRINTF(CELL_DEBUG_CMD, "CLEAR SURF %u to 0x%08x\n", clear->surface, clear->value); + + if (clear->surface == 0) { + spu.fb.color_clear_value = clear->value; + if (spu.init.debug_flags & CELL_DEBUG_CHECKER) { + uint x = (spu.init.id << 4) | (spu.init.id << 12) | + (spu.init.id << 20) | (spu.init.id << 28); + spu.fb.color_clear_value ^= x; + } + } + else { + spu.fb.depth_clear_value = clear->value; + } + +#define CLEAR_OPT 1 +#if CLEAR_OPT + + /* Simply set all tiles' status to CLEAR. + * When we actually begin rendering into a tile, we'll initialize it to + * the clear value. If any tiles go untouched during the frame, + * really_clear_tiles() will set them to the clear value. + */ + if (clear->surface == 0) { + memset(spu.ctile_status, TILE_STATUS_CLEAR, sizeof(spu.ctile_status)); + } + else { + memset(spu.ztile_status, TILE_STATUS_CLEAR, sizeof(spu.ztile_status)); + } + +#else + + /* + * This path clears the whole framebuffer to the clear color right now. + */ + + /* + printf("SPU: %s num=%d w=%d h=%d\n", + __FUNCTION__, num_tiles, spu.fb.width_tiles, spu.fb.height_tiles); + */ + + /* init a single tile to the clear value */ + if (clear->surface == 0) { + clear_c_tile(&spu.ctile); + } + else { + clear_z_tile(&spu.ztile); + } + + /* walk over my tiles, writing the 'clear' tile's data */ + { + const uint num_tiles = spu.fb.width_tiles * spu.fb.height_tiles; + uint i; + for (i = spu.init.id; i < num_tiles; i += spu.init.num_spus) { + uint tx = i % spu.fb.width_tiles; + uint ty = i / spu.fb.width_tiles; + if (clear->surface == 0) + put_tile(tx, ty, &spu.ctile, TAG_SURFACE_CLEAR, 0); + else + put_tile(tx, ty, &spu.ztile, TAG_SURFACE_CLEAR, 1); + } + } + + if (spu.init.debug_flags & CELL_DEBUG_SYNC) { + wait_on_mask(1 << TAG_SURFACE_CLEAR); + } + +#endif /* CLEAR_OPT */ + + D_PRINTF(CELL_DEBUG_CMD, "CLEAR SURF done\n"); +} + + +static void +cmd_release_verts(const struct cell_command_release_verts *release) +{ + D_PRINTF(CELL_DEBUG_CMD, "RELEASE VERTS %u\n", release->vertex_buf); + ASSERT(release->vertex_buf != ~0U); + release_buffer(release->vertex_buf); +} + + +/** + * Process a CELL_CMD_STATE_FRAGMENT_OPS command. + * This involves installing new fragment ops SPU code. + * If this function is never called, we'll use a regular C fallback function + * for fragment processing. + */ +static void +cmd_state_fragment_ops(const struct cell_command_fragment_ops *fops) +{ + D_PRINTF(CELL_DEBUG_CMD, "CMD_STATE_FRAGMENT_OPS\n"); + + /* Copy state info (for fallback case only - this will eventually + * go away when the fallback case goes away) + */ + memcpy(&spu.depth_stencil_alpha, &fops->dsa, sizeof(fops->dsa)); + memcpy(&spu.blend, &fops->blend, sizeof(fops->blend)); + memcpy(&spu.blend_color, &fops->blend_color, sizeof(fops->blend_color)); + + /* Make sure the SPU knows which buffers it's expected to read when + * it's told to pull tiles. + */ + spu.read_depth_stencil = (spu.depth_stencil_alpha.depth.enabled || spu.depth_stencil_alpha.stencil[0].enabled); + + /* If we're forcing the fallback code to be used (for debug purposes), + * install that. Otherwise install the incoming SPU code. + */ + if ((spu.init.debug_flags & CELL_DEBUG_FRAGMENT_OP_FALLBACK) != 0) { + static unsigned int warned = 0; + if (!warned) { + fprintf(stderr, "Cell Warning: using fallback per-fragment code\n"); + warned = 1; + } + /* The following two lines aren't really necessary if you + * know the debug flags won't change during a run, and if you + * know that the function pointers are initialized correctly. + * We set them here to allow a person to change the debug + * flags during a run (from inside a debugger). + */ + spu.fragment_ops[CELL_FACING_FRONT] = spu_fallback_fragment_ops; + spu.fragment_ops[CELL_FACING_BACK] = spu_fallback_fragment_ops; + return; + } + + /* Make sure the SPU code buffer is large enough to hold the incoming code. + * Note that we *don't* use align_malloc() and align_free(), because + * those utility functions are *not* available in SPU code. + * */ + if (spu.fragment_ops_code_size < fops->total_code_size) { + if (spu.fragment_ops_code != NULL) { + free(spu.fragment_ops_code); + } + spu.fragment_ops_code_size = fops->total_code_size; + spu.fragment_ops_code = malloc(fops->total_code_size); + if (spu.fragment_ops_code == NULL) { + /* Whoops. */ + fprintf(stderr, "CELL Warning: failed to allocate fragment ops code (%d bytes) - using fallback\n", fops->total_code_size); + spu.fragment_ops_code = NULL; + spu.fragment_ops_code_size = 0; + spu.fragment_ops[CELL_FACING_FRONT] = spu_fallback_fragment_ops; + spu.fragment_ops[CELL_FACING_BACK] = spu_fallback_fragment_ops; + return; + } + } + + /* Copy the SPU code from the command buffer to the spu buffer */ + memcpy(spu.fragment_ops_code, fops->code, fops->total_code_size); + + /* Set the pointers for the front-facing and back-facing fragments + * to the specified offsets within the code. Note that if the + * front-facing and back-facing code are the same, they'll have + * the same offset. + */ + spu.fragment_ops[CELL_FACING_FRONT] = (spu_fragment_ops_func) &spu.fragment_ops_code[fops->front_code_index]; + spu.fragment_ops[CELL_FACING_BACK] = (spu_fragment_ops_func) &spu.fragment_ops_code[fops->back_code_index]; +} + +static void +cmd_state_fragment_program(const struct cell_command_fragment_program *fp) +{ + D_PRINTF(CELL_DEBUG_CMD, "CMD_STATE_FRAGMENT_PROGRAM\n"); + /* Copy SPU code from batch buffer to spu buffer */ + memcpy(spu.fragment_program_code, fp->code, + SPU_MAX_FRAGMENT_PROGRAM_INSTS * 4); +#if 01 + /* Point function pointer at new code */ + spu.fragment_program = (spu_fragment_program_func)spu.fragment_program_code; +#endif +} + + +static uint +cmd_state_fs_constants(const uint64_t *buffer, uint pos) +{ + const uint num_const = buffer[pos + 1]; + const float *constants = (const float *) &buffer[pos + 2]; + uint i; + + D_PRINTF(CELL_DEBUG_CMD, "CMD_STATE_FS_CONSTANTS (%u)\n", num_const); + + /* Expand each float to float[4] for SOA execution */ + for (i = 0; i < num_const; i++) { + D_PRINTF(CELL_DEBUG_CMD, " const[%u] = %f\n", i, constants[i]); + spu.constants[i] = spu_splats(constants[i]); + } + + /* return new buffer pos (in 8-byte words) */ + return pos + 2 + num_const / 2; +} + + +static void +cmd_state_framebuffer(const struct cell_command_framebuffer *cmd) +{ + D_PRINTF(CELL_DEBUG_CMD, "FRAMEBUFFER: %d x %d at %p, cformat 0x%x zformat 0x%x\n", + cmd->width, + cmd->height, + cmd->color_start, + cmd->color_format, + cmd->depth_format); + + ASSERT_ALIGN16(cmd->color_start); + ASSERT_ALIGN16(cmd->depth_start); + + spu.fb.color_start = cmd->color_start; + spu.fb.depth_start = cmd->depth_start; + spu.fb.color_format = cmd->color_format; + spu.fb.depth_format = cmd->depth_format; + spu.fb.width = cmd->width; + spu.fb.height = cmd->height; + spu.fb.width_tiles = (spu.fb.width + TILE_SIZE - 1) / TILE_SIZE; + spu.fb.height_tiles = (spu.fb.height + TILE_SIZE - 1) / TILE_SIZE; + + switch (spu.fb.depth_format) { + case PIPE_FORMAT_Z32_UNORM: + spu.fb.zsize = 4; + spu.fb.zscale = (float) 0xffffffffu; + break; + case PIPE_FORMAT_Z24S8_UNORM: + case PIPE_FORMAT_S8Z24_UNORM: + case PIPE_FORMAT_Z24X8_UNORM: + case PIPE_FORMAT_X8Z24_UNORM: + spu.fb.zsize = 4; + spu.fb.zscale = (float) 0x00ffffffu; + break; + case PIPE_FORMAT_Z16_UNORM: + spu.fb.zsize = 2; + spu.fb.zscale = (float) 0xffffu; + break; + default: + spu.fb.zsize = 0; + break; + } +} + + +/** + * Tex texture mask_s/t and scale_s/t fields depend on the texture size and + * sampler wrap modes. + */ +static void +update_tex_masks(struct spu_texture *texture, + const struct pipe_sampler_state *sampler) +{ + uint i; + + for (i = 0; i < CELL_MAX_TEXTURE_LEVELS; i++) { + int width = texture->level[i].width; + int height = texture->level[i].height; + + if (sampler->wrap_s == PIPE_TEX_WRAP_REPEAT) + texture->level[i].mask_s = spu_splats(width - 1); + else + texture->level[i].mask_s = spu_splats(~0); + + if (sampler->wrap_t == PIPE_TEX_WRAP_REPEAT) + texture->level[i].mask_t = spu_splats(height - 1); + else + texture->level[i].mask_t = spu_splats(~0); + + if (sampler->normalized_coords) { + texture->level[i].scale_s = spu_splats((float) width); + texture->level[i].scale_t = spu_splats((float) height); + } + else { + texture->level[i].scale_s = spu_splats(1.0f); + texture->level[i].scale_t = spu_splats(1.0f); + } + } +} + + +static void +cmd_state_sampler(const struct cell_command_sampler *sampler) +{ + uint unit = sampler->unit; + + D_PRINTF(CELL_DEBUG_CMD, "SAMPLER [%u]\n", unit); + + spu.sampler[unit] = sampler->state; + + switch (spu.sampler[unit].min_img_filter) { + case PIPE_TEX_FILTER_LINEAR: + spu.min_sample_texture_2d[unit] = sample_texture_2d_bilinear; + break; + case PIPE_TEX_FILTER_ANISO: + /* fall-through, for now */ + case PIPE_TEX_FILTER_NEAREST: + spu.min_sample_texture_2d[unit] = sample_texture_2d_nearest; + break; + default: + ASSERT(0); + } + + switch (spu.sampler[sampler->unit].mag_img_filter) { + case PIPE_TEX_FILTER_LINEAR: + spu.mag_sample_texture_2d[unit] = sample_texture_2d_bilinear; + break; + case PIPE_TEX_FILTER_ANISO: + /* fall-through, for now */ + case PIPE_TEX_FILTER_NEAREST: + spu.mag_sample_texture_2d[unit] = sample_texture_2d_nearest; + break; + default: + ASSERT(0); + } + + switch (spu.sampler[sampler->unit].min_mip_filter) { + case PIPE_TEX_MIPFILTER_NEAREST: + case PIPE_TEX_MIPFILTER_LINEAR: + spu.sample_texture_2d[unit] = sample_texture_2d_lod; + break; + case PIPE_TEX_MIPFILTER_NONE: + spu.sample_texture_2d[unit] = spu.mag_sample_texture_2d[unit]; + break; + default: + ASSERT(0); + } + + update_tex_masks(&spu.texture[unit], &spu.sampler[unit]); +} + + +static void +cmd_state_texture(const struct cell_command_texture *texture) +{ + const uint unit = texture->unit; + uint i; + + D_PRINTF(CELL_DEBUG_CMD, "TEXTURE [%u]\n", texture->unit); + + spu.texture[unit].max_level = 0; + spu.texture[unit].target = texture->target; + + for (i = 0; i < CELL_MAX_TEXTURE_LEVELS; i++) { + uint width = texture->width[i]; + uint height = texture->height[i]; + uint depth = texture->depth[i]; + + D_PRINTF(CELL_DEBUG_CMD, " LEVEL %u: at %p size[0] %u x %u\n", i, + texture->start[i], texture->width[i], texture->height[i]); + + spu.texture[unit].level[i].start = texture->start[i]; + spu.texture[unit].level[i].width = width; + spu.texture[unit].level[i].height = height; + spu.texture[unit].level[i].depth = depth; + + spu.texture[unit].level[i].tiles_per_row = + (width + TILE_SIZE - 1) / TILE_SIZE; + + spu.texture[unit].level[i].bytes_per_image = + 4 * align(width, TILE_SIZE) * align(height, TILE_SIZE) * depth; + + spu.texture[unit].level[i].max_s = spu_splats((int) width - 1); + spu.texture[unit].level[i].max_t = spu_splats((int) height - 1); + + if (texture->start[i]) + spu.texture[unit].max_level = i; + } + + update_tex_masks(&spu.texture[unit], &spu.sampler[unit]); +} + + +static void +cmd_state_vertex_info(const struct vertex_info *vinfo) +{ + D_PRINTF(CELL_DEBUG_CMD, "VERTEX_INFO num_attribs=%u\n", vinfo->num_attribs); + ASSERT(vinfo->num_attribs >= 1); + ASSERT(vinfo->num_attribs <= 8); + memcpy(&spu.vertex_info, vinfo, sizeof(*vinfo)); +} + + +static void +cmd_state_vs_array_info(const struct cell_array_info *vs_info) +{ + const unsigned attr = vs_info->attr; + + ASSERT(attr < PIPE_MAX_ATTRIBS); + draw.vertex_fetch.src_ptr[attr] = vs_info->base; + draw.vertex_fetch.pitch[attr] = vs_info->pitch; + draw.vertex_fetch.size[attr] = vs_info->size; + draw.vertex_fetch.code_offset[attr] = vs_info->function_offset; + draw.vertex_fetch.dirty = 1; +} + + +static void +cmd_state_attrib_fetch(const struct cell_attribute_fetch_code *code) +{ + mfc_get(attribute_fetch_code_buffer, + (unsigned int) code->base, /* src */ + code->size, + TAG_BATCH_BUFFER, + 0, /* tid */ + 0 /* rid */); + wait_on_mask(1 << TAG_BATCH_BUFFER); + + draw.vertex_fetch.code = attribute_fetch_code_buffer; +} + + +static void +cmd_finish(void) +{ + D_PRINTF(CELL_DEBUG_CMD, "FINISH\n"); + really_clear_tiles(0); + /* wait for all outstanding DMAs to finish */ + mfc_write_tag_mask(~0); + mfc_read_tag_status_all(); + /* send mbox message to PPU */ + spu_write_out_mbox(CELL_CMD_FINISH); +} + + +/** + * Execute a batch of commands which was sent to us by the PPU. + * See the cell_emit_state.c code to see where the commands come from. + * + * The opcode param encodes the location of the buffer and its size. + */ +static void +cmd_batch(uint opcode) +{ + const uint buf = (opcode >> 8) & 0xff; + uint size = (opcode >> 16); + uint64_t buffer[CELL_BUFFER_SIZE / 8] ALIGN16_ATTRIB; + const unsigned usize = size / sizeof(buffer[0]); + uint pos; + + D_PRINTF(CELL_DEBUG_CMD, "BATCH buffer %u, len %u, from %p\n", + buf, size, spu.init.buffers[buf]); + + ASSERT((opcode & CELL_CMD_OPCODE_MASK) == CELL_CMD_BATCH); + + ASSERT_ALIGN16(spu.init.buffers[buf]); + + size = ROUNDUP16(size); + + ASSERT_ALIGN16(spu.init.buffers[buf]); + + mfc_get(buffer, /* dest */ + (unsigned int) spu.init.buffers[buf], /* src */ + size, + TAG_BATCH_BUFFER, + 0, /* tid */ + 0 /* rid */); + wait_on_mask(1 << TAG_BATCH_BUFFER); + + /* Tell PPU we're done copying the buffer to local store */ + D_PRINTF(CELL_DEBUG_CMD, "release batch buf %u\n", buf); + release_buffer(buf); + + /* + * Loop over commands in the batch buffer + */ + for (pos = 0; pos < usize; /* no incr */) { + switch (buffer[pos]) { + /* + * rendering commands + */ + case CELL_CMD_CLEAR_SURFACE: + { + struct cell_command_clear_surface *clr + = (struct cell_command_clear_surface *) &buffer[pos]; + cmd_clear_surface(clr); + pos += sizeof(*clr) / 8; + } + break; + case CELL_CMD_RENDER: + { + struct cell_command_render *render + = (struct cell_command_render *) &buffer[pos]; + uint pos_incr; + cmd_render(render, &pos_incr); + pos += pos_incr; + } + break; + /* + * state-update commands + */ + case CELL_CMD_STATE_FRAMEBUFFER: + { + struct cell_command_framebuffer *fb + = (struct cell_command_framebuffer *) &buffer[pos]; + cmd_state_framebuffer(fb); + pos += sizeof(*fb) / 8; + } + break; + case CELL_CMD_STATE_FRAGMENT_OPS: + { + struct cell_command_fragment_ops *fops + = (struct cell_command_fragment_ops *) &buffer[pos]; + cmd_state_fragment_ops(fops); + /* This is a variant-sized command */ + pos += (sizeof(*fops) + fops->total_code_size)/ 8; + } + break; + case CELL_CMD_STATE_FRAGMENT_PROGRAM: + { + struct cell_command_fragment_program *fp + = (struct cell_command_fragment_program *) &buffer[pos]; + cmd_state_fragment_program(fp); + pos += sizeof(*fp) / 8; + } + break; + case CELL_CMD_STATE_FS_CONSTANTS: + pos = cmd_state_fs_constants(buffer, pos); + break; + case CELL_CMD_STATE_RASTERIZER: + { + struct cell_command_rasterizer *rast = + (struct cell_command_rasterizer *) &buffer[pos]; + spu.rasterizer = rast->rasterizer; + pos += sizeof(*rast) / 8; + } + break; + case CELL_CMD_STATE_SAMPLER: + { + struct cell_command_sampler *sampler + = (struct cell_command_sampler *) &buffer[pos]; + cmd_state_sampler(sampler); + pos += sizeof(*sampler) / 8; + } + break; + case CELL_CMD_STATE_TEXTURE: + { + struct cell_command_texture *texture + = (struct cell_command_texture *) &buffer[pos]; + cmd_state_texture(texture); + pos += sizeof(*texture) / 8; + } + break; + case CELL_CMD_STATE_VERTEX_INFO: + cmd_state_vertex_info((struct vertex_info *) &buffer[pos+1]); + pos += (1 + ROUNDUP8(sizeof(struct vertex_info)) / 8); + break; + case CELL_CMD_STATE_VIEWPORT: + (void) memcpy(& draw.viewport, &buffer[pos+1], + sizeof(struct pipe_viewport_state)); + pos += (1 + ROUNDUP8(sizeof(struct pipe_viewport_state)) / 8); + break; + case CELL_CMD_STATE_UNIFORMS: + draw.constants = (const float (*)[4]) (uintptr_t) buffer[pos + 1]; + pos += 2; + break; + case CELL_CMD_STATE_VS_ARRAY_INFO: + cmd_state_vs_array_info((struct cell_array_info *) &buffer[pos+1]); + pos += (1 + ROUNDUP8(sizeof(struct cell_array_info)) / 8); + break; + case CELL_CMD_STATE_BIND_VS: +#if 0 + spu_bind_vertex_shader(&draw, + (struct cell_shader_info *) &buffer[pos+1]); +#endif + pos += (1 + ROUNDUP8(sizeof(struct cell_shader_info)) / 8); + break; + case CELL_CMD_STATE_ATTRIB_FETCH: + cmd_state_attrib_fetch((struct cell_attribute_fetch_code *) + &buffer[pos+1]); + pos += (1 + ROUNDUP8(sizeof(struct cell_attribute_fetch_code)) / 8); + break; + /* + * misc commands + */ + case CELL_CMD_FINISH: + cmd_finish(); + pos += 1; + break; + case CELL_CMD_FENCE: + { + struct cell_command_fence *fence_cmd = + (struct cell_command_fence *) &buffer[pos]; + cmd_fence(fence_cmd); + pos += sizeof(*fence_cmd) / 8; + } + break; + case CELL_CMD_RELEASE_VERTS: + { + struct cell_command_release_verts *release + = (struct cell_command_release_verts *) &buffer[pos]; + cmd_release_verts(release); + pos += sizeof(*release) / 8; + } + break; + case CELL_CMD_FLUSH_BUFFER_RANGE: { + struct cell_buffer_range *br = (struct cell_buffer_range *) + &buffer[pos+1]; + + spu_dcache_mark_dirty((unsigned) br->base, br->size); + pos += (1 + ROUNDUP8(sizeof(struct cell_buffer_range)) / 8); + break; + } + default: + printf("SPU %u: bad opcode: 0x%llx\n", spu.init.id, buffer[pos]); + ASSERT(0); + break; + } + } + + D_PRINTF(CELL_DEBUG_CMD, "BATCH complete\n"); +} + + +#define PERF 0 + + +/** + * Main loop for SPEs: Get a command, execute it, repeat. + */ +void +command_loop(void) +{ + int exitFlag = 0; + uint t0, t1; + + D_PRINTF(CELL_DEBUG_CMD, "Enter command loop\n"); + + while (!exitFlag) { + unsigned opcode; + + D_PRINTF(CELL_DEBUG_CMD, "Wait for cmd...\n"); + + if (PERF) + spu_write_decrementer(~0); + + /* read/wait from mailbox */ + opcode = (unsigned int) spu_read_in_mbox(); + D_PRINTF(CELL_DEBUG_CMD, "got cmd 0x%x\n", opcode); + + if (PERF) + t0 = spu_read_decrementer(); + + switch (opcode & CELL_CMD_OPCODE_MASK) { + case CELL_CMD_EXIT: + D_PRINTF(CELL_DEBUG_CMD, "EXIT\n"); + exitFlag = 1; + break; + case CELL_CMD_VS_EXECUTE: +#if 0 + spu_execute_vertex_shader(&draw, &cmd.vs); +#endif + break; + case CELL_CMD_BATCH: + cmd_batch(opcode); + break; + default: + printf("Bad opcode 0x%x!\n", opcode & CELL_CMD_OPCODE_MASK); + } + + if (PERF) { + t1 = spu_read_decrementer(); + printf("wait mbox time: %gms batch time: %gms\n", + (~0u - t0) * spu.init.inv_timebase, + (t0 - t1) * spu.init.inv_timebase); + } + } + + D_PRINTF(CELL_DEBUG_CMD, "Exit command loop\n"); + + if (spu.init.debug_flags & CELL_DEBUG_CACHE) + spu_dcache_report(); +} + +/* Initialize this module; we manage the fragment ops buffer here. */ +void +spu_command_init(void) +{ + /* Install default/fallback fragment processing function. + * This will normally be overriden by a code-gen'd function + * unless CELL_FORCE_FRAGMENT_OPS_FALLBACK is set. + */ + spu.fragment_ops[CELL_FACING_FRONT] = spu_fallback_fragment_ops; + spu.fragment_ops[CELL_FACING_BACK] = spu_fallback_fragment_ops; + + /* Set up the basic empty buffer for code-gen'ed fragment ops */ + spu.fragment_ops_code = NULL; + spu.fragment_ops_code_size = 0; +} + +void +spu_command_close(void) +{ + /* Deallocate the code-gen buffer for fragment ops, and reset the + * fragment ops functions to their initial setting (just to leave + * things in a good state). + */ + if (spu.fragment_ops_code != NULL) { + free(spu.fragment_ops_code); + } + spu_command_init(); +} diff --git a/src/gallium/drivers/cell/spu/spu_command.h b/src/gallium/drivers/cell/spu/spu_command.h new file mode 100644 index 0000000000..83dcdade28 --- /dev/null +++ b/src/gallium/drivers/cell/spu/spu_command.h @@ -0,0 +1,35 @@ +/************************************************************************** + * + * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. + * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR + * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + +extern void +command_loop(void); + +extern void +spu_command_init(void); + +extern void +spu_command_close(void); diff --git a/src/gallium/drivers/cell/spu/spu_dcache.c b/src/gallium/drivers/cell/spu/spu_dcache.c index 167404cdc5..a6d67634fd 100644 --- a/src/gallium/drivers/cell/spu/spu_dcache.c +++ b/src/gallium/drivers/cell/spu/spu_dcache.c @@ -36,7 +36,9 @@ #define CACHE_SET_TAGID(set) (((set) & 0x03) + TAG_DCACHE0) #define CACHE_LOG2NNWAY 2 #define CACHE_LOG2NSETS 6 -/*#define CACHE_STATS 1*/ +#ifdef DEBUG +#define CACHE_STATS 1 +#endif #include <cache-api.h> /* Yes folks, this is ugly. diff --git a/src/gallium/drivers/cell/spu/spu_funcs.c b/src/gallium/drivers/cell/spu/spu_funcs.c new file mode 100644 index 0000000000..ff3d609d25 --- /dev/null +++ b/src/gallium/drivers/cell/spu/spu_funcs.c @@ -0,0 +1,173 @@ +/************************************************************************** + * + * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. + * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR + * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + + +/** + * SPU functions accessed by shaders. + * + * Authors: Brian Paul + */ + + +#include <string.h> +#include <libmisc.h> +#include <math.h> +#include <cos14_v.h> +#include <sin14_v.h> +#include <simdmath/exp2f4.h> +#include <simdmath/log2f4.h> +#include <simdmath/powf4.h> + +#include "cell/common.h" +#include "spu_main.h" +#include "spu_funcs.h" +#include "spu_texture.h" + + +/** For "return"-ing four vectors */ +struct vec_4x4 +{ + vector float v[4]; +}; + + +static vector float +spu_cos(vector float x) +{ + return _cos14_v(x); +} + +static vector float +spu_sin(vector float x) +{ + return _sin14_v(x); +} + +static vector float +spu_pow(vector float x, vector float y) +{ + return _powf4(x, y); +} + +static vector float +spu_exp2(vector float x) +{ + return _exp2f4(x); +} + +static vector float +spu_log2(vector float x) +{ + return _log2f4(x); +} + + +static struct vec_4x4 +spu_tex_2d(vector float s, vector float t, vector float r, vector float q, + unsigned unit) +{ + struct vec_4x4 colors; + (void) r; + (void) q; + spu.sample_texture_2d[unit](s, t, unit, 0, 0, colors.v); + return colors; +} + +static struct vec_4x4 +spu_tex_3d(vector float s, vector float t, vector float r, vector float q, + unsigned unit) +{ + struct vec_4x4 colors; + (void) r; + (void) q; + spu.sample_texture_2d[unit](s, t, unit, 0, 0, colors.v); + return colors; +} + +static struct vec_4x4 +spu_tex_cube(vector float s, vector float t, vector float r, vector float q, + unsigned unit) +{ + struct vec_4x4 colors; + (void) q; + sample_texture_cube(s, t, r, unit, colors.v); + return colors; +} + + +/** + * Add named function to list of "exported" functions that will be + * made available to the PPU-hosted code generator. + */ +static void +export_func(struct cell_spu_function_info *spu_functions, + const char *name, void *addr) +{ + uint n = spu_functions->num; + ASSERT(strlen(name) < 16); + strcpy(spu_functions->names[n], name); + spu_functions->addrs[n] = (uint) addr; + spu_functions->num++; + ASSERT(spu_functions->num <= 16); +} + + +/** + * Return info about the SPU's function to the PPU / main memory. + * The PPU needs to know the address of some SPU-side functions so + * that we can generate shader code with function calls. + */ +void +return_function_info(void) +{ + struct cell_spu_function_info funcs ALIGN16_ATTRIB; + int tag = TAG_MISC; + + ASSERT(sizeof(funcs) == 256); /* must be multiple of 16 bytes */ + + funcs.num = 0; + export_func(&funcs, "spu_cos", &spu_cos); + export_func(&funcs, "spu_sin", &spu_sin); + export_func(&funcs, "spu_pow", &spu_pow); + export_func(&funcs, "spu_exp2", &spu_exp2); + export_func(&funcs, "spu_log2", &spu_log2); + export_func(&funcs, "spu_tex_2d", &spu_tex_2d); + export_func(&funcs, "spu_tex_3d", &spu_tex_3d); + export_func(&funcs, "spu_tex_cube", &spu_tex_cube); + + /* Send the function info back to the PPU / main memory */ + mfc_put((void *) &funcs, /* src in local store */ + (unsigned int) spu.init.spu_functions, /* dst in main memory */ + sizeof(funcs), /* bytes */ + tag, + 0, /* tid */ + 0 /* rid */); + wait_on_mask(1 << tag); +} + + + diff --git a/src/gallium/drivers/cell/spu/spu_funcs.h b/src/gallium/drivers/cell/spu/spu_funcs.h new file mode 100644 index 0000000000..3adb6ae99f --- /dev/null +++ b/src/gallium/drivers/cell/spu/spu_funcs.h @@ -0,0 +1,35 @@ +/************************************************************************** + * + * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS + * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. + * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR + * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ + +#ifndef SPU_FUNCS_H +#define SPU_FUNCS_H + +extern void +return_function_info(void); + +#endif + diff --git a/src/gallium/drivers/cell/spu/spu_main.c b/src/gallium/drivers/cell/spu/spu_main.c index 78260c4259..97c86d194d 100644 --- a/src/gallium/drivers/cell/spu/spu_main.c +++ b/src/gallium/drivers/cell/spu/spu_main.c @@ -32,16 +32,15 @@ #include <stdio.h> #include <libmisc.h> +#include "pipe/p_defines.h" + +#include "spu_funcs.h" +#include "spu_command.h" #include "spu_main.h" -#include "spu_render.h" #include "spu_per_fragment_op.h" #include "spu_texture.h" -#include "spu_tile.h" //#include "spu_test.h" -#include "spu_vertex_shader.h" -#include "spu_dcache.h" #include "cell/common.h" -#include "pipe/p_defines.h" /* @@ -50,600 +49,8 @@ helpful headers: /opt/cell/sdk/usr/include/libmisc.h */ -boolean Debug = FALSE; - struct spu_global spu; -struct spu_vs_context draw; - - -/** - * Buffers containing dynamically generated SPU code: - */ -static unsigned char attribute_fetch_code_buffer[136 * PIPE_MAX_ATTRIBS] - ALIGN16_ATTRIB; - - - -/** - * Tell the PPU that this SPU has finished copying a buffer to - * local store and that it may be reused by the PPU. - * This is done by writting a 16-byte batch-buffer-status block back into - * main memory (in cell_context->buffer_status[]). - */ -static void -release_buffer(uint buffer) -{ - /* Evidently, using less than a 16-byte status doesn't work reliably */ - static const uint status[4] ALIGN16_ATTRIB - = {CELL_BUFFER_STATUS_FREE, 0, 0, 0}; - - const uint index = 4 * (spu.init.id * CELL_NUM_BUFFERS + buffer); - uint *dst = spu.init.buffer_status + index; - - ASSERT(buffer < CELL_NUM_BUFFERS); - - mfc_put((void *) &status, /* src in local memory */ - (unsigned int) dst, /* dst in main memory */ - sizeof(status), /* size */ - TAG_MISC, /* tag is unimportant */ - 0, /* tid */ - 0 /* rid */); -} - - -/** - * For tiles whose status is TILE_STATUS_CLEAR, write solid-filled - * tiles back to the main framebuffer. - */ -static void -really_clear_tiles(uint surfaceIndex) -{ - const uint num_tiles = spu.fb.width_tiles * spu.fb.height_tiles; - uint i; - - if (surfaceIndex == 0) { - clear_c_tile(&spu.ctile); - - for (i = spu.init.id; i < num_tiles; i += spu.init.num_spus) { - uint tx = i % spu.fb.width_tiles; - uint ty = i / spu.fb.width_tiles; - if (spu.ctile_status[ty][tx] == TILE_STATUS_CLEAR) { - put_tile(tx, ty, &spu.ctile, TAG_SURFACE_CLEAR, 0); - } - } - } - else { - clear_z_tile(&spu.ztile); - - for (i = spu.init.id; i < num_tiles; i += spu.init.num_spus) { - uint tx = i % spu.fb.width_tiles; - uint ty = i / spu.fb.width_tiles; - if (spu.ztile_status[ty][tx] == TILE_STATUS_CLEAR) - put_tile(tx, ty, &spu.ctile, TAG_SURFACE_CLEAR, 1); - } - } - -#if 0 - wait_on_mask(1 << TAG_SURFACE_CLEAR); -#endif -} - - -static void -cmd_clear_surface(const struct cell_command_clear_surface *clear) -{ - if (Debug) - printf("SPU %u: CLEAR SURF %u to 0x%08x\n", spu.init.id, - clear->surface, clear->value); - - if (clear->surface == 0) { - spu.fb.color_clear_value = clear->value; - if (spu.init.debug_flags & CELL_DEBUG_CHECKER) { - uint x = (spu.init.id << 4) | (spu.init.id << 12) | - (spu.init.id << 20) | (spu.init.id << 28); - spu.fb.color_clear_value ^= x; - } - } - else { - spu.fb.depth_clear_value = clear->value; - } - -#define CLEAR_OPT 1 -#if CLEAR_OPT - - /* Simply set all tiles' status to CLEAR. - * When we actually begin rendering into a tile, we'll initialize it to - * the clear value. If any tiles go untouched during the frame, - * really_clear_tiles() will set them to the clear value. - */ - if (clear->surface == 0) { - memset(spu.ctile_status, TILE_STATUS_CLEAR, sizeof(spu.ctile_status)); - } - else { - memset(spu.ztile_status, TILE_STATUS_CLEAR, sizeof(spu.ztile_status)); - } - -#else - - /* - * This path clears the whole framebuffer to the clear color right now. - */ - - /* - printf("SPU: %s num=%d w=%d h=%d\n", - __FUNCTION__, num_tiles, spu.fb.width_tiles, spu.fb.height_tiles); - */ - - /* init a single tile to the clear value */ - if (clear->surface == 0) { - clear_c_tile(&spu.ctile); - } - else { - clear_z_tile(&spu.ztile); - } - - /* walk over my tiles, writing the 'clear' tile's data */ - { - const uint num_tiles = spu.fb.width_tiles * spu.fb.height_tiles; - uint i; - for (i = spu.init.id; i < num_tiles; i += spu.init.num_spus) { - uint tx = i % spu.fb.width_tiles; - uint ty = i / spu.fb.width_tiles; - if (clear->surface == 0) - put_tile(tx, ty, &spu.ctile, TAG_SURFACE_CLEAR, 0); - else - put_tile(tx, ty, &spu.ztile, TAG_SURFACE_CLEAR, 1); - } - } - - if (spu.init.debug_flags & CELL_DEBUG_SYNC) { - wait_on_mask(1 << TAG_SURFACE_CLEAR); - } - -#endif /* CLEAR_OPT */ - - if (Debug) - printf("SPU %u: CLEAR SURF done\n", spu.init.id); -} - - -static void -cmd_release_verts(const struct cell_command_release_verts *release) -{ - if (Debug) - printf("SPU %u: RELEASE VERTS %u\n", - spu.init.id, release->vertex_buf); - ASSERT(release->vertex_buf != ~0U); - release_buffer(release->vertex_buf); -} - - -/** - * Process a CELL_CMD_STATE_FRAGMENT_OPS command. - * This involves installing new fragment ops SPU code. - * If this function is never called, we'll use a regular C fallback function - * for fragment processing. - */ -static void -cmd_state_fragment_ops(const struct cell_command_fragment_ops *fops) -{ - if (Debug) - printf("SPU %u: CMD_STATE_FRAGMENT_OPS\n", spu.init.id); - /* Copy SPU code from batch buffer to spu buffer */ - memcpy(spu.fragment_ops_code, fops->code, SPU_MAX_FRAGMENT_OPS_INSTS * 4); - /* Copy state info (for fallback case only) */ - memcpy(&spu.depth_stencil_alpha, &fops->dsa, sizeof(fops->dsa)); - memcpy(&spu.blend, &fops->blend, sizeof(fops->blend)); - - /* Point function pointer at new code */ - spu.fragment_ops = (spu_fragment_ops_func) spu.fragment_ops_code; - - spu.read_depth = spu.depth_stencil_alpha.depth.enabled; - spu.read_stencil = spu.depth_stencil_alpha.stencil[0].enabled; -} - - -static void -cmd_state_fragment_program(const struct cell_command_fragment_program *fp) -{ - if (Debug) - printf("SPU %u: CMD_STATE_FRAGMENT_PROGRAM\n", spu.init.id); - /* Copy SPU code from batch buffer to spu buffer */ - memcpy(spu.fragment_program_code, fp->code, - SPU_MAX_FRAGMENT_PROGRAM_INSTS * 4); -#if 01 - /* Point function pointer at new code */ - spu.fragment_program = (spu_fragment_program_func)spu.fragment_program_code; -#endif -} - - -static void -cmd_state_framebuffer(const struct cell_command_framebuffer *cmd) -{ - if (Debug) - printf("SPU %u: FRAMEBUFFER: %d x %d at %p, cformat 0x%x zformat 0x%x\n", - spu.init.id, - cmd->width, - cmd->height, - cmd->color_start, - cmd->color_format, - cmd->depth_format); - - ASSERT_ALIGN16(cmd->color_start); - ASSERT_ALIGN16(cmd->depth_start); - - spu.fb.color_start = cmd->color_start; - spu.fb.depth_start = cmd->depth_start; - spu.fb.color_format = cmd->color_format; - spu.fb.depth_format = cmd->depth_format; - spu.fb.width = cmd->width; - spu.fb.height = cmd->height; - spu.fb.width_tiles = (spu.fb.width + TILE_SIZE - 1) / TILE_SIZE; - spu.fb.height_tiles = (spu.fb.height + TILE_SIZE - 1) / TILE_SIZE; - - switch (spu.fb.depth_format) { - case PIPE_FORMAT_Z32_UNORM: - spu.fb.zsize = 4; - spu.fb.zscale = (float) 0xffffffffu; - break; - case PIPE_FORMAT_Z24S8_UNORM: - case PIPE_FORMAT_S8Z24_UNORM: - case PIPE_FORMAT_Z24X8_UNORM: - case PIPE_FORMAT_X8Z24_UNORM: - spu.fb.zsize = 4; - spu.fb.zscale = (float) 0x00ffffffu; - break; - case PIPE_FORMAT_Z16_UNORM: - spu.fb.zsize = 2; - spu.fb.zscale = (float) 0xffffu; - break; - default: - spu.fb.zsize = 0; - break; - } -} - - -static void -cmd_state_sampler(const struct cell_command_sampler *sampler) -{ - if (Debug) - printf("SPU %u: SAMPLER [%u]\n", - spu.init.id, sampler->unit); - - spu.sampler[sampler->unit] = sampler->state; - if (spu.sampler[sampler->unit].min_img_filter == PIPE_TEX_FILTER_LINEAR) - spu.sample_texture[sampler->unit] = sample_texture_bilinear; - else - spu.sample_texture[sampler->unit] = sample_texture_nearest; -} - - -static void -cmd_state_texture(const struct cell_command_texture *texture) -{ - const uint unit = texture->unit; - const uint width = texture->width; - const uint height = texture->height; - - if (Debug) { - printf("SPU %u: TEXTURE [%u] at %p size %u x %u\n", spu.init.id, - texture->unit, texture->start, - texture->width, texture->height); - } - - spu.texture[unit].start = texture->start; - spu.texture[unit].width = width; - spu.texture[unit].height = height; - - spu.texture[unit].tiles_per_row = width / TILE_SIZE; - - spu.texture[unit].tex_size = (vector float) { width, height, 0.0, 0.0}; - spu.texture[unit].tex_size_mask = (vector unsigned int) - { width - 1, height - 1, 0, 0 }; - spu.texture[unit].tex_size_x_mask = spu_splats(width - 1); - spu.texture[unit].tex_size_y_mask = spu_splats(height - 1); -} - - -static void -cmd_state_vertex_info(const struct vertex_info *vinfo) -{ - if (Debug) { - printf("SPU %u: VERTEX_INFO num_attribs=%u\n", spu.init.id, - vinfo->num_attribs); - } - ASSERT(vinfo->num_attribs >= 1); - ASSERT(vinfo->num_attribs <= 8); - memcpy(&spu.vertex_info, vinfo, sizeof(*vinfo)); -} - - -static void -cmd_state_vs_array_info(const struct cell_array_info *vs_info) -{ - const unsigned attr = vs_info->attr; - - ASSERT(attr < PIPE_MAX_ATTRIBS); - draw.vertex_fetch.src_ptr[attr] = vs_info->base; - draw.vertex_fetch.pitch[attr] = vs_info->pitch; - draw.vertex_fetch.size[attr] = vs_info->size; - draw.vertex_fetch.code_offset[attr] = vs_info->function_offset; - draw.vertex_fetch.dirty = 1; -} - - -static void -cmd_state_attrib_fetch(const struct cell_attribute_fetch_code *code) -{ - mfc_get(attribute_fetch_code_buffer, - (unsigned int) code->base, /* src */ - code->size, - TAG_BATCH_BUFFER, - 0, /* tid */ - 0 /* rid */); - wait_on_mask(1 << TAG_BATCH_BUFFER); - - draw.vertex_fetch.code = attribute_fetch_code_buffer; -} - - -static void -cmd_finish(void) -{ - if (Debug) - printf("SPU %u: FINISH\n", spu.init.id); - really_clear_tiles(0); - /* wait for all outstanding DMAs to finish */ - mfc_write_tag_mask(~0); - mfc_read_tag_status_all(); - /* send mbox message to PPU */ - spu_write_out_mbox(CELL_CMD_FINISH); -} - - -/** - * Execute a batch of commands which was sent to us by the PPU. - * See the cell_emit_state.c code to see where the commands come from. - * - * The opcode param encodes the location of the buffer and its size. - */ -static void -cmd_batch(uint opcode) -{ - const uint buf = (opcode >> 8) & 0xff; - uint size = (opcode >> 16); - uint64_t buffer[CELL_BUFFER_SIZE / 8] ALIGN16_ATTRIB; - const unsigned usize = size / sizeof(buffer[0]); - uint pos; - - if (Debug) - printf("SPU %u: BATCH buffer %u, len %u, from %p\n", - spu.init.id, buf, size, spu.init.buffers[buf]); - - ASSERT((opcode & CELL_CMD_OPCODE_MASK) == CELL_CMD_BATCH); - - ASSERT_ALIGN16(spu.init.buffers[buf]); - - size = ROUNDUP16(size); - - ASSERT_ALIGN16(spu.init.buffers[buf]); - - mfc_get(buffer, /* dest */ - (unsigned int) spu.init.buffers[buf], /* src */ - size, - TAG_BATCH_BUFFER, - 0, /* tid */ - 0 /* rid */); - wait_on_mask(1 << TAG_BATCH_BUFFER); - - /* Tell PPU we're done copying the buffer to local store */ - if (Debug) - printf("SPU %u: release batch buf %u\n", spu.init.id, buf); - release_buffer(buf); - - /* - * Loop over commands in the batch buffer - */ - for (pos = 0; pos < usize; /* no incr */) { - switch (buffer[pos]) { - /* - * rendering commands - */ - case CELL_CMD_CLEAR_SURFACE: - { - struct cell_command_clear_surface *clr - = (struct cell_command_clear_surface *) &buffer[pos]; - cmd_clear_surface(clr); - pos += sizeof(*clr) / 8; - } - break; - case CELL_CMD_RENDER: - { - struct cell_command_render *render - = (struct cell_command_render *) &buffer[pos]; - uint pos_incr; - cmd_render(render, &pos_incr); - pos += pos_incr; - } - break; - /* - * state-update commands - */ - case CELL_CMD_STATE_FRAMEBUFFER: - { - struct cell_command_framebuffer *fb - = (struct cell_command_framebuffer *) &buffer[pos]; - cmd_state_framebuffer(fb); - pos += sizeof(*fb) / 8; - } - break; - case CELL_CMD_STATE_FRAGMENT_OPS: - { - struct cell_command_fragment_ops *fops - = (struct cell_command_fragment_ops *) &buffer[pos]; - cmd_state_fragment_ops(fops); - pos += sizeof(*fops) / 8; - } - break; - case CELL_CMD_STATE_FRAGMENT_PROGRAM: - { - struct cell_command_fragment_program *fp - = (struct cell_command_fragment_program *) &buffer[pos]; - cmd_state_fragment_program(fp); - pos += sizeof(*fp) / 8; - } - break; - case CELL_CMD_STATE_SAMPLER: - { - struct cell_command_sampler *sampler - = (struct cell_command_sampler *) &buffer[pos]; - cmd_state_sampler(sampler); - pos += sizeof(*sampler) / 8; - } - break; - case CELL_CMD_STATE_TEXTURE: - { - struct cell_command_texture *texture - = (struct cell_command_texture *) &buffer[pos]; - cmd_state_texture(texture); - pos += sizeof(*texture) / 8; - } - break; - case CELL_CMD_STATE_VERTEX_INFO: - cmd_state_vertex_info((struct vertex_info *) &buffer[pos+1]); - pos += (1 + ROUNDUP8(sizeof(struct vertex_info)) / 8); - break; - case CELL_CMD_STATE_VIEWPORT: - (void) memcpy(& draw.viewport, &buffer[pos+1], - sizeof(struct pipe_viewport_state)); - pos += (1 + ROUNDUP8(sizeof(struct pipe_viewport_state)) / 8); - break; - case CELL_CMD_STATE_UNIFORMS: - draw.constants = (const float (*)[4]) (uintptr_t) buffer[pos + 1]; - pos += 2; - break; - case CELL_CMD_STATE_VS_ARRAY_INFO: - cmd_state_vs_array_info((struct cell_array_info *) &buffer[pos+1]); - pos += (1 + ROUNDUP8(sizeof(struct cell_array_info)) / 8); - break; - case CELL_CMD_STATE_BIND_VS: -#if 0 - spu_bind_vertex_shader(&draw, - (struct cell_shader_info *) &buffer[pos+1]); -#endif - pos += (1 + ROUNDUP8(sizeof(struct cell_shader_info)) / 8); - break; - case CELL_CMD_STATE_ATTRIB_FETCH: - cmd_state_attrib_fetch((struct cell_attribute_fetch_code *) - &buffer[pos+1]); - pos += (1 + ROUNDUP8(sizeof(struct cell_attribute_fetch_code)) / 8); - break; - /* - * misc commands - */ - case CELL_CMD_FINISH: - cmd_finish(); - pos += 1; - break; - case CELL_CMD_RELEASE_VERTS: - { - struct cell_command_release_verts *release - = (struct cell_command_release_verts *) &buffer[pos]; - cmd_release_verts(release); - pos += sizeof(*release) / 8; - } - break; - case CELL_CMD_FLUSH_BUFFER_RANGE: { - struct cell_buffer_range *br = (struct cell_buffer_range *) - &buffer[pos+1]; - - spu_dcache_mark_dirty((unsigned) br->base, br->size); - pos += (1 + ROUNDUP8(sizeof(struct cell_buffer_range)) / 8); - break; - } - default: - printf("SPU %u: bad opcode: 0x%llx\n", spu.init.id, buffer[pos]); - ASSERT(0); - break; - } - } - - if (Debug) - printf("SPU %u: BATCH complete\n", spu.init.id); -} - - -/** - * Temporary/simple main loop for SPEs: Get a command, execute it, repeat. - */ -static void -main_loop(void) -{ - struct cell_command cmd; - int exitFlag = 0; - - if (Debug) - printf("SPU %u: Enter main loop\n", spu.init.id); - - ASSERT((sizeof(struct cell_command) & 0xf) == 0); - ASSERT_ALIGN16(&cmd); - - while (!exitFlag) { - unsigned opcode; - int tag = 0; - - if (Debug) - printf("SPU %u: Wait for cmd...\n", spu.init.id); - - /* read/wait from mailbox */ - opcode = (unsigned int) spu_read_in_mbox(); - - if (Debug) - printf("SPU %u: got cmd 0x%x\n", spu.init.id, opcode); - - /* command payload */ - mfc_get(&cmd, /* dest */ - (unsigned int) spu.init.cmd, /* src */ - sizeof(struct cell_command), /* bytes */ - tag, - 0, /* tid */ - 0 /* rid */); - wait_on_mask( 1 << tag ); - - /* - * NOTE: most commands should be contained in a batch buffer - */ - - switch (opcode & CELL_CMD_OPCODE_MASK) { - case CELL_CMD_EXIT: - if (Debug) - printf("SPU %u: EXIT\n", spu.init.id); - exitFlag = 1; - break; - case CELL_CMD_VS_EXECUTE: -#if 0 - spu_execute_vertex_shader(&draw, &cmd.vs); -#endif - break; - case CELL_CMD_BATCH: - cmd_batch(opcode); - break; - default: - printf("Bad opcode!\n"); - } - - } - - if (Debug) - printf("SPU %u: Exit main loop\n", spu.init.id); - - spu_dcache_report(); -} - - static void one_time_init(void) @@ -651,15 +58,8 @@ one_time_init(void) memset(spu.ctile_status, TILE_STATUS_DEFINED, sizeof(spu.ctile_status)); memset(spu.ztile_status, TILE_STATUS_DEFINED, sizeof(spu.ztile_status)); invalidate_tex_cache(); - - /* Install default/fallback fragment processing function. - * This will normally be overriden by a code-gen'd function. - */ - spu.fragment_ops = spu_fallback_fragment_ops; } - - /* In some versions of the SDK the SPE main takes 'unsigned long' as a * parameter. In others it takes 'unsigned long long'. Use a define to * select between the two. @@ -682,12 +82,16 @@ main(main_param_t speid, main_param_t argp) ASSERT(sizeof(tile_t) == TILE_SIZE * TILE_SIZE * 4); ASSERT(sizeof(struct cell_command_render) % 8 == 0); + ASSERT(sizeof(struct cell_command_fragment_ops) % 8 == 0); + ASSERT(((unsigned long) &spu.fragment_program_code) % 8 == 0); one_time_init(); + spu_command_init(); - if (Debug) - printf("SPU: main() speid=%lu\n", (unsigned long) speid); + D_PRINTF(CELL_DEBUG_CMD, "main() speid=%lu\n", (unsigned long) speid); + D_PRINTF(CELL_DEBUG_FRAGMENT_OP_FALLBACK, "using fragment op fallback\n"); + /* get initialization data */ mfc_get(&spu.init, /* dest */ (unsigned int) argp, /* src */ sizeof(struct cell_init_info), /* bytes */ @@ -696,12 +100,18 @@ main(main_param_t speid, main_param_t argp) 0 /* rid */); wait_on_mask( 1 << tag ); + if (spu.init.id == 0) { + return_function_info(); + } + #if 0 if (spu.init.id==0) - spu_test_misc(); + spu_test_misc(spu.init.id); #endif - main_loop(); + command_loop(); + + spu_command_close(); return 0; } diff --git a/src/gallium/drivers/cell/spu/spu_main.h b/src/gallium/drivers/cell/spu/spu_main.h index 2c7b625840..33767e7c51 100644 --- a/src/gallium/drivers/cell/spu/spu_main.h +++ b/src/gallium/drivers/cell/spu/spu_main.h @@ -36,9 +36,18 @@ #include "pipe/p_state.h" - -#define MAX_WIDTH 1024 -#define MAX_HEIGHT 1024 +#if DEBUG +/* These debug macros use the unusual construction ", ##__VA_ARGS__" + * which expands to the expected comma + args if variadic arguments + * are supplied, but swallows the comma if there are no variadic + * arguments (which avoids syntax errors that would otherwise occur). + */ +#define D_PRINTF(flag, format,...) \ + if (spu.init.debug_flags & (flag)) \ + printf("SPU %u: " format, spu.init.id, ##__VA_ARGS__) +#else +#define D_PRINTF(...) +#endif /** @@ -61,8 +70,11 @@ typedef union { /** Function for sampling textures */ -typedef vector float (*spu_sample_texture_func)(uint unit, - vector float texcoord); +typedef void (*spu_sample_texture_2d_func)(vector float s, + vector float t, + uint unit, uint level, uint face, + vector float colors[4]); + /** Function for performing per-fragment ops */ typedef void (*spu_fragment_ops_func)(uint x, uint y, @@ -76,9 +88,9 @@ typedef void (*spu_fragment_ops_func)(uint x, uint y, vector unsigned int mask); /** Function for running fragment program */ -typedef void (*spu_fragment_program_func)(vector float *inputs, - vector float *outputs, - vector float *constants); +typedef vector unsigned int (*spu_fragment_program_func)(vector float *inputs, + vector float *outputs, + vector float *constants); struct spu_framebuffer @@ -98,15 +110,27 @@ struct spu_framebuffer } ALIGN16_ATTRIB; -struct spu_texture +/** per-texture level info */ +struct spu_texture_level { void *start; - ushort width, height; + ushort width, height, depth; ushort tiles_per_row; - vector float tex_size; - vector unsigned int tex_size_mask; /**< == int(size - 1) */ - vector unsigned int tex_size_x_mask; /**< == int(size - 1) */ - vector unsigned int tex_size_y_mask; /**< == int(size - 1) */ + uint bytes_per_image; + /** texcoord scale factors */ + vector float scale_s, scale_t, scale_r; + /** texcoord masks (if REPEAT then size-1, else ~0) */ + vector signed int mask_s, mask_t, mask_r; + /** texcoord clamp limits */ + vector signed int max_s, max_t, max_r; +} ALIGN16_ATTRIB; + + +struct spu_texture +{ + struct spu_texture_level level[CELL_MAX_TEXTURE_LEVELS]; + uint max_level; + uint target; /**< PIPE_TEXTURE_x */ } ALIGN16_ATTRIB; @@ -124,7 +148,9 @@ struct spu_global struct spu_framebuffer fb; struct pipe_depth_stencil_alpha_state depth_stencil_alpha; struct pipe_blend_state blend; + struct pipe_blend_color blend_color; struct pipe_sampler_state sampler[PIPE_MAX_SAMPLERS]; + struct pipe_rasterizer_state rasterizer; struct spu_texture texture[PIPE_MAX_SAMPLERS]; struct vertex_info vertex_info; @@ -133,39 +159,38 @@ struct spu_global tile_t ztile ALIGN16_ATTRIB; /** Read depth/stencil tiles? */ - boolean read_depth; - boolean read_stencil; + boolean read_depth_stencil; /** Current tiles' status */ ubyte cur_ctile_status, cur_ztile_status; /** Status of all tiles in framebuffer */ - ubyte ctile_status[MAX_HEIGHT/TILE_SIZE][MAX_WIDTH/TILE_SIZE] ALIGN16_ATTRIB; - ubyte ztile_status[MAX_HEIGHT/TILE_SIZE][MAX_WIDTH/TILE_SIZE] ALIGN16_ATTRIB; + ubyte ctile_status[CELL_MAX_HEIGHT/TILE_SIZE][CELL_MAX_WIDTH/TILE_SIZE] ALIGN16_ATTRIB; + ubyte ztile_status[CELL_MAX_HEIGHT/TILE_SIZE][CELL_MAX_WIDTH/TILE_SIZE] ALIGN16_ATTRIB; - /** Current fragment ops machine code */ - uint fragment_ops_code[SPU_MAX_FRAGMENT_OPS_INSTS]; - /** Current fragment ops function */ - spu_fragment_ops_func fragment_ops; + /** Current fragment ops machine code, at 8-byte boundary */ + uint *fragment_ops_code; + uint fragment_ops_code_size; + /** Current fragment ops functions, 0 = frontfacing, 1 = backfacing */ + spu_fragment_ops_func fragment_ops[2]; - /** Current fragment program machine code */ - uint fragment_program_code[SPU_MAX_FRAGMENT_PROGRAM_INSTS]; + /** Current fragment program machine code, at 8-byte boundary */ + uint fragment_program_code[SPU_MAX_FRAGMENT_PROGRAM_INSTS] ALIGN8_ATTRIB; /** Current fragment ops function */ spu_fragment_program_func fragment_program; /** Current texture sampler function */ - spu_sample_texture_func sample_texture[CELL_MAX_SAMPLERS]; + spu_sample_texture_2d_func sample_texture_2d[CELL_MAX_SAMPLERS]; + spu_sample_texture_2d_func min_sample_texture_2d[CELL_MAX_SAMPLERS]; + spu_sample_texture_2d_func mag_sample_texture_2d[CELL_MAX_SAMPLERS]; - /** Fragment program constants (XXX preliminary/used) */ -#define MAX_CONSTANTS 32 - vector float constants[MAX_CONSTANTS]; + /** Fragment program constants */ + vector float constants[4 * CELL_MAX_CONSTANTS]; } ALIGN16_ATTRIB; extern struct spu_global spu; -extern boolean Debug; - @@ -184,7 +209,7 @@ extern boolean Debug; #define TAG_DCACHE1 21 #define TAG_DCACHE2 22 #define TAG_DCACHE3 23 - +#define TAG_FENCE 24 static INLINE void diff --git a/src/gallium/drivers/cell/spu/spu_per_fragment_op.c b/src/gallium/drivers/cell/spu/spu_per_fragment_op.c index 03dd547845..683664e8a4 100644 --- a/src/gallium/drivers/cell/spu/spu_per_fragment_op.c +++ b/src/gallium/drivers/cell/spu/spu_per_fragment_op.c @@ -40,6 +40,24 @@ #define LINEAR_QUAD_LAYOUT 1 +static INLINE vector float +spu_min(vector float a, vector float b) +{ + vector unsigned int m; + m = spu_cmpgt(a, b); /* m = a > b ? ~0 : 0 */ + return spu_sel(a, b, m); +} + + +static INLINE vector float +spu_max(vector float a, vector float b) +{ + vector unsigned int m; + m = spu_cmpgt(a, b); /* m = a > b ? ~0 : 0 */ + return spu_sel(b, a, m); +} + + /** * Called by rasterizer for each quad after the shader has run. Do * all the per-fragment operations including alpha test, z test, @@ -60,9 +78,12 @@ spu_fallback_fragment_ops(uint x, uint y, vector unsigned int mask) { vector float frag_aos[4]; - unsigned int c0, c1, c2, c3; + unsigned int fbc0, fbc1, fbc2, fbc3 ; /* framebuffer/tile colors */ + unsigned int fragc0, fragc1, fragc2, fragc3; /* fragment colors */ - /* do alpha test */ + /* + * Do alpha test + */ if (spu.depth_stencil_alpha.alpha.enabled) { vector float ref = spu_splats(spu.depth_stencil_alpha.alpha.ref); vector unsigned int amask; @@ -102,7 +123,10 @@ spu_fallback_fragment_ops(uint x, uint y, mask = spu_and(mask, amask); } - /* Z and/or stencil testing... */ + + /* + * Z and/or stencil testing... + */ if (spu.depth_stencil_alpha.depth.enabled || spu.depth_stencil_alpha.stencil[0].enabled) { @@ -178,6 +202,32 @@ spu_fallback_fragment_ops(uint x, uint y, } } + + /* + * If we'll need the current framebuffer/tile colors for blending + * or logicop or colormask, fetch them now. + */ + if (spu.blend.blend_enable || + spu.blend.logicop_enable || + spu.blend.colormask != 0xf) { + +#if LINEAR_QUAD_LAYOUT /* See comments/diagram below */ + fbc0 = colorTile->ui[y][x*2+0]; + fbc1 = colorTile->ui[y][x*2+1]; + fbc2 = colorTile->ui[y][x*2+2]; + fbc3 = colorTile->ui[y][x*2+3]; +#else + fbc0 = colorTile->ui[y+0][x+0]; + fbc1 = colorTile->ui[y+0][x+1]; + fbc2 = colorTile->ui[y+1][x+0]; + fbc3 = colorTile->ui[y+1][x+1]; +#endif + } + + + /* + * Do blending + */ if (spu.blend.blend_enable) { /* blending terms, misc regs */ vector float term1r, term1g, term1b, term1a; @@ -186,43 +236,30 @@ spu_fallback_fragment_ops(uint x, uint y, vector float fbRGBA[4]; /* current framebuffer colors */ - /* get colors from framebuffer/tile */ + /* convert framebuffer colors from packed int to vector float */ { - vector float fc[4]; - uint c0, c1, c2, c3; - -#if LINEAR_QUAD_LAYOUT /* See comments/diagram below */ - c0 = colorTile->ui[y][x*2+0]; - c1 = colorTile->ui[y][x*2+1]; - c2 = colorTile->ui[y][x*2+2]; - c3 = colorTile->ui[y][x*2+3]; -#else - c0 = colorTile->ui[y+0][x+0]; - c1 = colorTile->ui[y+0][x+1]; - c2 = colorTile->ui[y+1][x+0]; - c3 = colorTile->ui[y+1][x+1]; -#endif + vector float temp[4]; /* float colors in AOS form */ switch (spu.fb.color_format) { case PIPE_FORMAT_B8G8R8A8_UNORM: - fc[0] = spu_unpack_B8G8R8A8(c0); - fc[1] = spu_unpack_B8G8R8A8(c1); - fc[2] = spu_unpack_B8G8R8A8(c2); - fc[3] = spu_unpack_B8G8R8A8(c3); + temp[0] = spu_unpack_B8G8R8A8(fbc0); + temp[1] = spu_unpack_B8G8R8A8(fbc1); + temp[2] = spu_unpack_B8G8R8A8(fbc2); + temp[3] = spu_unpack_B8G8R8A8(fbc3); break; case PIPE_FORMAT_A8R8G8B8_UNORM: - fc[0] = spu_unpack_A8R8G8B8(c0); - fc[1] = spu_unpack_A8R8G8B8(c1); - fc[2] = spu_unpack_A8R8G8B8(c2); - fc[3] = spu_unpack_A8R8G8B8(c3); + temp[0] = spu_unpack_A8R8G8B8(fbc0); + temp[1] = spu_unpack_A8R8G8B8(fbc1); + temp[2] = spu_unpack_A8R8G8B8(fbc2); + temp[3] = spu_unpack_A8R8G8B8(fbc3); break; default: ASSERT(0); } - _transpose_matrix4x4(fbRGBA, fc); + _transpose_matrix4x4(fbRGBA, temp); /* fbRGBA = transpose(temp) */ } /* - * Compute Src RGB terms + * Compute Src RGB terms (fragment color * factor) */ switch (spu.blend.rgb_src_factor) { case PIPE_BLENDFACTOR_ONE: @@ -245,13 +282,33 @@ spu_fallback_fragment_ops(uint x, uint y, term1g = spu_mul(fragG, fragA); term1b = spu_mul(fragB, fragA); break; + case PIPE_BLENDFACTOR_DST_COLOR: + term1r = spu_mul(fragR, fbRGBA[0]); + term1g = spu_mul(fragG, fbRGBA[1]); + term1b = spu_mul(fragB, fbRGBA[1]); + break; + case PIPE_BLENDFACTOR_DST_ALPHA: + term1r = spu_mul(fragR, fbRGBA[3]); + term1g = spu_mul(fragG, fbRGBA[3]); + term1b = spu_mul(fragB, fbRGBA[3]); + break; + case PIPE_BLENDFACTOR_CONST_COLOR: + term1r = spu_mul(fragR, spu_splats(spu.blend_color.color[0])); + term1g = spu_mul(fragG, spu_splats(spu.blend_color.color[1])); + term1b = spu_mul(fragB, spu_splats(spu.blend_color.color[2])); + break; + case PIPE_BLENDFACTOR_CONST_ALPHA: + term1r = spu_mul(fragR, spu_splats(spu.blend_color.color[3])); + term1g = spu_mul(fragG, spu_splats(spu.blend_color.color[3])); + term1b = spu_mul(fragB, spu_splats(spu.blend_color.color[3])); + break; /* XXX more cases */ default: ASSERT(0); } /* - * Compute Src Alpha term + * Compute Src Alpha term (fragment alpha * factor) */ switch (spu.blend.alpha_src_factor) { case PIPE_BLENDFACTOR_ONE: @@ -263,19 +320,29 @@ spu_fallback_fragment_ops(uint x, uint y, case PIPE_BLENDFACTOR_SRC_ALPHA: term1a = spu_mul(fragA, fragA); break; + case PIPE_BLENDFACTOR_DST_COLOR: + /* fall-through */ + case PIPE_BLENDFACTOR_DST_ALPHA: + term1a = spu_mul(fragA, fbRGBA[3]); + break; + case PIPE_BLENDFACTOR_CONST_COLOR: + /* fall-through */ + case PIPE_BLENDFACTOR_CONST_ALPHA: + term1a = spu_mul(fragR, spu_splats(spu.blend_color.color[3])); + break; /* XXX more cases */ default: ASSERT(0); } /* - * Compute Dest RGB terms + * Compute Dest RGB terms (framebuffer color * factor) */ switch (spu.blend.rgb_dst_factor) { case PIPE_BLENDFACTOR_ONE: - term2r = fragR; - term2g = fragG; - term2b = fragB; + term2r = fbRGBA[0]; + term2g = fbRGBA[1]; + term2b = fbRGBA[2]; break; case PIPE_BLENDFACTOR_ZERO: term2r = @@ -299,17 +366,37 @@ spu_fallback_fragment_ops(uint x, uint y, term2g = spu_mul(fbRGBA[1], tmp); term2b = spu_mul(fbRGBA[2], tmp); break; - /* XXX more cases */ + case PIPE_BLENDFACTOR_DST_COLOR: + term2r = spu_mul(fbRGBA[0], fbRGBA[0]); + term2g = spu_mul(fbRGBA[1], fbRGBA[1]); + term2b = spu_mul(fbRGBA[2], fbRGBA[2]); + break; + case PIPE_BLENDFACTOR_DST_ALPHA: + term2r = spu_mul(fbRGBA[0], fbRGBA[3]); + term2g = spu_mul(fbRGBA[1], fbRGBA[3]); + term2b = spu_mul(fbRGBA[2], fbRGBA[3]); + break; + case PIPE_BLENDFACTOR_CONST_COLOR: + term2r = spu_mul(fbRGBA[0], spu_splats(spu.blend_color.color[0])); + term2g = spu_mul(fbRGBA[1], spu_splats(spu.blend_color.color[1])); + term2b = spu_mul(fbRGBA[2], spu_splats(spu.blend_color.color[2])); + break; + case PIPE_BLENDFACTOR_CONST_ALPHA: + term2r = spu_mul(fbRGBA[0], spu_splats(spu.blend_color.color[3])); + term2g = spu_mul(fbRGBA[1], spu_splats(spu.blend_color.color[3])); + term2b = spu_mul(fbRGBA[2], spu_splats(spu.blend_color.color[3])); + break; + /* XXX more cases */ default: ASSERT(0); } /* - * Compute Dest Alpha term + * Compute Dest Alpha term (framebuffer alpha * factor) */ switch (spu.blend.alpha_dst_factor) { case PIPE_BLENDFACTOR_ONE: - term2a = fragA; + term2a = fbRGBA[3]; break; case PIPE_BLENDFACTOR_SRC_COLOR: term2a = spu_splats(0.0f); @@ -322,6 +409,16 @@ spu_fallback_fragment_ops(uint x, uint y, tmp = spu_sub(one, fragA); term2a = spu_mul(fbRGBA[3], tmp); break; + case PIPE_BLENDFACTOR_DST_COLOR: + /* fall-through */ + case PIPE_BLENDFACTOR_DST_ALPHA: + term2a = spu_mul(fbRGBA[3], fbRGBA[3]); + break; + case PIPE_BLENDFACTOR_CONST_COLOR: + /* fall-through */ + case PIPE_BLENDFACTOR_CONST_ALPHA: + term2a = spu_mul(fbRGBA[3], spu_splats(spu.blend_color.color[3])); + break; /* XXX more cases */ default: ASSERT(0); @@ -341,7 +438,21 @@ spu_fallback_fragment_ops(uint x, uint y, fragG = spu_sub(term1g, term2g); fragB = spu_sub(term1b, term2b); break; - /* XXX more cases */ + case PIPE_BLEND_REVERSE_SUBTRACT: + fragR = spu_sub(term2r, term1r); + fragG = spu_sub(term2g, term1g); + fragB = spu_sub(term2b, term1b); + break; + case PIPE_BLEND_MIN: + fragR = spu_min(term1r, term2r); + fragG = spu_min(term1g, term2g); + fragB = spu_min(term1b, term2b); + break; + case PIPE_BLEND_MAX: + fragR = spu_max(term1r, term2r); + fragG = spu_max(term1g, term2g); + fragB = spu_max(term1b, term2b); + break; default: ASSERT(0); } @@ -356,7 +467,15 @@ spu_fallback_fragment_ops(uint x, uint y, case PIPE_BLEND_SUBTRACT: fragA = spu_sub(term1a, term2a); break; - /* XXX more cases */ + case PIPE_BLEND_REVERSE_SUBTRACT: + fragA = spu_sub(term2a, term1a); + break; + case PIPE_BLEND_MIN: + fragA = spu_min(term1a, term2a); + break; + case PIPE_BLEND_MAX: + fragA = spu_max(term1a, term2a); + break; default: ASSERT(0); } @@ -384,21 +503,20 @@ spu_fallback_fragment_ops(uint x, uint y, #endif /* - * Pack float colors into 32-bit RGBA words. + * Pack fragment float colors into 32-bit RGBA words. */ switch (spu.fb.color_format) { case PIPE_FORMAT_A8R8G8B8_UNORM: - c0 = spu_pack_A8R8G8B8(frag_aos[0]); - c1 = spu_pack_A8R8G8B8(frag_aos[1]); - c2 = spu_pack_A8R8G8B8(frag_aos[2]); - c3 = spu_pack_A8R8G8B8(frag_aos[3]); + fragc0 = spu_pack_A8R8G8B8(frag_aos[0]); + fragc1 = spu_pack_A8R8G8B8(frag_aos[1]); + fragc2 = spu_pack_A8R8G8B8(frag_aos[2]); + fragc3 = spu_pack_A8R8G8B8(frag_aos[3]); break; - case PIPE_FORMAT_B8G8R8A8_UNORM: - c0 = spu_pack_B8G8R8A8(frag_aos[0]); - c1 = spu_pack_B8G8R8A8(frag_aos[1]); - c2 = spu_pack_B8G8R8A8(frag_aos[2]); - c3 = spu_pack_B8G8R8A8(frag_aos[3]); + fragc0 = spu_pack_B8G8R8A8(frag_aos[0]); + fragc1 = spu_pack_B8G8R8A8(frag_aos[1]); + fragc2 = spu_pack_B8G8R8A8(frag_aos[2]); + fragc3 = spu_pack_B8G8R8A8(frag_aos[3]); break; default: fprintf(stderr, "SPU: Bad pixel format in spu_default_fragment_ops\n"); @@ -407,20 +525,57 @@ spu_fallback_fragment_ops(uint x, uint y, /* - * Color masking + * Do color masking */ if (spu.blend.colormask != 0xf) { - /* XXX to do */ - /* apply color mask to 32-bit packed colors */ + uint cmask = 0x0; /* each byte corresponds to a color channel */ + + /* Form bitmask depending on color buffer format and colormask bits */ + switch (spu.fb.color_format) { + case PIPE_FORMAT_A8R8G8B8_UNORM: + if (spu.blend.colormask & PIPE_MASK_R) + cmask |= 0x00ff0000; /* red */ + if (spu.blend.colormask & PIPE_MASK_G) + cmask |= 0x0000ff00; /* green */ + if (spu.blend.colormask & PIPE_MASK_B) + cmask |= 0x000000ff; /* blue */ + if (spu.blend.colormask & PIPE_MASK_A) + cmask |= 0xff000000; /* alpha */ + break; + case PIPE_FORMAT_B8G8R8A8_UNORM: + if (spu.blend.colormask & PIPE_MASK_R) + cmask |= 0x0000ff00; /* red */ + if (spu.blend.colormask & PIPE_MASK_G) + cmask |= 0x00ff0000; /* green */ + if (spu.blend.colormask & PIPE_MASK_B) + cmask |= 0xff000000; /* blue */ + if (spu.blend.colormask & PIPE_MASK_A) + cmask |= 0x000000ff; /* alpha */ + break; + default: + ASSERT(0); + } + + /* + * Apply color mask to the 32-bit packed colors. + * if (cmask[i]) + * frag color[i] = frag color[i]; + * else + * frag color[i] = framebuffer color[i]; + */ + fragc0 = (fragc0 & cmask) | (fbc0 & ~cmask); + fragc1 = (fragc1 & cmask) | (fbc1 & ~cmask); + fragc2 = (fragc2 & cmask) | (fbc2 & ~cmask); + fragc3 = (fragc3 & cmask) | (fbc3 & ~cmask); } /* - * Logic Ops + * Do logic ops */ if (spu.blend.logicop_enable) { /* XXX to do */ - /* apply logicop to 32-bit packed colors */ + /* apply logicop to 32-bit packed colors (fragcx and fbcx) */ } @@ -431,45 +586,46 @@ spu_fallback_fragment_ops(uint x, uint y, spu.cur_ctile_status = TILE_STATUS_DIRTY; } else { + /* write no fragments */ return; } /* - * Write new quad colors to the framebuffer/tile. + * Write new fragment/quad colors to the framebuffer/tile. * Only write pixels where the corresponding mask word is set. */ #if LINEAR_QUAD_LAYOUT /* * Quad layout: * +--+--+--+--+ - * |p0|p1|p2|p3| + * |p0|p1|p2|p3|... * +--+--+--+--+ */ if (spu_extract(mask, 0)) - colorTile->ui[y][x*2] = c0; + colorTile->ui[y][x*2] = fragc0; if (spu_extract(mask, 1)) - colorTile->ui[y][x*2+1] = c1; + colorTile->ui[y][x*2+1] = fragc1; if (spu_extract(mask, 2)) - colorTile->ui[y][x*2+2] = c2; + colorTile->ui[y][x*2+2] = fragc2; if (spu_extract(mask, 3)) - colorTile->ui[y][x*2+3] = c3; + colorTile->ui[y][x*2+3] = fragc3; #else /* * Quad layout: * +--+--+ - * |p0|p1| + * |p0|p1|... * +--+--+ - * |p2|p3| + * |p2|p3|... * +--+--+ */ if (spu_extract(mask, 0)) - colorTile->ui[y+0][x+0] = c0; + colorTile->ui[y+0][x+0] = fragc0; if (spu_extract(mask, 1)) - colorTile->ui[y+0][x+1] = c1; + colorTile->ui[y+0][x+1] = fragc1; if (spu_extract(mask, 2)) - colorTile->ui[y+1][x+0] = c2; + colorTile->ui[y+1][x+0] = fragc2; if (spu_extract(mask, 3)) - colorTile->ui[y+1][x+1] = c3; + colorTile->ui[y+1][x+1] = fragc3; #endif } diff --git a/src/gallium/drivers/cell/spu/spu_render.c b/src/gallium/drivers/cell/spu/spu_render.c index 305dc98881..7c225e2f27 100644 --- a/src/gallium/drivers/cell/spu/spu_render.c +++ b/src/gallium/drivers/cell/spu/spu_render.c @@ -98,7 +98,7 @@ my_tile(uint tx, uint ty) static INLINE void get_cz_tiles(uint tx, uint ty) { - if (spu.read_depth) { + if (spu.read_depth_stencil) { if (spu.cur_ztile_status != TILE_STATUS_CLEAR) { //printf("SPU %u: getting Z tile %u, %u\n", spu.init.id, tx, ty); get_tile(tx, ty, &spu.ztile, TAG_READ_TILE_Z, 1); @@ -153,7 +153,7 @@ static INLINE void wait_put_cz_tiles(void) { wait_on_mask(1 << TAG_WRITE_TILE_COLOR); - if (spu.read_depth) { + if (spu.read_depth_stencil) { wait_on_mask(1 << TAG_WRITE_TILE_Z); } } @@ -175,22 +175,14 @@ cmd_render(const struct cell_command_render *render, uint *pos_incr) const ubyte *vertices; const ushort *indexes; uint i, j; + uint num_tiles; - - if (Debug) { - printf("SPU %u: RENDER prim %u, num_vert=%u num_ind=%u " - "inline_vert=%u\n", - spu.init.id, - render->prim_type, - render->num_verts, - render->num_indexes, - render->inline_verts); - - /* - printf(" bound: %g, %g .. %g, %g\n", - render->xmin, render->ymin, render->xmax, render->ymax); - */ - } + D_PRINTF(CELL_DEBUG_CMD, + "RENDER prim=%u num_vert=%u num_ind=%u inline_vert=%u\n", + render->prim_type, + render->num_verts, + render->num_indexes, + render->inline_verts); ASSERT(sizeof(*render) % 4 == 0); ASSERT(total_vertex_bytes % 16 == 0); @@ -251,6 +243,8 @@ cmd_render(const struct cell_command_render *render, uint *pos_incr) wait_on_mask(1 << TAG_SURFACE_CLEAR); /* XXX temporary */ + num_tiles = 0; + /** ** loop over tiles, rendering tris **/ @@ -264,6 +258,8 @@ cmd_render(const struct cell_command_render *render, uint *pos_incr) if (!my_tile(tx, ty)) continue; + num_tiles++; + spu.cur_ctile_status = spu.ctile_status[ty][tx]; spu.cur_ztile_status = spu.ztile_status[ty][tx]; @@ -293,9 +289,7 @@ cmd_render(const struct cell_command_render *render, uint *pos_incr) spu.ztile_status[ty][tx] = spu.cur_ztile_status; } - if (Debug) - printf("SPU %u: RENDER done\n", - spu.init.id); + D_PRINTF(CELL_DEBUG_CMD, + "RENDER done (%u tiles hit)\n", + num_tiles); } - - diff --git a/src/gallium/drivers/cell/spu/spu_texture.c b/src/gallium/drivers/cell/spu/spu_texture.c index 117b8a36f8..69784c8978 100644 --- a/src/gallium/drivers/cell/spu/spu_texture.c +++ b/src/gallium/drivers/cell/spu/spu_texture.c @@ -26,6 +26,8 @@ **************************************************************************/ +#include <math.h> + #include "pipe/p_compiler.h" #include "spu_main.h" #include "spu_texture.h" @@ -40,37 +42,19 @@ void invalidate_tex_cache(void) { - uint unit = 0; - uint bytes = 4 * spu.texture[unit].width - * spu.texture[unit].height; - - spu_dcache_mark_dirty((unsigned) spu.texture[unit].start, bytes); -} + uint lvl; + for (lvl = 0; lvl < CELL_MAX_TEXTURE_LEVELS; lvl++) { + uint unit = 0; + uint bytes = 4 * spu.texture[unit].level[lvl].width + * spu.texture[unit].level[lvl].height; + if (spu.texture[unit].target == PIPE_TEXTURE_CUBE) + bytes *= 6; + else if (spu.texture[unit].target == PIPE_TEXTURE_3D) + bytes *= spu.texture[unit].level[lvl].depth; -/** - * XXX look into getting texels for all four pixels in a quad at once. - */ -static uint -get_texel(uint unit, vec_uint4 coordinate) -{ - /* - * XXX we could do the "/ TILE_SIZE" and "% TILE_SIZE" operations as - * SIMD since X and Y are already in a SIMD register. - */ - const unsigned texture_ea = (uintptr_t) spu.texture[unit].start; - ushort x = spu_extract(coordinate, 0); - ushort y = spu_extract(coordinate, 1); - unsigned tile_offset = sizeof(tile_t) - * ((y / TILE_SIZE * spu.texture[unit].tiles_per_row) + (x / TILE_SIZE)); - ushort texel_offset = (ushort) 4 - * (ushort) (((ushort) (y % TILE_SIZE) * (ushort) TILE_SIZE) + (x % TILE_SIZE)); - vec_uint4 tmp; - - spu_dcache_fetch_unaligned((qword *) & tmp, - texture_ea + tile_offset + texel_offset, - 4); - return spu_extract(tmp, 0); + spu_dcache_mark_dirty((unsigned) spu.texture[unit].level[lvl].start, bytes); + } } @@ -88,15 +72,17 @@ get_texel(uint unit, vec_uint4 coordinate) * a time. */ static void -get_four_texels(uint unit, vec_uint4 x, vec_uint4 y, vec_uint4 *texels) +get_four_texels(const struct spu_texture_level *tlevel, uint face, + vec_int4 x, vec_int4 y, + vec_uint4 *texels) { - const unsigned texture_ea = (uintptr_t) spu.texture[unit].start; - vec_uint4 tile_x = spu_rlmask(x, -5); - vec_uint4 tile_y = spu_rlmask(y, -5); - const qword offset_x = si_andi((qword) x, 0x1f); - const qword offset_y = si_andi((qword) y, 0x1f); + unsigned texture_ea = (uintptr_t) tlevel->start; + const vec_int4 tile_x = spu_rlmask(x, -5); /* tile_x = x / 32 */ + const vec_int4 tile_y = spu_rlmask(y, -5); /* tile_y = y / 32 */ + const qword offset_x = si_andi((qword) x, 0x1f); /* offset_x = x & 0x1f */ + const qword offset_y = si_andi((qword) y, 0x1f); /* offset_y = y & 0x1f */ - const qword tiles_per_row = (qword) spu_splats(spu.texture[unit].tiles_per_row); + const qword tiles_per_row = (qword) spu_splats(tlevel->tiles_per_row); const qword tile_size = (qword) spu_splats((unsigned) sizeof(tile_t)); qword tile_offset = si_mpya((qword) tile_y, tiles_per_row, (qword) tile_x); @@ -107,6 +93,8 @@ get_four_texels(uint unit, vec_uint4 x, vec_uint4 y, vec_uint4 *texels) vec_uint4 offset = (vec_uint4) si_a(tile_offset, texel_offset); + texture_ea = texture_ea + face * tlevel->bytes_per_image; + spu_dcache_fetch_unaligned((qword *) & texels[0], texture_ea + spu_extract(offset, 0), 4); spu_dcache_fetch_unaligned((qword *) & texels[1], @@ -118,83 +106,536 @@ get_four_texels(uint unit, vec_uint4 x, vec_uint4 y, vec_uint4 *texels) } +/** clamp vec to [0, max] */ +static INLINE vector signed int +spu_clamp(vector signed int vec, vector signed int max) +{ + static const vector signed int zero = {0,0,0,0}; + vector unsigned int c; + c = spu_cmpgt(vec, zero); /* c = vec > zero ? ~0 : 0 */ + vec = spu_sel(zero, vec, c); + c = spu_cmpgt(vec, max); /* c = vec > max ? ~0 : 0 */ + vec = spu_sel(vec, max, c); + return vec; +} + + + /** - * Get texture sample at texcoord. + * Do nearest texture sampling for four pixels. + * \param colors returned colors in SOA format (rrrr, gggg, bbbb, aaaa). */ -vector float -sample_texture_nearest(uint unit, vector float texcoord) +void +sample_texture_2d_nearest(vector float s, vector float t, + uint unit, uint level, uint face, + vector float colors[4]) { - vector float tc = spu_mul(texcoord, spu.texture[unit].tex_size); - vector unsigned int itc = spu_convtu(tc, 0); /* convert to int */ - itc = spu_and(itc, spu.texture[unit].tex_size_mask); /* mask (GL_REPEAT) */ - uint texel = get_texel(unit, itc); - return spu_unpack_A8R8G8B8(texel); + const struct spu_texture_level *tlevel = &spu.texture[unit].level[level]; + vector float ss = spu_mul(s, tlevel->scale_s); + vector float tt = spu_mul(t, tlevel->scale_t); + vector signed int is = spu_convts(ss, 0); + vector signed int it = spu_convts(tt, 0); + vec_uint4 texels[4]; + + /* PIPE_TEX_WRAP_REPEAT */ + is = spu_and(is, tlevel->mask_s); + it = spu_and(it, tlevel->mask_t); + + /* PIPE_TEX_WRAP_CLAMP */ + is = spu_clamp(is, tlevel->max_s); + it = spu_clamp(it, tlevel->max_t); + + get_four_texels(tlevel, face, is, it, texels); + + /* convert four packed ARGBA pixels to float RRRR,GGGG,BBBB,AAAA */ + spu_unpack_A8R8G8B8_transpose4(texels, colors); } -vector float -sample_texture_bilinear(uint unit, vector float texcoord) +/** + * Do bilinear texture sampling for four pixels. + * \param colors returned colors in SOA format (rrrr, gggg, bbbb, aaaa). + */ +void +sample_texture_2d_bilinear(vector float s, vector float t, + uint unit, uint level, uint face, + vector float colors[4]) { - static const vec_uint4 offset_x = {0, 0, 1, 1}; - static const vec_uint4 offset_y = {0, 1, 0, 1}; + const struct spu_texture_level *tlevel = &spu.texture[unit].level[level]; + static const vector float half = {-0.5f, -0.5f, -0.5f, -0.5f}; - vector float tc = spu_mul(texcoord, spu.texture[unit].tex_size); - tc = spu_add(tc, spu_splats(-0.5f)); /* half texel bias */ + vector float ss = spu_madd(s, tlevel->scale_s, half); + vector float tt = spu_madd(t, tlevel->scale_t, half); - /* integer texcoords S,T: */ - vec_uint4 itc = spu_convtu(tc, 0); /* convert to int */ + vector signed int is0 = spu_convts(ss, 0); + vector signed int it0 = spu_convts(tt, 0); - vec_uint4 texels[4]; - - /* setup texcoords for quad: - * +-----+-----+ - * |x0,y0|x1,y1| - * +-----+-----+ - * |x2,y2|x3,y3| - * +-----+-----+ - */ - vec_uint4 x = spu_splats(spu_extract(itc, 0)); - vec_uint4 y = spu_splats(spu_extract(itc, 1)); - x = spu_add(x, offset_x); - y = spu_add(y, offset_y); + /* is + 1, it + 1 */ + vector signed int is1 = spu_add(is0, 1); + vector signed int it1 = spu_add(it0, 1); - /* GL_REPEAT wrap mode: */ - x = spu_and(x, spu.texture[unit].tex_size_x_mask); - y = spu_and(y, spu.texture[unit].tex_size_y_mask); + /* PIPE_TEX_WRAP_REPEAT */ + is0 = spu_and(is0, tlevel->mask_s); + it0 = spu_and(it0, tlevel->mask_t); + is1 = spu_and(is1, tlevel->mask_s); + it1 = spu_and(it1, tlevel->mask_t); - get_four_texels(unit, x, y, texels); + /* PIPE_TEX_WRAP_CLAMP */ + is0 = spu_clamp(is0, tlevel->max_s); + it0 = spu_clamp(it0, tlevel->max_t); + is1 = spu_clamp(is1, tlevel->max_s); + it1 = spu_clamp(it1, tlevel->max_t); - /* integer A8R8G8B8 to float texel conversion */ - vector float texel00 = spu_unpack_A8R8G8B8(spu_extract(texels[0], 0)); - vector float texel01 = spu_unpack_A8R8G8B8(spu_extract(texels[1], 0)); - vector float texel10 = spu_unpack_A8R8G8B8(spu_extract(texels[2], 0)); - vector float texel11 = spu_unpack_A8R8G8B8(spu_extract(texels[3], 0)); + /* get packed int texels */ + vector unsigned int texels[16]; + get_four_texels(tlevel, face, is0, it0, texels + 0); /* upper-left */ + get_four_texels(tlevel, face, is1, it0, texels + 4); /* upper-right */ + get_four_texels(tlevel, face, is0, it1, texels + 8); /* lower-left */ + get_four_texels(tlevel, face, is1, it1, texels + 12); /* lower-right */ + /* convert packed int texels to float colors */ + vector float ftexels[16]; + spu_unpack_A8R8G8B8_transpose4(texels + 0, ftexels + 0); + spu_unpack_A8R8G8B8_transpose4(texels + 4, ftexels + 4); + spu_unpack_A8R8G8B8_transpose4(texels + 8, ftexels + 8); + spu_unpack_A8R8G8B8_transpose4(texels + 12, ftexels + 12); /* Compute weighting factors in [0,1] * Multiply texcoord by 1024, AND with 1023, convert back to float. */ - vector float tc1024 = spu_mul(tc, spu_splats(1024.0f)); - vector signed int itc1024 = spu_convts(tc1024, 0); - itc1024 = spu_and(itc1024, spu_splats((1 << 10) - 1)); - vector float weight = spu_convtf(itc1024, 10); - - /* smeared frac and 1-frac */ - vector float sfrac = spu_splats(spu_extract(weight, 0)); - vector float tfrac = spu_splats(spu_extract(weight, 1)); - vector float sfrac1 = spu_sub(spu_splats(1.0f), sfrac); - vector float tfrac1 = spu_sub(spu_splats(1.0f), tfrac); - - /* multiply the samples (colors) by the S/T weights */ - texel00 = spu_mul(spu_mul(texel00, sfrac1), tfrac1); - texel10 = spu_mul(spu_mul(texel10, sfrac ), tfrac1); - texel01 = spu_mul(spu_mul(texel01, sfrac1), tfrac ); - texel11 = spu_mul(spu_mul(texel11, sfrac ), tfrac ); - - /* compute sum of weighted samples */ - vector float texel_sum = spu_add(texel00, texel01); - texel_sum = spu_add(texel_sum, texel10); - texel_sum = spu_add(texel_sum, texel11); - - return texel_sum; + vector float ss1024 = spu_mul(ss, spu_splats(1024.0f)); + vector signed int iss1024 = spu_convts(ss1024, 0); + iss1024 = spu_and(iss1024, 1023); + vector float sWeights0 = spu_convtf(iss1024, 10); + + vector float tt1024 = spu_mul(tt, spu_splats(1024.0f)); + vector signed int itt1024 = spu_convts(tt1024, 0); + itt1024 = spu_and(itt1024, 1023); + vector float tWeights0 = spu_convtf(itt1024, 10); + + /* 1 - sWeight and 1 - tWeight */ + vector float sWeights1 = spu_sub(spu_splats(1.0f), sWeights0); + vector float tWeights1 = spu_sub(spu_splats(1.0f), tWeights0); + + /* reds, for four pixels */ + ftexels[ 0] = spu_mul(ftexels[ 0], spu_mul(sWeights1, tWeights1)); /*ul*/ + ftexels[ 4] = spu_mul(ftexels[ 4], spu_mul(sWeights0, tWeights1)); /*ur*/ + ftexels[ 8] = spu_mul(ftexels[ 8], spu_mul(sWeights1, tWeights0)); /*ll*/ + ftexels[12] = spu_mul(ftexels[12], spu_mul(sWeights0, tWeights0)); /*lr*/ + colors[0] = spu_add(spu_add(ftexels[0], ftexels[4]), + spu_add(ftexels[8], ftexels[12])); + + /* greens, for four pixels */ + ftexels[ 1] = spu_mul(ftexels[ 1], spu_mul(sWeights1, tWeights1)); /*ul*/ + ftexels[ 5] = spu_mul(ftexels[ 5], spu_mul(sWeights0, tWeights1)); /*ur*/ + ftexels[ 9] = spu_mul(ftexels[ 9], spu_mul(sWeights1, tWeights0)); /*ll*/ + ftexels[13] = spu_mul(ftexels[13], spu_mul(sWeights0, tWeights0)); /*lr*/ + colors[1] = spu_add(spu_add(ftexels[1], ftexels[5]), + spu_add(ftexels[9], ftexels[13])); + + /* blues, for four pixels */ + ftexels[ 2] = spu_mul(ftexels[ 2], spu_mul(sWeights1, tWeights1)); /*ul*/ + ftexels[ 6] = spu_mul(ftexels[ 6], spu_mul(sWeights0, tWeights1)); /*ur*/ + ftexels[10] = spu_mul(ftexels[10], spu_mul(sWeights1, tWeights0)); /*ll*/ + ftexels[14] = spu_mul(ftexels[14], spu_mul(sWeights0, tWeights0)); /*lr*/ + colors[2] = spu_add(spu_add(ftexels[2], ftexels[6]), + spu_add(ftexels[10], ftexels[14])); + + /* alphas, for four pixels */ + ftexels[ 3] = spu_mul(ftexels[ 3], spu_mul(sWeights1, tWeights1)); /*ul*/ + ftexels[ 7] = spu_mul(ftexels[ 7], spu_mul(sWeights0, tWeights1)); /*ur*/ + ftexels[11] = spu_mul(ftexels[11], spu_mul(sWeights1, tWeights0)); /*ll*/ + ftexels[15] = spu_mul(ftexels[15], spu_mul(sWeights0, tWeights0)); /*lr*/ + colors[3] = spu_add(spu_add(ftexels[3], ftexels[7]), + spu_add(ftexels[11], ftexels[15])); +} + + + +/** + * Adapted from /opt/cell/sdk/usr/spu/include/transpose_matrix4x4.h + */ +static INLINE void +transpose(vector unsigned int *mOut0, + vector unsigned int *mOut1, + vector unsigned int *mOut2, + vector unsigned int *mOut3, + vector unsigned int *mIn) +{ + vector unsigned int abcd, efgh, ijkl, mnop; /* input vectors */ + vector unsigned int aeim, bfjn, cgko, dhlp; /* output vectors */ + vector unsigned int aibj, ckdl, emfn, gohp; /* intermediate vectors */ + + vector unsigned char shufflehi = ((vector unsigned char) { + 0x00, 0x01, 0x02, 0x03, + 0x10, 0x11, 0x12, 0x13, + 0x04, 0x05, 0x06, 0x07, + 0x14, 0x15, 0x16, 0x17}); + vector unsigned char shufflelo = ((vector unsigned char) { + 0x08, 0x09, 0x0A, 0x0B, + 0x18, 0x19, 0x1A, 0x1B, + 0x0C, 0x0D, 0x0E, 0x0F, + 0x1C, 0x1D, 0x1E, 0x1F}); + abcd = *(mIn+0); + efgh = *(mIn+1); + ijkl = *(mIn+2); + mnop = *(mIn+3); + + aibj = spu_shuffle(abcd, ijkl, shufflehi); + ckdl = spu_shuffle(abcd, ijkl, shufflelo); + emfn = spu_shuffle(efgh, mnop, shufflehi); + gohp = spu_shuffle(efgh, mnop, shufflelo); + + aeim = spu_shuffle(aibj, emfn, shufflehi); + bfjn = spu_shuffle(aibj, emfn, shufflelo); + cgko = spu_shuffle(ckdl, gohp, shufflehi); + dhlp = spu_shuffle(ckdl, gohp, shufflelo); + + *mOut0 = aeim; + *mOut1 = bfjn; + *mOut2 = cgko; + *mOut3 = dhlp; +} + + +/** + * Bilinear filtering, using int instead of float arithmetic for computing + * sample weights. + */ +void +sample_texture_2d_bilinear_int(vector float s, vector float t, + uint unit, uint level, uint face, + vector float colors[4]) +{ + const struct spu_texture_level *tlevel = &spu.texture[unit].level[level]; + static const vector float half = {-0.5f, -0.5f, -0.5f, -0.5f}; + + /* Scale texcoords by size of texture, and add half pixel bias */ + vector float ss = spu_madd(s, tlevel->scale_s, half); + vector float tt = spu_madd(t, tlevel->scale_t, half); + + /* convert float coords to fixed-pt coords with 7 fraction bits */ + vector signed int is = spu_convts(ss, 7); /* XXX really need floor() here */ + vector signed int it = spu_convts(tt, 7); /* XXX really need floor() here */ + + /* compute integer texel weights in [0, 127] */ + vector signed int sWeights0 = spu_and(is, 127); + vector signed int tWeights0 = spu_and(it, 127); + vector signed int sWeights1 = spu_sub(127, sWeights0); + vector signed int tWeights1 = spu_sub(127, tWeights0); + + /* texel coords: is0 = is / 128, it0 = is / 128 */ + vector signed int is0 = spu_rlmask(is, -7); + vector signed int it0 = spu_rlmask(it, -7); + + /* texel coords: i1 = is0 + 1, it1 = it0 + 1 */ + vector signed int is1 = spu_add(is0, 1); + vector signed int it1 = spu_add(it0, 1); + + /* PIPE_TEX_WRAP_REPEAT */ + is0 = spu_and(is0, tlevel->mask_s); + it0 = spu_and(it0, tlevel->mask_t); + is1 = spu_and(is1, tlevel->mask_s); + it1 = spu_and(it1, tlevel->mask_t); + + /* PIPE_TEX_WRAP_CLAMP */ + is0 = spu_clamp(is0, tlevel->max_s); + it0 = spu_clamp(it0, tlevel->max_t); + is1 = spu_clamp(is1, tlevel->max_s); + it1 = spu_clamp(it1, tlevel->max_t); + + /* get packed int texels */ + vector unsigned int texels[16]; + get_four_texels(tlevel, face, is0, it0, texels + 0); /* upper-left */ + get_four_texels(tlevel, face, is1, it0, texels + 4); /* upper-right */ + get_four_texels(tlevel, face, is0, it1, texels + 8); /* lower-left */ + get_four_texels(tlevel, face, is1, it1, texels + 12); /* lower-right */ + + /* twiddle packed 32-bit BGRA pixels into RGBA as four unsigned ints */ + { + static const unsigned char ZERO = 0x80; + int i; + for (i = 0; i < 16; i++) { + texels[i] = spu_shuffle(texels[i], texels[i], + ((vector unsigned char) { + ZERO, ZERO, ZERO, 1, + ZERO, ZERO, ZERO, 2, + ZERO, ZERO, ZERO, 3, + ZERO, ZERO, ZERO, 0})); + } + } + + /* convert RGBA,RGBA,RGBA,RGBA to RRRR,GGGG,BBBB,AAAA */ + vector unsigned int texel0, texel1, texel2, texel3, texel4, texel5, texel6, texel7, + texel8, texel9, texel10, texel11, texel12, texel13, texel14, texel15; + transpose(&texel0, &texel1, &texel2, &texel3, texels + 0); + transpose(&texel4, &texel5, &texel6, &texel7, texels + 4); + transpose(&texel8, &texel9, &texel10, &texel11, texels + 8); + transpose(&texel12, &texel13, &texel14, &texel15, texels + 12); + + /* computed weighted colors */ + vector unsigned int c0, c1, c2, c3, cSum; + + /* red */ + c0 = (vector unsigned int) si_mpy((qword) texel0, si_mpy((qword) sWeights1, (qword) tWeights1)); /*ul*/ + c1 = (vector unsigned int) si_mpy((qword) texel4, si_mpy((qword) sWeights0, (qword) tWeights1)); /*ur*/ + c2 = (vector unsigned int) si_mpy((qword) texel8, si_mpy((qword) sWeights1, (qword) tWeights0)); /*ll*/ + c3 = (vector unsigned int) si_mpy((qword) texel12, si_mpy((qword) sWeights0, (qword) tWeights0)); /*lr*/ + cSum = spu_add(spu_add(c0, c1), spu_add(c2, c3)); + colors[0] = spu_convtf(cSum, 22); + + /* green */ + c0 = (vector unsigned int) si_mpy((qword) texel1, si_mpy((qword) sWeights1, (qword) tWeights1)); /*ul*/ + c1 = (vector unsigned int) si_mpy((qword) texel5, si_mpy((qword) sWeights0, (qword) tWeights1)); /*ur*/ + c2 = (vector unsigned int) si_mpy((qword) texel9, si_mpy((qword) sWeights1, (qword) tWeights0)); /*ll*/ + c3 = (vector unsigned int) si_mpy((qword) texel13, si_mpy((qword) sWeights0, (qword) tWeights0)); /*lr*/ + cSum = spu_add(spu_add(c0, c1), spu_add(c2, c3)); + colors[1] = spu_convtf(cSum, 22); + + /* blue */ + c0 = (vector unsigned int) si_mpy((qword) texel2, si_mpy((qword) sWeights1, (qword) tWeights1)); /*ul*/ + c1 = (vector unsigned int) si_mpy((qword) texel6, si_mpy((qword) sWeights0, (qword) tWeights1)); /*ur*/ + c2 = (vector unsigned int) si_mpy((qword) texel10, si_mpy((qword) sWeights1, (qword) tWeights0)); /*ll*/ + c3 = (vector unsigned int) si_mpy((qword) texel14, si_mpy((qword) sWeights0, (qword) tWeights0)); /*lr*/ + cSum = spu_add(spu_add(c0, c1), spu_add(c2, c3)); + colors[2] = spu_convtf(cSum, 22); + + /* alpha */ + c0 = (vector unsigned int) si_mpy((qword) texel3, si_mpy((qword) sWeights1, (qword) tWeights1)); /*ul*/ + c1 = (vector unsigned int) si_mpy((qword) texel7, si_mpy((qword) sWeights0, (qword) tWeights1)); /*ur*/ + c2 = (vector unsigned int) si_mpy((qword) texel11, si_mpy((qword) sWeights1, (qword) tWeights0)); /*ll*/ + c3 = (vector unsigned int) si_mpy((qword) texel15, si_mpy((qword) sWeights0, (qword) tWeights0)); /*lr*/ + cSum = spu_add(spu_add(c0, c1), spu_add(c2, c3)); + colors[3] = spu_convtf(cSum, 22); +} + + + +/** + * Compute level of detail factor from texcoords. + */ +static INLINE float +compute_lambda_2d(uint unit, vector float s, vector float t) +{ + uint baseLevel = 0; + float width = spu.texture[unit].level[baseLevel].width; + float height = spu.texture[unit].level[baseLevel].width; + float dsdx = width * (spu_extract(s, 1) - spu_extract(s, 0)); + float dsdy = width * (spu_extract(s, 2) - spu_extract(s, 0)); + float dtdx = height * (spu_extract(t, 1) - spu_extract(t, 0)); + float dtdy = height * (spu_extract(t, 2) - spu_extract(t, 0)); +#if 0 + /* ideal value */ + float x = dsdx * dsdx + dtdx * dtdx; + float y = dsdy * dsdy + dtdy * dtdy; + float rho = x > y ? x : y; + rho = sqrtf(rho); +#else + /* approximation */ + dsdx = fabsf(dsdx); + dsdy = fabsf(dsdy); + dtdx = fabsf(dtdx); + dtdy = fabsf(dtdy); + float rho = (dsdx + dsdy + dtdx + dtdy) * 0.5; +#endif + float lambda = logf(rho) * 1.442695f; /* compute logbase2(rho) */ + return lambda; +} + + +/** + * Blend two sets of colors according to weight. + */ +static void +blend_colors(vector float c0[4], const vector float c1[4], float weight) +{ + vector float t = spu_splats(weight); + vector float dc0 = spu_sub(c1[0], c0[0]); + vector float dc1 = spu_sub(c1[1], c0[1]); + vector float dc2 = spu_sub(c1[2], c0[2]); + vector float dc3 = spu_sub(c1[3], c0[3]); + c0[0] = spu_madd(dc0, t, c0[0]); + c0[1] = spu_madd(dc1, t, c0[1]); + c0[2] = spu_madd(dc2, t, c0[2]); + c0[3] = spu_madd(dc3, t, c0[3]); +} + + +/** + * Texture sampling with level of detail selection and possibly mipmap + * interpolation. + */ +void +sample_texture_2d_lod(vector float s, vector float t, + uint unit, uint level_ignored, uint face, + vector float colors[4]) +{ + /* + * Note that we're computing a lambda/lod here that's used for all + * four pixels in the quad. + */ + float lambda = compute_lambda_2d(unit, s, t); + + (void) face; + (void) level_ignored; + + /* apply lod bias */ + lambda += spu.sampler[unit].lod_bias; + + /* clamp */ + if (lambda < spu.sampler[unit].min_lod) + lambda = spu.sampler[unit].min_lod; + else if (lambda > spu.sampler[unit].max_lod) + lambda = spu.sampler[unit].max_lod; + + if (lambda <= 0.0f) { + /* magnify */ + spu.mag_sample_texture_2d[unit](s, t, unit, 0, face, colors); + } + else { + /* minify */ + if (spu.sampler[unit].min_img_filter == PIPE_TEX_FILTER_LINEAR) { + /* sample two mipmap levels and interpolate */ + int level = (int) lambda; + if (level > (int) spu.texture[unit].max_level) + level = spu.texture[unit].max_level; + spu.min_sample_texture_2d[unit](s, t, unit, level, face, colors); + if (spu.sampler[unit].min_img_filter == PIPE_TEX_FILTER_LINEAR) { + /* sample second mipmap level */ + float weight = lambda - (float) level; + level++; + if (level <= (int) spu.texture[unit].max_level) { + vector float colors2[4]; + spu.min_sample_texture_2d[unit](s, t, unit, level, face, colors2); + blend_colors(colors, colors2, weight); + } + } + } + else { + /* sample one mipmap level */ + int level = (int) (lambda + 0.5f); + if (level > (int) spu.texture[unit].max_level) + level = spu.texture[unit].max_level; + spu.min_sample_texture_2d[unit](s, t, unit, level, face, colors); + } + } +} + + +/** XXX need a SIMD version of this */ +static unsigned +choose_cube_face(float rx, float ry, float rz, float *newS, float *newT) +{ + /* + major axis + direction target sc tc ma + ---------- ------------------------------- --- --- --- + +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx + -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx + +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry + -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry + +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz + -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz + */ + const float arx = fabsf(rx); + const float ary = fabsf(ry); + const float arz = fabsf(rz); + unsigned face; + float sc, tc, ma; + + if (arx > ary && arx > arz) { + if (rx >= 0.0F) { + face = PIPE_TEX_FACE_POS_X; + sc = -rz; + tc = -ry; + ma = arx; + } + else { + face = PIPE_TEX_FACE_NEG_X; + sc = rz; + tc = -ry; + ma = arx; + } + } + else if (ary > arx && ary > arz) { + if (ry >= 0.0F) { + face = PIPE_TEX_FACE_POS_Y; + sc = rx; + tc = rz; + ma = ary; + } + else { + face = PIPE_TEX_FACE_NEG_Y; + sc = rx; + tc = -rz; + ma = ary; + } + } + else { + if (rz > 0.0F) { + face = PIPE_TEX_FACE_POS_Z; + sc = rx; + tc = -ry; + ma = arz; + } + else { + face = PIPE_TEX_FACE_NEG_Z; + sc = -rx; + tc = -ry; + ma = arz; + } + } + + *newS = (sc / ma + 1.0F) * 0.5F; + *newT = (tc / ma + 1.0F) * 0.5F; + + return face; +} + + + +void +sample_texture_cube(vector float s, vector float t, vector float r, + uint unit, vector float colors[4]) +{ + uint p, faces[4], level = 0; + float newS[4], newT[4]; + + /* Compute cube faces referenced by the four sets of texcoords. + * XXX we should SIMD-ize this. + */ + for (p = 0; p < 4; p++) { + float rx = spu_extract(s, p); + float ry = spu_extract(t, p); + float rz = spu_extract(r, p); + faces[p] = choose_cube_face(rx, ry, rz, &newS[p], &newT[p]); + } + + if (faces[0] == faces[1] && + faces[0] == faces[2] && + faces[0] == faces[3]) { + /* GOOD! All four texcoords refer to the same cube face */ + s = (vector float) {newS[0], newS[1], newS[2], newS[3]}; + t = (vector float) {newT[0], newT[1], newT[2], newT[3]}; + spu.sample_texture_2d[unit](s, t, unit, level, faces[0], colors); + } + else { + /* BAD! The four texcoords refer to different faces */ + for (p = 0; p < 4; p++) { + vector float c[4]; + + spu.sample_texture_2d[unit](spu_splats(newS[p]), spu_splats(newT[p]), + unit, level, faces[p], c); + + float red = spu_extract(c[0], p); + float green = spu_extract(c[1], p); + float blue = spu_extract(c[2], p); + float alpha = spu_extract(c[3], p); + + colors[0] = spu_insert(red, colors[0], p); + colors[1] = spu_insert(green, colors[1], p); + colors[2] = spu_insert(blue, colors[2], p); + colors[3] = spu_insert(alpha, colors[3], p); + } + } } diff --git a/src/gallium/drivers/cell/spu/spu_texture.h b/src/gallium/drivers/cell/spu/spu_texture.h index f7c9738be8..7b75b007b5 100644 --- a/src/gallium/drivers/cell/spu/spu_texture.h +++ b/src/gallium/drivers/cell/spu/spu_texture.h @@ -36,12 +36,32 @@ extern void invalidate_tex_cache(void); -extern vector float -sample_texture_nearest(uint unit, vector float texcoord); +extern void +sample_texture_2d_nearest(vector float s, vector float t, + uint unit, uint level, uint face, + vector float colors[4]); + + +extern void +sample_texture_2d_bilinear(vector float s, vector float t, + uint unit, uint level, uint face, + vector float colors[4]); + +extern void +sample_texture_2d_bilinear_int(vector float s, vector float t, + uint unit, uint level, uint face, + vector float colors[4]); + +extern void +sample_texture_2d_lod(vector float s, vector float t, + uint unit, uint level, uint face, + vector float colors[4]); -extern vector float -sample_texture_bilinear(uint unit, vector float texcoord); + +extern void +sample_texture_cube(vector float s, vector float t, vector float r, + uint unit, vector float colors[4]); #endif /* SPU_TEXTURE_H */ diff --git a/src/gallium/drivers/cell/spu/spu_tile.c b/src/gallium/drivers/cell/spu/spu_tile.c index 216a33126b..6905015a48 100644 --- a/src/gallium/drivers/cell/spu/spu_tile.c +++ b/src/gallium/drivers/cell/spu/spu_tile.c @@ -87,3 +87,40 @@ put_tile(uint tx, uint ty, const tile_t *tile, int tag, int zBuf) 0 /* rid */); } + +/** + * For tiles whose status is TILE_STATUS_CLEAR, write solid-filled + * tiles back to the main framebuffer. + */ +void +really_clear_tiles(uint surfaceIndex) +{ + const uint num_tiles = spu.fb.width_tiles * spu.fb.height_tiles; + uint i; + + if (surfaceIndex == 0) { + clear_c_tile(&spu.ctile); + + for (i = spu.init.id; i < num_tiles; i += spu.init.num_spus) { + uint tx = i % spu.fb.width_tiles; + uint ty = i / spu.fb.width_tiles; + if (spu.ctile_status[ty][tx] == TILE_STATUS_CLEAR) { + put_tile(tx, ty, &spu.ctile, TAG_SURFACE_CLEAR, 0); + } + } + } + else { + clear_z_tile(&spu.ztile); + + for (i = spu.init.id; i < num_tiles; i += spu.init.num_spus) { + uint tx = i % spu.fb.width_tiles; + uint ty = i / spu.fb.width_tiles; + if (spu.ztile_status[ty][tx] == TILE_STATUS_CLEAR) + put_tile(tx, ty, &spu.ctile, TAG_SURFACE_CLEAR, 1); + } + } + +#if 0 + wait_on_mask(1 << TAG_SURFACE_CLEAR); +#endif +} diff --git a/src/gallium/drivers/cell/spu/spu_tile.h b/src/gallium/drivers/cell/spu/spu_tile.h index 1b5491112d..7bfb52be8f 100644 --- a/src/gallium/drivers/cell/spu/spu_tile.h +++ b/src/gallium/drivers/cell/spu/spu_tile.h @@ -36,12 +36,14 @@ -void +extern void get_tile(uint tx, uint ty, tile_t *tile, int tag, int zBuf); -void +extern void put_tile(uint tx, uint ty, const tile_t *tile, int tag, int zBuf); +extern void +really_clear_tiles(uint surfaceIndex); static INLINE void diff --git a/src/gallium/drivers/cell/spu/spu_tri.c b/src/gallium/drivers/cell/spu/spu_tri.c index 8b93878192..22e51a86ae 100644 --- a/src/gallium/drivers/cell/spu/spu_tri.c +++ b/src/gallium/drivers/cell/spu/spu_tri.c @@ -43,11 +43,6 @@ /** Masks are uint[4] vectors with each element being 0 or 0xffffffff */ typedef vector unsigned int mask_t; -typedef union -{ - vector float v; - float f[4]; -} float4; /** @@ -91,9 +86,9 @@ struct edge { struct interp_coef { - float4 a0; - float4 dadx; - float4 dady; + vector float a0; + vector float dadx; + vector float dady; }; @@ -116,21 +111,15 @@ struct setup_stage { struct edge etop; struct edge emaj; - float oneoverarea; + float oneOverArea; /* XXX maybe make into vector? */ + + uint facing; - uint tx, ty; + uint tx, ty; /**< position of current tile (x, y) */ int cliprect_minx, cliprect_maxx, cliprect_miny, cliprect_maxy; -#if 0 - struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS]; -#else struct interp_coef coef[PIPE_MAX_SHADER_INPUTS]; -#endif - -#if 0 - struct quad_header quad; -#endif struct { int left[2]; /**< [0] = row0, [1] = row1 */ @@ -142,118 +131,105 @@ struct setup_stage { }; - static struct setup_stage setup; - - -#if 0 -/** - * Basically a cast wrapper. - */ -static INLINE struct setup_stage *setup_stage( struct draw_stage *stage ) -{ - return (struct setup_stage *)stage; -} -#endif - -#if 0 -/** - * Clip setup.quad against the scissor/surface bounds. - */ -static INLINE void -quad_clip(struct setup_stage *setup) -{ - const struct pipe_scissor_state *cliprect = &setup.softpipe->cliprect; - const int minx = (int) cliprect->minx; - const int maxx = (int) cliprect->maxx; - const int miny = (int) cliprect->miny; - const int maxy = (int) cliprect->maxy; - - if (setup.quad.x0 >= maxx || - setup.quad.y0 >= maxy || - setup.quad.x0 + 1 < minx || - setup.quad.y0 + 1 < miny) { - /* totally clipped */ - setup.quad.mask = 0x0; - return; - } - if (setup.quad.x0 < minx) - setup.quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT); - if (setup.quad.y0 < miny) - setup.quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT); - if (setup.quad.x0 == maxx - 1) - setup.quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT); - if (setup.quad.y0 == maxy - 1) - setup.quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT); -} -#endif - -#if 0 -/** - * Emit a quad (pass to next stage) with clipping. - */ -static INLINE void -clip_emit_quad(struct setup_stage *setup) -{ - quad_clip(setup); - if (setup.quad.mask) { - struct softpipe_context *sp = setup.softpipe; - sp->quad.first->run(sp->quad.first, &setup.quad); - } -} -#endif - /** * Evaluate attribute coefficients (plane equations) to compute * attribute values for the four fragments in a quad. * Eg: four colors will be computed (in AoS format). */ static INLINE void -eval_coeff(uint slot, float x, float y, vector float result[4]) +eval_coeff(uint slot, float x, float y, vector float w, vector float result[4]) { - switch (spu.vertex_info.interp_mode[slot]) { + switch (spu.vertex_info.attrib[slot].interp_mode) { case INTERP_CONSTANT: result[QUAD_TOP_LEFT] = result[QUAD_TOP_RIGHT] = result[QUAD_BOTTOM_LEFT] = - result[QUAD_BOTTOM_RIGHT] = setup.coef[slot].a0.v; + result[QUAD_BOTTOM_RIGHT] = setup.coef[slot].a0; break; - case INTERP_LINEAR: - /* fall-through, for now */ - default: { - register vector float dadx = setup.coef[slot].dadx.v; - register vector float dady = setup.coef[slot].dady.v; - register vector float topLeft - = spu_add(setup.coef[slot].a0.v, - spu_add(spu_mul(spu_splats(x), dadx), - spu_mul(spu_splats(y), dady))); + vector float dadx = setup.coef[slot].dadx; + vector float dady = setup.coef[slot].dady; + vector float topLeft = + spu_add(setup.coef[slot].a0, + spu_add(spu_mul(spu_splats(x), dadx), + spu_mul(spu_splats(y), dady))); result[QUAD_TOP_LEFT] = topLeft; result[QUAD_TOP_RIGHT] = spu_add(topLeft, dadx); result[QUAD_BOTTOM_LEFT] = spu_add(topLeft, dady); result[QUAD_BOTTOM_RIGHT] = spu_add(spu_add(topLeft, dadx), dady); } + break; + case INTERP_PERSPECTIVE: + { + vector float dadx = setup.coef[slot].dadx; + vector float dady = setup.coef[slot].dady; + vector float topLeft = + spu_add(setup.coef[slot].a0, + spu_add(spu_mul(spu_splats(x), dadx), + spu_mul(spu_splats(y), dady))); + + vector float wInv = spu_re(w); /* 1.0 / w */ + + result[QUAD_TOP_LEFT] = spu_mul(topLeft, wInv); + result[QUAD_TOP_RIGHT] = spu_mul(spu_add(topLeft, dadx), wInv); + result[QUAD_BOTTOM_LEFT] = spu_mul(spu_add(topLeft, dady), wInv); + result[QUAD_BOTTOM_RIGHT] = spu_mul(spu_add(spu_add(topLeft, dadx), dady), wInv); + } + break; + case INTERP_POS: + case INTERP_NONE: + break; + default: + ASSERT(0); } } +/** + * As above, but return 4 vectors in SOA format. + * XXX this will all be re-written someday. + */ +static INLINE void +eval_coeff_soa(uint slot, float x, float y, vector float w, vector float result[4]) +{ + eval_coeff(slot, x, y, w, result); + _transpose_matrix4x4(result, result); +} + + +/** Evalute coefficients to get Z for four pixels in a quad */ static INLINE vector float eval_z(float x, float y) { const uint slot = 0; - const float dzdx = setup.coef[slot].dadx.f[2]; - const float dzdy = setup.coef[slot].dady.f[2]; - const float topLeft = setup.coef[slot].a0.f[2] + x * dzdx + y * dzdy; + const float dzdx = spu_extract(setup.coef[slot].dadx, 2); + const float dzdy = spu_extract(setup.coef[slot].dady, 2); + const float topLeft = spu_extract(setup.coef[slot].a0, 2) + x * dzdx + y * dzdy; const vector float topLeftv = spu_splats(topLeft); const vector float derivs = (vector float) { 0.0, dzdx, dzdy, dzdx + dzdy }; return spu_add(topLeftv, derivs); } +/** Evalute coefficients to get W for four pixels in a quad */ +static INLINE vector float +eval_w(float x, float y) +{ + const uint slot = 0; + const float dwdx = spu_extract(setup.coef[slot].dadx, 3); + const float dwdy = spu_extract(setup.coef[slot].dady, 3); + const float topLeft = spu_extract(setup.coef[slot].a0, 3) + x * dwdx + y * dwdy; + const vector float topLeftv = spu_splats(topLeft); + const vector float derivs = (vector float) { 0.0, dwdx, dwdy, dwdx + dwdy }; + return spu_add(topLeftv, derivs); +} + + /** * Emit a quad (pass to next stage). No clipping is done. * Note: about 1/5 to 1/7 of the time, mask is zero and this function @@ -261,120 +237,59 @@ eval_z(float x, float y) * overall. */ static INLINE void -emit_quad( int x, int y, mask_t mask ) +emit_quad( int x, int y, mask_t mask) { /* If any bits in mask are set... */ if (spu_extract(spu_orx(mask), 0)) { const int ix = x - setup.cliprect_minx; const int iy = y - setup.cliprect_miny; - vector float colors[4]; spu.cur_ctile_status = TILE_STATUS_DIRTY; spu.cur_ztile_status = TILE_STATUS_DIRTY; - if (spu.texture[0].start) { - /* texture mapping */ - const uint unit = 0; - vector float texcoords[4]; - eval_coeff(2, (float) x, (float) y, texcoords); - - if (spu_extract(mask, 0)) - colors[0] = spu.sample_texture[unit](unit, texcoords[0]); - if (spu_extract(mask, 1)) - colors[1] = spu.sample_texture[unit](unit, texcoords[1]); - if (spu_extract(mask, 2)) - colors[2] = spu.sample_texture[unit](unit, texcoords[2]); - if (spu_extract(mask, 3)) - colors[3] = spu.sample_texture[unit](unit, texcoords[3]); - - - if (spu.texture[1].start) { - /* multi-texture mapping */ - const uint unit = 1; - vector float colors1[4]; - - eval_coeff(2, (float) x, (float) y, texcoords); - - if (spu_extract(mask, 0)) - colors1[0] = spu.sample_texture[unit](unit, texcoords[0]); - if (spu_extract(mask, 1)) - colors1[1] = spu.sample_texture[unit](unit, texcoords[1]); - if (spu_extract(mask, 2)) - colors1[2] = spu.sample_texture[unit](unit, texcoords[2]); - if (spu_extract(mask, 3)) - colors1[3] = spu.sample_texture[unit](unit, texcoords[3]); - - /* hack: modulate first texture by second */ - colors[0] = spu_mul(colors[0], colors1[0]); - colors[1] = spu_mul(colors[1], colors1[1]); - colors[2] = spu_mul(colors[2], colors1[2]); - colors[3] = spu_mul(colors[3], colors1[3]); - } + { + /* + * Run fragment shader, execute per-fragment ops, update fb/tile. + */ + vector float inputs[4*4], outputs[2*4]; + vector float fragZ = eval_z((float) x, (float) y); + vector float fragW = eval_w((float) x, (float) y); + vector unsigned int kill_mask; - } - else { - /* simple shading */ + /* setup inputs */ #if 0 - eval_coeff(1, (float) x, (float) y, colors); - + eval_coeff_soa(1, (float) x, (float) y, fragW, inputs); #else - /* XXX new fragment program code */ - - if (spu.fragment_program) { - vector float inputs[4*4], outputs[2*4]; - - /* setup inputs */ - eval_coeff(1, (float) x, (float) y, inputs); - - /* Execute the current fragment program */ - spu.fragment_program(inputs, outputs, spu.constants); - - /* Copy outputs */ - colors[0] = outputs[0*4+0]; - colors[1] = outputs[0*4+1]; - colors[2] = outputs[0*4+2]; - colors[3] = outputs[0*4+3]; - - if (0 && spu.init.id==0 && y == 48) { - printf("colors[0] = %f %f %f %f\n", - spu_extract(colors[0], 0), - spu_extract(colors[0], 1), - spu_extract(colors[0], 2), - spu_extract(colors[0], 3)); - printf("colors[1] = %f %f %f %f\n", - spu_extract(colors[1], 0), - spu_extract(colors[1], 1), - spu_extract(colors[1], 2), - spu_extract(colors[1], 3)); - } - + uint i; + for (i = 0; i < spu.vertex_info.num_attribs; i++) { + eval_coeff_soa(i+1, (float) x, (float) y, fragW, inputs + i * 4); } #endif - } - - - { - /* Convert fragment data from AoS to SoA format. - * I.e. (RGBA,RGBA,RGBA,RGBA) -> (RRRR,GGGG,BBBB,AAAA) - * This is temporary! + ASSERT(spu.fragment_program); + ASSERT(spu.fragment_ops); + + /* Execute the current fragment program */ + kill_mask = spu.fragment_program(inputs, outputs, spu.constants); + + mask = spu_andc(mask, kill_mask); + + /* Execute per-fragment/quad operations, including: + * alpha test, z test, stencil test, blend and framebuffer writing. + * Note that there are two different fragment operations functions + * that can be called, one for front-facing fragments, and one + * for back-facing fragments. (Often the two are the same; + * but in some cases, like two-sided stenciling, they can be + * very different.) So choose the correct function depending + * on the calculated facing. */ - vector float soa_frag[4]; - _transpose_matrix4x4(soa_frag, colors); - - float4 fragZ; - - fragZ.v = eval_z((float) x, (float) y); - - /* Do all per-fragment/quad operations here, including: - * alpha test, z test, stencil test, blend and framebuffer writing. - */ - spu.fragment_ops(ix, iy, &spu.ctile, &spu.ztile, - fragZ.v, - soa_frag[0], soa_frag[1], - soa_frag[2], soa_frag[3], + spu.fragment_ops[setup.facing](ix, iy, &spu.ctile, &spu.ztile, + fragZ, + outputs[0*4+0], + outputs[0*4+1], + outputs[0*4+2], + outputs[0*4+3], mask); } - } } @@ -383,7 +298,8 @@ emit_quad( int x, int y, mask_t mask ) * Given an X or Y coordinate, return the block/quad coordinate that it * belongs to. */ -static INLINE int block( int x ) +static INLINE int +block(int x) { return x & ~1; } @@ -394,7 +310,8 @@ static INLINE int block( int x ) * the triangle's bounds. * The mask is a uint4 vector and each element will be 0 or 0xffffffff. */ -static INLINE mask_t calculate_mask( int x ) +static INLINE mask_t +calculate_mask(int x) { /* This is a little tricky. * Use & instead of && to avoid branches. @@ -412,7 +329,8 @@ static INLINE mask_t calculate_mask( int x ) /** * Render a horizontal span of quads */ -static void flush_spans( void ) +static void +flush_spans(void) { int minleft, maxright; int x; @@ -440,7 +358,6 @@ static void flush_spans( void ) return; } - /* OK, we're very likely to need the tile data now. * clear or finish waiting if needed. */ @@ -457,7 +374,7 @@ static void flush_spans( void ) } ASSERT(spu.cur_ctile_status != TILE_STATUS_DEFINED); - if (spu.read_depth) { + if (spu.read_depth_stencil) { if (spu.cur_ztile_status == TILE_STATUS_GETTING) { /* wait for mfc_get() to complete */ //printf("SPU: %u: waiting for ztile\n", spu.init.id); @@ -476,9 +393,7 @@ static void flush_spans( void ) * calculate_mask() could be simplified a bit... */ for (x = block(minleft); x <= block(maxright); x += 2) { -#if 1 - emit_quad( x, setup.span.y, calculate_mask( x ) ); -#endif + emit_quad( x, setup.span.y, calculate_mask( x )); } setup.span.y = 0; @@ -487,33 +402,46 @@ static void flush_spans( void ) setup.span.right[1] = 0; } + #if DEBUG_VERTS -static void print_vertex(const struct vertex_header *v) +static void +print_vertex(const struct vertex_header *v) { - int i; - fprintf(stderr, "Vertex: (%p)\n", v); - for (i = 0; i < setup.quad.nr_attrs; i++) { - fprintf(stderr, " %d: %f %f %f %f\n", i, - v->data[i][0], v->data[i][1], v->data[i][2], v->data[i][3]); + uint i; + fprintf(stderr, " Vertex: (%p)\n", v); + for (i = 0; i < spu.vertex_info.num_attribs; i++) { + fprintf(stderr, " %d: %f %f %f %f\n", i, + spu_extract(v->data[i], 0), + spu_extract(v->data[i], 1), + spu_extract(v->data[i], 2), + spu_extract(v->data[i], 3)); } } #endif -static boolean setup_sort_vertices(const struct vertex_header *v0, - const struct vertex_header *v1, - const struct vertex_header *v2) +/** + * Sort vertices from top to bottom. + * Compute area and determine front vs. back facing. + * Do coarse clip test against tile bounds + * \return FALSE if tri is totally outside tile, TRUE otherwise + */ +static boolean +setup_sort_vertices(const struct vertex_header *v0, + const struct vertex_header *v1, + const struct vertex_header *v2) { + float area, sign; #if DEBUG_VERTS - fprintf(stderr, "Triangle:\n"); - print_vertex(v0); - print_vertex(v1); - print_vertex(v2); + if (spu.init.id==0) { + fprintf(stderr, "SPU %u: Triangle:\n", spu.init.id); + print_vertex(v0); + print_vertex(v1); + print_vertex(v2); + } #endif - setup.vprovoke = v2; - /* determine bottom to top order of vertices */ { float y0 = spu_extract(v0->data[0], 1); @@ -525,18 +453,21 @@ static boolean setup_sort_vertices(const struct vertex_header *v0, setup.vmin = v0; setup.vmid = v1; setup.vmax = v2; + sign = -1.0f; } else if (y2 <= y0) { /* y2<=y0<=y1 */ setup.vmin = v2; setup.vmid = v0; setup.vmax = v1; + sign = -1.0f; } else { /* y0<=y2<=y1 */ setup.vmin = v0; setup.vmid = v2; setup.vmax = v1; + sign = 1.0f; } } else { @@ -545,18 +476,21 @@ static boolean setup_sort_vertices(const struct vertex_header *v0, setup.vmin = v1; setup.vmid = v0; setup.vmax = v2; + sign = 1.0f; } else if (y2 <= y1) { /* y2<=y1<=y0 */ setup.vmin = v2; setup.vmid = v1; setup.vmax = v0; + sign = 1.0f; } else { /* y1<=y2<=y0 */ setup.vmin = v1; setup.vmid = v2; setup.vmax = v0; + sign = -1.0f; } } } @@ -585,31 +519,23 @@ static boolean setup_sort_vertices(const struct vertex_header *v0, /* * Compute triangle's area. Use 1/area to compute partial * derivatives of attributes later. - * - * The area will be the same as prim->det, but the sign may be - * different depending on how the vertices get sorted above. - * - * To determine whether the primitive is front or back facing we - * use the prim->det value because its sign is correct. */ - { - const float area = (setup.emaj.dx * setup.ebot.dy - - setup.ebot.dx * setup.emaj.dy); - - setup.oneoverarea = 1.0f / area; - /* - _mesa_printf("%s one-over-area %f area %f det %f\n", - __FUNCTION__, setup.oneoverarea, area, prim->det ); - */ - } + area = setup.emaj.dx * setup.ebot.dy - setup.ebot.dx * setup.emaj.dy; -#if 0 - /* We need to know if this is a front or back-facing triangle for: - * - the GLSL gl_FrontFacing fragment attribute (bool) - * - two-sided stencil test + setup.oneOverArea = 1.0f / area; + + /* The product of area * sign indicates front/back orientation (0/1). + * Just in case someone gets the bright idea of switching the front + * and back constants without noticing that we're assuming their + * values in this operation, also assert that the values are + * what we think they are. */ - setup.quad.facing = (prim->det > 0.0) ^ (setup.softpipe->rasterizer->front_winding == PIPE_WINDING_CW); -#endif + ASSERT(CELL_FACING_FRONT == 0); + ASSERT(CELL_FACING_BACK == 1); + setup.facing = (area * sign > 0.0f) + ^ (spu.rasterizer.front_winding == PIPE_WINDING_CW); + + setup.vprovoke = v2; return TRUE; } @@ -622,63 +548,11 @@ static boolean setup_sort_vertices(const struct vertex_header *v0, * \param slot which attribute slot */ static INLINE void -const_coeff(uint slot) +const_coeff4(uint slot) { - setup.coef[slot].dadx.v = (vector float) {0.0, 0.0, 0.0, 0.0}; - setup.coef[slot].dady.v = (vector float) {0.0, 0.0, 0.0, 0.0}; - setup.coef[slot].a0.v = setup.vprovoke->data[slot]; -} - - -/** - * Compute a0, dadx and dady for a linearly interpolated coefficient, - * for a triangle. - */ -static INLINE void -tri_linear_coeff(uint slot, uint firstComp, uint lastComp) -{ - uint i; - const float *vmin_d = (float *) &setup.vmin->data[slot]; - const float *vmid_d = (float *) &setup.vmid->data[slot]; - const float *vmax_d = (float *) &setup.vmax->data[slot]; - const float x = spu_extract(setup.vmin->data[0], 0) - 0.5f; - const float y = spu_extract(setup.vmin->data[0], 1) - 0.5f; - - for (i = firstComp; i < lastComp; i++) { - float botda = vmid_d[i] - vmin_d[i]; - float majda = vmax_d[i] - vmin_d[i]; - float a = setup.ebot.dy * majda - botda * setup.emaj.dy; - float b = setup.emaj.dx * botda - majda * setup.ebot.dx; - - ASSERT(slot < PIPE_MAX_SHADER_INPUTS); - - setup.coef[slot].dadx.f[i] = a * setup.oneoverarea; - setup.coef[slot].dady.f[i] = b * setup.oneoverarea; - - /* calculate a0 as the value which would be sampled for the - * fragment at (0,0), taking into account that we want to sample at - * pixel centers, in other words (0.5, 0.5). - * - * this is neat but unfortunately not a good way to do things for - * triangles with very large values of dadx or dady as it will - * result in the subtraction and re-addition from a0 of a very - * large number, which means we'll end up loosing a lot of the - * fractional bits and precision from a0. the way to fix this is - * to define a0 as the sample at a pixel center somewhere near vmin - * instead - i'll switch to this later. - */ - setup.coef[slot].a0.f[i] = (vmin_d[i] - - (setup.coef[slot].dadx.f[i] * x + - setup.coef[slot].dady.f[i] * y)); - } - - /* - _mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n", - slot, "xyzw"[i], - setup.coef[slot].a0[i], - setup.coef[slot].dadx.f[i], - setup.coef[slot].dady.f[i]); - */ + setup.coef[slot].dadx = (vector float) {0.0, 0.0, 0.0, 0.0}; + setup.coef[slot].dady = (vector float) {0.0, 0.0, 0.0, 0.0}; + setup.coef[slot].a0 = setup.vprovoke->data[slot]; } @@ -702,18 +576,16 @@ tri_linear_coeff4(uint slot) vector float b = spu_sub(spu_mul(spu_splats(setup.emaj.dx), botda), spu_mul(majda, spu_splats(setup.ebot.dx))); - setup.coef[slot].dadx.v = spu_mul(a, spu_splats(setup.oneoverarea)); - setup.coef[slot].dady.v = spu_mul(b, spu_splats(setup.oneoverarea)); + setup.coef[slot].dadx = spu_mul(a, spu_splats(setup.oneOverArea)); + setup.coef[slot].dady = spu_mul(b, spu_splats(setup.oneOverArea)); - vector float tempx = spu_mul(setup.coef[slot].dadx.v, xxxx); - vector float tempy = spu_mul(setup.coef[slot].dady.v, yyyy); + vector float tempx = spu_mul(setup.coef[slot].dadx, xxxx); + vector float tempy = spu_mul(setup.coef[slot].dady, yyyy); - setup.coef[slot].a0.v = spu_sub(vmin_d, spu_add(tempx, tempy)); + setup.coef[slot].a0 = spu_sub(vmin_d, spu_add(tempx, tempy)); } - -#if 0 /** * Compute a0, dadx and dady for a perspective-corrected interpolant, * for a triangle. @@ -722,82 +594,76 @@ tri_linear_coeff4(uint slot) * Later, when we compute the value at a particular fragment position we'll * divide the interpolated value by the interpolated W at that fragment. */ -static void tri_persp_coeff( unsigned slot, - unsigned i ) +static void +tri_persp_coeff4(uint slot) { - /* premultiply by 1/w: - */ - float mina = setup.vmin->data[slot][i] * setup.vmin->data[0][3]; - float mida = setup.vmid->data[slot][i] * setup.vmid->data[0][3]; - float maxa = setup.vmax->data[slot][i] * setup.vmax->data[0][3]; - - float botda = mida - mina; - float majda = maxa - mina; - float a = setup.ebot.dy * majda - botda * setup.emaj.dy; - float b = setup.emaj.dx * botda - majda * setup.ebot.dx; - - /* - printf("tri persp %d,%d: %f %f %f\n", slot, i, - setup.vmin->data[slot][i], - setup.vmid->data[slot][i], - setup.vmax->data[slot][i] - ); - */ + const vector float xxxx = spu_splats(spu_extract(setup.vmin->data[0], 0) - 0.5f); + const vector float yyyy = spu_splats(spu_extract(setup.vmin->data[0], 1) - 0.5f); + + const vector float vmin_w = spu_splats(spu_extract(setup.vmin->data[0], 3)); + const vector float vmid_w = spu_splats(spu_extract(setup.vmid->data[0], 3)); + const vector float vmax_w = spu_splats(spu_extract(setup.vmax->data[0], 3)); + + vector float vmin_d = setup.vmin->data[slot]; + vector float vmid_d = setup.vmid->data[slot]; + vector float vmax_d = setup.vmax->data[slot]; + + vmin_d = spu_mul(vmin_d, vmin_w); + vmid_d = spu_mul(vmid_d, vmid_w); + vmax_d = spu_mul(vmax_d, vmax_w); + + vector float botda = vmid_d - vmin_d; + vector float majda = vmax_d - vmin_d; - assert(slot < PIPE_MAX_SHADER_INPUTS); - assert(i <= 3); + vector float a = spu_sub(spu_mul(spu_splats(setup.ebot.dy), majda), + spu_mul(botda, spu_splats(setup.emaj.dy))); + vector float b = spu_sub(spu_mul(spu_splats(setup.emaj.dx), botda), + spu_mul(majda, spu_splats(setup.ebot.dx))); - setup.coef[slot].dadx.f[i] = a * setup.oneoverarea; - setup.coef[slot].dady.f[i] = b * setup.oneoverarea; - setup.coef[slot].a0.f[i] = (mina - - (setup.coef[slot].dadx.f[i] * (setup.vmin->data[0][0] - 0.5f) + - setup.coef[slot].dady.f[i] * (setup.vmin->data[0][1] - 0.5f))); + setup.coef[slot].dadx = spu_mul(a, spu_splats(setup.oneOverArea)); + setup.coef[slot].dady = spu_mul(b, spu_splats(setup.oneOverArea)); + + vector float tempx = spu_mul(setup.coef[slot].dadx, xxxx); + vector float tempy = spu_mul(setup.coef[slot].dady, yyyy); + + setup.coef[slot].a0 = spu_sub(vmin_d, spu_add(tempx, tempy)); } -#endif + /** * Compute the setup.coef[] array dadx, dady, a0 values. * Must be called after setup.vmin,vmid,vmax,vprovoke are initialized. */ -static void setup_tri_coefficients(void) +static void +setup_tri_coefficients(void) { -#if 1 uint i; for (i = 0; i < spu.vertex_info.num_attribs; i++) { - switch (spu.vertex_info.interp_mode[i]) { + switch (spu.vertex_info.attrib[i].interp_mode) { case INTERP_NONE: break; - case INTERP_POS: - /*tri_linear_coeff(i, 2, 3);*/ - /* XXX interp W if PERSPECTIVE... */ - tri_linear_coeff4(i); - break; case INTERP_CONSTANT: - const_coeff(i); + const_coeff4(i); break; + case INTERP_POS: + /* fall-through */ case INTERP_LINEAR: tri_linear_coeff4(i); break; case INTERP_PERSPECTIVE: - tri_linear_coeff4(i); /* temporary */ + tri_persp_coeff4(i); break; default: ASSERT(0); } } -#else - ASSERT(spu.vertex_info.interp_mode[0] == INTERP_POS); - ASSERT(spu.vertex_info.interp_mode[1] == INTERP_LINEAR || - spu.vertex_info.interp_mode[1] == INTERP_CONSTANT); - tri_linear_coeff(0, 2, 3); /* slot 0, z */ - tri_linear_coeff(1, 0, 4); /* slot 1, color */ -#endif } -static void setup_tri_edges(void) +static void +setup_tri_edges(void) { float vmin_x = spu_extract(setup.vmin->data[0], 0) + 0.5f; float vmid_x = spu_extract(setup.vmid->data[0], 0) + 0.5f; @@ -827,9 +693,8 @@ static void setup_tri_edges(void) * Render the upper or lower half of a triangle. * Scissoring/cliprect is applied here too. */ -static void subtriangle( struct edge *eleft, - struct edge *eright, - unsigned lines ) +static void +subtriangle(struct edge *eleft, struct edge *eright, unsigned lines) { const int minx = setup.cliprect_minx; const int maxx = setup.cliprect_maxx; @@ -902,7 +767,8 @@ static void subtriangle( struct edge *eleft, * The tile data should have already been fetched. */ boolean -tri_draw(const float *v0, const float *v1, const float *v2, uint tx, uint ty) +tri_draw(const float *v0, const float *v1, const float *v2, + uint tx, uint ty) { setup.tx = tx; setup.ty = ty; @@ -926,19 +792,14 @@ tri_draw(const float *v0, const float *v1, const float *v2, uint tx, uint ty) setup.span.y_flags = 0; setup.span.right[0] = 0; setup.span.right[1] = 0; - /* setup.span.z_mode = tri_z_mode( setup.ctx ); */ - /* init_constant_attribs( setup ); */ - - if (setup.oneoverarea < 0.0) { - /* emaj on left: - */ + if (setup.oneOverArea < 0.0) { + /* emaj on left */ subtriangle( &setup.emaj, &setup.ebot, setup.ebot.lines ); subtriangle( &setup.emaj, &setup.etop, setup.etop.lines ); } else { - /* emaj on right: - */ + /* emaj on right */ subtriangle( &setup.ebot, &setup.emaj, setup.ebot.lines ); subtriangle( &setup.etop, &setup.emaj, setup.etop.lines ); } |