diff options
Diffstat (limited to 'src/gallium')
-rw-r--r-- | src/gallium/auxiliary/gallivm/lp_bld_arit.c | 534 |
1 files changed, 429 insertions, 105 deletions
diff --git a/src/gallium/auxiliary/gallivm/lp_bld_arit.c b/src/gallium/auxiliary/gallivm/lp_bld_arit.c index b55c863aa0..47aa9aa362 100644 --- a/src/gallium/auxiliary/gallivm/lp_bld_arit.c +++ b/src/gallium/auxiliary/gallivm/lp_bld_arit.c @@ -59,6 +59,7 @@ #include "lp_bld_pack.h" #include "lp_bld_debug.h" #include "lp_bld_arit.h" +#include "lp_bld_printf.h" /** @@ -1171,133 +1172,456 @@ lp_build_rsqrt(struct lp_build_context *bld, } -#ifdef PIPE_OS_WINDOWS - -/* - * XXX: X86 backend translates llvm.cos.v4f32 to 4 calls to CRT's cosf() - * which is neither efficient nor does the CRT linkage work on Windows - * causing segmentation fault. - * - * XXX: With LLVM 2.7 both schemes cause an assertion failure. - */ -static LLVMValueRef -lp_build_sincos(struct lp_build_context *bld, - const char *name, - float (*func)(float), - LLVMValueRef a) +static inline LLVMValueRef +lp_build_const_v4si(unsigned long value) { - LLVMModuleRef module = - LLVMGetGlobalParent(LLVMGetBasicBlockParent(LLVMGetInsertBlock(bld->builder))); - LLVMValueRef function; - LLVMValueRef res; - unsigned i; - - assert(bld->type.floating); - assert(bld->type.width == 32); - - function = LLVMGetNamedFunction(module, name); - if (!function) { - LLVMTypeRef ret_type; - LLVMTypeRef arg_types[1]; - LLVMTypeRef function_type; - - ret_type = LLVMFloatType(); - arg_types[0] = LLVMFloatType(); - function_type = LLVMFunctionType(ret_type, arg_types, Elements(arg_types), 0); - function = LLVMAddFunction(module, name, function_type); - - LLVMSetFunctionCallConv(function, LLVMCCallConv); - LLVMSetLinkage(function, LLVMPrivateLinkage); - - assert(LLVMIsDeclaration(function)); - - LLVMAddGlobalMapping(lp_build_engine, function, func); - } - - res = bld->undef; - - for (i = 0; i < bld->type.length; ++i) { - LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0); - LLVMValueRef args[1]; - LLVMValueRef tmp; - - args[0] = LLVMBuildExtractElement(bld->builder, a, index, ""); - - tmp = LLVMBuildCall(bld->builder, function, args, Elements(args), ""); - - res = LLVMBuildInsertElement(bld->builder, res, tmp, index, ""); - } - - return res; + LLVMValueRef element = LLVMConstInt(LLVMInt32Type(), value, 0); + LLVMValueRef elements[4] = { element, element, element, element }; + return LLVMConstVector(elements, 4); } -static float c_cosf( float f ) +static inline LLVMValueRef +lp_build_const_v4sf(float value) { - return (float) cos( (double) f ); + LLVMValueRef element = LLVMConstReal(LLVMFloatType(), value); + LLVMValueRef elements[4] = { element, element, element, element }; + return LLVMConstVector(elements, 4); } -static float c_sinf( float f ) -{ - return (float) sin( (double) f ); -} - -LLVMValueRef -lp_build_cos(struct lp_build_context *bld, - LLVMValueRef a) -{ - return lp_build_sincos(bld, "cosf", &c_cosf, a); -} - -LLVMValueRef -lp_build_sin(struct lp_build_context *bld, - LLVMValueRef a) -{ - return lp_build_sincos(bld, "sinf", &c_sinf, a); -} - -#else /* !PIPE_OS_WINDOWS */ /** - * Generate cos(a) + * Generate sin(a) using SSE2 */ LLVMValueRef -lp_build_cos(struct lp_build_context *bld, - LLVMValueRef a) +lp_build_sin(struct lp_build_context *bld, + LLVMValueRef a) { - const struct lp_type type = bld->type; - LLVMTypeRef vec_type = lp_build_vec_type(type); - char intrinsic[32]; - - /* TODO: optimize the constant case */ - - assert(type.floating); - util_snprintf(intrinsic, sizeof intrinsic, "llvm.cos.v%uf%u", type.length, type.width); + struct lp_type int_type = lp_int_type(bld->type); + LLVMBuilderRef b = bld->builder; + LLVMTypeRef v4sf = LLVMVectorType(LLVMFloatType(), 4); + LLVMTypeRef v4si = LLVMVectorType(LLVMInt32Type(), 4); + + /* + * take the absolute value, + * x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask); + */ + + LLVMValueRef inv_sig_mask = lp_build_const_v4si(~0x80000000); + LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, v4si, "a_v4si"); + + LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi"); + LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, v4sf, "x_abs"); + + /* + * extract the sign bit (upper one) + * sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask); + */ + LLVMValueRef sig_mask = lp_build_const_v4si(0x80000000); + LLVMValueRef sign_bit_i = LLVMBuildAnd(b, a_v4si, sig_mask, "sign_bit_i"); + + /* + * scale by 4/Pi + * y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI); + */ + + LLVMValueRef FOPi = lp_build_const_v4sf(1.27323954473516); + LLVMValueRef scale_y = LLVMBuildMul(b, x_abs, FOPi, "scale_y"); - return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a); + /* + * store the integer part of y in mm0 + * emm2 = _mm_cvttps_epi32(y); + */ + + LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, v4si, "emm2_i"); + + /* + * j=(j+1) & (~1) (see the cephes sources) + * emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1); + */ + + LLVMValueRef all_one = lp_build_const_v4si(1); + LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add"); + /* + * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1); + */ + LLVMValueRef inv_one = lp_build_const_v4si(~1); + LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and"); + + /* + * y = _mm_cvtepi32_ps(emm2); + */ + LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, v4sf, "y_2"); + + /* get the swap sign flag + * emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4); + */ + LLVMValueRef pi32_4 = lp_build_const_v4si(4); + LLVMValueRef emm0_and = LLVMBuildAnd(b, emm2_add, pi32_4, "emm0_and"); + + /* + * emm2 = _mm_slli_epi32(emm0, 29); + */ + LLVMValueRef const_29 = lp_build_const_v4si(29); + LLVMValueRef swap_sign_bit = LLVMBuildShl(b, emm0_and, const_29, "swap_sign_bit"); + + /* + * get the polynom selection mask + * there is one polynom for 0 <= x <= Pi/4 + * and another one for Pi/4<x<=Pi/2 + * Both branches will be computed. + * + * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2); + * emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); + */ + + LLVMValueRef pi32_2 = lp_build_const_v4si(2); + LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_and, pi32_2, "emm2_3"); + LLVMValueRef poly_mask = lp_build_compare(b, int_type, PIPE_FUNC_EQUAL, + emm2_3, lp_build_const_v4si(0)); + /* + * sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit); + */ + LLVMValueRef sign_bit_1 = LLVMBuildXor(b, sign_bit_i, swap_sign_bit, "sign_bit"); + + /* + * _PS_CONST(minus_cephes_DP1, -0.78515625); + * _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4); + * _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8); + */ + LLVMValueRef DP1 = lp_build_const_v4sf(-0.78515625); + LLVMValueRef DP2 = lp_build_const_v4sf(-2.4187564849853515625e-4); + LLVMValueRef DP3 = lp_build_const_v4sf(-3.77489497744594108e-8); + + /* + * The magic pass: "Extended precision modular arithmetic" + * x = ((x - y * DP1) - y * DP2) - y * DP3; + * xmm1 = _mm_mul_ps(y, xmm1); + * xmm2 = _mm_mul_ps(y, xmm2); + * xmm3 = _mm_mul_ps(y, xmm3); + */ + LLVMValueRef xmm1 = LLVMBuildMul(b, y_2, DP1, "xmm1"); + LLVMValueRef xmm2 = LLVMBuildMul(b, y_2, DP2, "xmm2"); + LLVMValueRef xmm3 = LLVMBuildMul(b, y_2, DP3, "xmm3"); + + /* + * x = _mm_add_ps(x, xmm1); + * x = _mm_add_ps(x, xmm2); + * x = _mm_add_ps(x, xmm3); + */ + + LLVMValueRef x_1 = LLVMBuildAdd(b, x_abs, xmm1, "x_1"); + LLVMValueRef x_2 = LLVMBuildAdd(b, x_1, xmm2, "x_2"); + LLVMValueRef x_3 = LLVMBuildAdd(b, x_2, xmm3, "x_3"); + + /* + * Evaluate the first polynom (0 <= x <= Pi/4) + * + * z = _mm_mul_ps(x,x); + */ + LLVMValueRef z = LLVMBuildMul(b, x_3, x_3, "z"); + + /* + * _PS_CONST(coscof_p0, 2.443315711809948E-005); + * _PS_CONST(coscof_p1, -1.388731625493765E-003); + * _PS_CONST(coscof_p2, 4.166664568298827E-002); + */ + LLVMValueRef coscof_p0 = lp_build_const_v4sf(2.443315711809948E-005); + LLVMValueRef coscof_p1 = lp_build_const_v4sf(-1.388731625493765E-003); + LLVMValueRef coscof_p2 = lp_build_const_v4sf(4.166664568298827E-002); + + /* + * y = *(v4sf*)_ps_coscof_p0; + * y = _mm_mul_ps(y, z); + */ + LLVMValueRef y_3 = LLVMBuildMul(b, z, coscof_p0, "y_3"); + LLVMValueRef y_4 = LLVMBuildAdd(b, y_3, coscof_p1, "y_4"); + LLVMValueRef y_5 = LLVMBuildMul(b, y_4, z, "y_5"); + LLVMValueRef y_6 = LLVMBuildAdd(b, y_5, coscof_p2, "y_6"); + LLVMValueRef y_7 = LLVMBuildMul(b, y_6, z, "y_7"); + LLVMValueRef y_8 = LLVMBuildMul(b, y_7, z, "y_8"); + + + /* + * tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5); + * y = _mm_sub_ps(y, tmp); + * y = _mm_add_ps(y, *(v4sf*)_ps_1); + */ + LLVMValueRef half = lp_build_const_v4sf(0.5); + LLVMValueRef tmp = LLVMBuildMul(b, z, half, "tmp"); + LLVMValueRef y_9 = LLVMBuildSub(b, y_8, tmp, "y_8"); + LLVMValueRef one = lp_build_const_v4sf(1.0); + LLVMValueRef y_10 = LLVMBuildAdd(b, y_9, one, "y_9"); + + /* + * _PS_CONST(sincof_p0, -1.9515295891E-4); + * _PS_CONST(sincof_p1, 8.3321608736E-3); + * _PS_CONST(sincof_p2, -1.6666654611E-1); + */ + LLVMValueRef sincof_p0 = lp_build_const_v4sf(-1.9515295891E-4); + LLVMValueRef sincof_p1 = lp_build_const_v4sf(8.3321608736E-3); + LLVMValueRef sincof_p2 = lp_build_const_v4sf(-1.6666654611E-1); + + /* + * Evaluate the second polynom (Pi/4 <= x <= 0) + * + * y2 = *(v4sf*)_ps_sincof_p0; + * y2 = _mm_mul_ps(y2, z); + * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1); + * y2 = _mm_mul_ps(y2, z); + * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2); + * y2 = _mm_mul_ps(y2, z); + * y2 = _mm_mul_ps(y2, x); + * y2 = _mm_add_ps(y2, x); + */ + + LLVMValueRef y2_3 = LLVMBuildMul(b, z, sincof_p0, "y2_3"); + LLVMValueRef y2_4 = LLVMBuildAdd(b, y2_3, sincof_p1, "y2_4"); + LLVMValueRef y2_5 = LLVMBuildMul(b, y2_4, z, "y2_5"); + LLVMValueRef y2_6 = LLVMBuildAdd(b, y2_5, sincof_p2, "y2_6"); + LLVMValueRef y2_7 = LLVMBuildMul(b, y2_6, z, "y2_7"); + LLVMValueRef y2_8 = LLVMBuildMul(b, y2_7, x_3, "y2_8"); + LLVMValueRef y2_9 = LLVMBuildAdd(b, y2_8, x_3, "y2_9"); + + /* + * select the correct result from the two polynoms + * xmm3 = poly_mask; + * y2 = _mm_and_ps(xmm3, y2); //, xmm3); + * y = _mm_andnot_ps(xmm3, y); + * y = _mm_add_ps(y,y2); + */ + LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, v4si, "y2_i"); + LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, v4si, "y_i"); + LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and"); + LLVMValueRef inv = lp_build_const_v4si(~0); + LLVMValueRef poly_mask_inv = LLVMBuildXor(b, poly_mask, inv, "poly_mask_inv"); + LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and"); + LLVMValueRef y_combine = LLVMBuildAdd(b, y_and, y2_and, "y_combine"); + + /* + * update the sign + * y = _mm_xor_ps(y, sign_bit); + */ + LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit_1, "y_sin"); + LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, v4sf, "y_result"); + return y_result; } /** - * Generate sin(a) + * Generate cos(a) using SSE2 */ LLVMValueRef -lp_build_sin(struct lp_build_context *bld, - LLVMValueRef a) +lp_build_cos(struct lp_build_context *bld, + LLVMValueRef a) { - const struct lp_type type = bld->type; - LLVMTypeRef vec_type = lp_build_vec_type(type); - char intrinsic[32]; - - /* TODO: optimize the constant case */ - - assert(type.floating); - util_snprintf(intrinsic, sizeof intrinsic, "llvm.sin.v%uf%u", type.length, type.width); + struct lp_type int_type = lp_int_type(bld->type); + LLVMBuilderRef b = bld->builder; + LLVMTypeRef v4sf = LLVMVectorType(LLVMFloatType(), 4); + LLVMTypeRef v4si = LLVMVectorType(LLVMInt32Type(), 4); + + /* + * take the absolute value, + * x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask); + */ + + LLVMValueRef inv_sig_mask = lp_build_const_v4si(~0x80000000); + LLVMValueRef a_v4si = LLVMBuildBitCast(b, a, v4si, "a_v4si"); + + LLVMValueRef absi = LLVMBuildAnd(b, a_v4si, inv_sig_mask, "absi"); + LLVMValueRef x_abs = LLVMBuildBitCast(b, absi, v4sf, "x_abs"); + + /* + * scale by 4/Pi + * y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI); + */ + + LLVMValueRef FOPi = lp_build_const_v4sf(1.27323954473516); + LLVMValueRef scale_y = LLVMBuildMul(b, x_abs, FOPi, "scale_y"); - return lp_build_intrinsic_unary(bld->builder, intrinsic, vec_type, a); + /* + * store the integer part of y in mm0 + * emm2 = _mm_cvttps_epi32(y); + */ + + LLVMValueRef emm2_i = LLVMBuildFPToSI(b, scale_y, v4si, "emm2_i"); + + /* + * j=(j+1) & (~1) (see the cephes sources) + * emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1); + */ + + LLVMValueRef all_one = lp_build_const_v4si(1); + LLVMValueRef emm2_add = LLVMBuildAdd(b, emm2_i, all_one, "emm2_add"); + /* + * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1); + */ + LLVMValueRef inv_one = lp_build_const_v4si(~1); + LLVMValueRef emm2_and = LLVMBuildAnd(b, emm2_add, inv_one, "emm2_and"); + + /* + * y = _mm_cvtepi32_ps(emm2); + */ + LLVMValueRef y_2 = LLVMBuildSIToFP(b, emm2_and, v4sf, "y_2"); + + + /* + * emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2); + */ + LLVMValueRef const_2 = lp_build_const_v4si(2); + LLVMValueRef emm2_2 = LLVMBuildSub(b, emm2_and, const_2, "emm2_2"); + + + /* get the swap sign flag + * emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4); + */ + LLVMValueRef inv = lp_build_const_v4si(~0); + LLVMValueRef emm0_not = LLVMBuildXor(b, emm2_2, inv, "emm0_not"); + LLVMValueRef pi32_4 = lp_build_const_v4si(4); + LLVMValueRef emm0_and = LLVMBuildAnd(b, emm0_not, pi32_4, "emm0_and"); + + /* + * emm2 = _mm_slli_epi32(emm0, 29); + */ + LLVMValueRef const_29 = lp_build_const_v4si(29); + LLVMValueRef sign_bit = LLVMBuildShl(b, emm0_and, const_29, "sign_bit"); + + /* + * get the polynom selection mask + * there is one polynom for 0 <= x <= Pi/4 + * and another one for Pi/4<x<=Pi/2 + * Both branches will be computed. + * + * emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2); + * emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128()); + */ + + LLVMValueRef pi32_2 = lp_build_const_v4si(2); + LLVMValueRef emm2_3 = LLVMBuildAnd(b, emm2_2, pi32_2, "emm2_3"); + LLVMValueRef poly_mask = lp_build_compare(b, int_type, PIPE_FUNC_EQUAL, + emm2_3, lp_build_const_v4si(0)); + + /* + * _PS_CONST(minus_cephes_DP1, -0.78515625); + * _PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4); + * _PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8); + */ + LLVMValueRef DP1 = lp_build_const_v4sf(-0.78515625); + LLVMValueRef DP2 = lp_build_const_v4sf(-2.4187564849853515625e-4); + LLVMValueRef DP3 = lp_build_const_v4sf(-3.77489497744594108e-8); + + /* + * The magic pass: "Extended precision modular arithmetic" + * x = ((x - y * DP1) - y * DP2) - y * DP3; + * xmm1 = _mm_mul_ps(y, xmm1); + * xmm2 = _mm_mul_ps(y, xmm2); + * xmm3 = _mm_mul_ps(y, xmm3); + */ + LLVMValueRef xmm1 = LLVMBuildMul(b, y_2, DP1, "xmm1"); + LLVMValueRef xmm2 = LLVMBuildMul(b, y_2, DP2, "xmm2"); + LLVMValueRef xmm3 = LLVMBuildMul(b, y_2, DP3, "xmm3"); + + /* + * x = _mm_add_ps(x, xmm1); + * x = _mm_add_ps(x, xmm2); + * x = _mm_add_ps(x, xmm3); + */ + + LLVMValueRef x_1 = LLVMBuildAdd(b, x_abs, xmm1, "x_1"); + LLVMValueRef x_2 = LLVMBuildAdd(b, x_1, xmm2, "x_2"); + LLVMValueRef x_3 = LLVMBuildAdd(b, x_2, xmm3, "x_3"); + + /* + * Evaluate the first polynom (0 <= x <= Pi/4) + * + * z = _mm_mul_ps(x,x); + */ + LLVMValueRef z = LLVMBuildMul(b, x_3, x_3, "z"); + + /* + * _PS_CONST(coscof_p0, 2.443315711809948E-005); + * _PS_CONST(coscof_p1, -1.388731625493765E-003); + * _PS_CONST(coscof_p2, 4.166664568298827E-002); + */ + LLVMValueRef coscof_p0 = lp_build_const_v4sf(2.443315711809948E-005); + LLVMValueRef coscof_p1 = lp_build_const_v4sf(-1.388731625493765E-003); + LLVMValueRef coscof_p2 = lp_build_const_v4sf(4.166664568298827E-002); + + /* + * y = *(v4sf*)_ps_coscof_p0; + * y = _mm_mul_ps(y, z); + */ + LLVMValueRef y_3 = LLVMBuildMul(b, z, coscof_p0, "y_3"); + LLVMValueRef y_4 = LLVMBuildAdd(b, y_3, coscof_p1, "y_4"); + LLVMValueRef y_5 = LLVMBuildMul(b, y_4, z, "y_5"); + LLVMValueRef y_6 = LLVMBuildAdd(b, y_5, coscof_p2, "y_6"); + LLVMValueRef y_7 = LLVMBuildMul(b, y_6, z, "y_7"); + LLVMValueRef y_8 = LLVMBuildMul(b, y_7, z, "y_8"); + + + /* + * tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5); + * y = _mm_sub_ps(y, tmp); + * y = _mm_add_ps(y, *(v4sf*)_ps_1); + */ + LLVMValueRef half = lp_build_const_v4sf(0.5); + LLVMValueRef tmp = LLVMBuildMul(b, z, half, "tmp"); + LLVMValueRef y_9 = LLVMBuildSub(b, y_8, tmp, "y_8"); + LLVMValueRef one = lp_build_const_v4sf(1.0); + LLVMValueRef y_10 = LLVMBuildAdd(b, y_9, one, "y_9"); + + /* + * _PS_CONST(sincof_p0, -1.9515295891E-4); + * _PS_CONST(sincof_p1, 8.3321608736E-3); + * _PS_CONST(sincof_p2, -1.6666654611E-1); + */ + LLVMValueRef sincof_p0 = lp_build_const_v4sf(-1.9515295891E-4); + LLVMValueRef sincof_p1 = lp_build_const_v4sf(8.3321608736E-3); + LLVMValueRef sincof_p2 = lp_build_const_v4sf(-1.6666654611E-1); + + /* + * Evaluate the second polynom (Pi/4 <= x <= 0) + * + * y2 = *(v4sf*)_ps_sincof_p0; + * y2 = _mm_mul_ps(y2, z); + * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1); + * y2 = _mm_mul_ps(y2, z); + * y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2); + * y2 = _mm_mul_ps(y2, z); + * y2 = _mm_mul_ps(y2, x); + * y2 = _mm_add_ps(y2, x); + */ + + LLVMValueRef y2_3 = LLVMBuildMul(b, z, sincof_p0, "y2_3"); + LLVMValueRef y2_4 = LLVMBuildAdd(b, y2_3, sincof_p1, "y2_4"); + LLVMValueRef y2_5 = LLVMBuildMul(b, y2_4, z, "y2_5"); + LLVMValueRef y2_6 = LLVMBuildAdd(b, y2_5, sincof_p2, "y2_6"); + LLVMValueRef y2_7 = LLVMBuildMul(b, y2_6, z, "y2_7"); + LLVMValueRef y2_8 = LLVMBuildMul(b, y2_7, x_3, "y2_8"); + LLVMValueRef y2_9 = LLVMBuildAdd(b, y2_8, x_3, "y2_9"); + + /* + * select the correct result from the two polynoms + * xmm3 = poly_mask; + * y2 = _mm_and_ps(xmm3, y2); //, xmm3); + * y = _mm_andnot_ps(xmm3, y); + * y = _mm_add_ps(y,y2); + */ + LLVMValueRef y2_i = LLVMBuildBitCast(b, y2_9, v4si, "y2_i"); + LLVMValueRef y_i = LLVMBuildBitCast(b, y_10, v4si, "y_i"); + LLVMValueRef y2_and = LLVMBuildAnd(b, y2_i, poly_mask, "y2_and"); + LLVMValueRef poly_mask_inv = LLVMBuildXor(b, poly_mask, inv, "poly_mask_inv"); + LLVMValueRef y_and = LLVMBuildAnd(b, y_i, poly_mask_inv, "y_and"); + LLVMValueRef y_combine = LLVMBuildAdd(b, y_and, y2_and, "y_combine"); + + /* + * update the sign + * y = _mm_xor_ps(y, sign_bit); + */ + LLVMValueRef y_sign = LLVMBuildXor(b, y_combine, sign_bit, "y_sin"); + LLVMValueRef y_result = LLVMBuildBitCast(b, y_sign, v4sf, "y_result"); + return y_result; } -#endif /* !PIPE_OS_WINDOWS */ - /** * Generate pow(x, y) |