summaryrefslogtreecommitdiff
path: root/src/mesa/main/light.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesa/main/light.c')
-rw-r--r--src/mesa/main/light.c1183
1 files changed, 1183 insertions, 0 deletions
diff --git a/src/mesa/main/light.c b/src/mesa/main/light.c
new file mode 100644
index 0000000000..cc396f85a5
--- /dev/null
+++ b/src/mesa/main/light.c
@@ -0,0 +1,1183 @@
+/* $Id: light.c,v 1.1 1999/08/19 00:55:41 jtg Exp $ */
+
+/*
+ * Mesa 3-D graphics library
+ * Version: 3.1
+ *
+ * Copyright (C) 1999 Brian Paul All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+
+
+
+
+#ifdef PC_HEADER
+#include "all.h"
+#else
+#include <assert.h>
+#include <float.h>
+#include <math.h>
+#include <stdlib.h>
+#include <stdio.h>
+#include "context.h"
+#include "enums.h"
+#include "light.h"
+#include "macros.h"
+#include "matrix.h"
+#include "mmath.h"
+#include "simple_list.h"
+#include "types.h"
+#include "vb.h"
+#include "xform.h"
+#ifdef XFree86Server
+#include "GL/xf86glx.h"
+#endif
+#endif
+
+
+
+void gl_ShadeModel( GLcontext *ctx, GLenum mode )
+{
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glShadeModel");
+
+ if (MESA_VERBOSE & VERBOSE_API)
+ fprintf(stderr, "glShadeModel %s\n", gl_lookup_enum_by_nr(mode));
+
+ switch (mode) {
+ case GL_FLAT:
+ case GL_SMOOTH:
+ if (ctx->Light.ShadeModel!=mode) {
+ ctx->Light.ShadeModel = mode;
+ ctx->TriangleCaps ^= DD_FLATSHADE;
+ ctx->NewState |= NEW_RASTER_OPS;
+ }
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glShadeModel" );
+ }
+
+ if (ctx->Driver.ShadeModel)
+ (*ctx->Driver.ShadeModel)( ctx, mode );
+}
+
+
+
+void gl_Lightfv( GLcontext *ctx,
+ GLenum light, GLenum pname, const GLfloat *params,
+ GLint nparams )
+{
+ GLint l;
+
+ (void) nparams;
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glLight");
+
+ l = (GLint) (light - GL_LIGHT0);
+
+ if (l<0 || l>=MAX_LIGHTS) {
+ gl_error( ctx, GL_INVALID_ENUM, "glLight" );
+ return;
+ }
+
+ switch (pname) {
+ case GL_AMBIENT:
+ COPY_4V( ctx->Light.Light[l].Ambient, params );
+ break;
+ case GL_DIFFUSE:
+ COPY_4V( ctx->Light.Light[l].Diffuse, params );
+ break;
+ case GL_SPECULAR:
+ COPY_4V( ctx->Light.Light[l].Specular, params );
+ break;
+ case GL_POSITION:
+ /* transform position by ModelView matrix */
+ TRANSFORM_POINT( ctx->Light.Light[l].EyePosition,
+ ctx->ModelView.m,
+ params );
+ break;
+ case GL_SPOT_DIRECTION:
+ /* transform direction by inverse modelview */
+ if (ctx->ModelView.flags & MAT_DIRTY_INVERSE) {
+ gl_matrix_analyze( &ctx->ModelView );
+ }
+ TRANSFORM_NORMAL( ctx->Light.Light[l].EyeDirection,
+ params,
+ ctx->ModelView.inv );
+ break;
+ case GL_SPOT_EXPONENT:
+ if (params[0]<0.0 || params[0]>128.0) {
+ gl_error( ctx, GL_INVALID_VALUE, "glLight" );
+ return;
+ }
+ if (ctx->Light.Light[l].SpotExponent != params[0]) {
+ ctx->Light.Light[l].SpotExponent = params[0];
+ gl_compute_spot_exp_table( &ctx->Light.Light[l] );
+ }
+ break;
+ case GL_SPOT_CUTOFF:
+ if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) {
+ gl_error( ctx, GL_INVALID_VALUE, "glLight" );
+ return;
+ }
+ ctx->Light.Light[l].SpotCutoff = params[0];
+ ctx->Light.Light[l].CosCutoff = cos(params[0]*DEG2RAD);
+ if (ctx->Light.Light[l].CosCutoff < 0)
+ ctx->Light.Light[l].CosCutoff = 0;
+ break;
+ case GL_CONSTANT_ATTENUATION:
+ if (params[0]<0.0) {
+ gl_error( ctx, GL_INVALID_VALUE, "glLight" );
+ return;
+ }
+ ctx->Light.Light[l].ConstantAttenuation = params[0];
+ break;
+ case GL_LINEAR_ATTENUATION:
+ if (params[0]<0.0) {
+ gl_error( ctx, GL_INVALID_VALUE, "glLight" );
+ return;
+ }
+ ctx->Light.Light[l].LinearAttenuation = params[0];
+ break;
+ case GL_QUADRATIC_ATTENUATION:
+ if (params[0]<0.0) {
+ gl_error( ctx, GL_INVALID_VALUE, "glLight" );
+ return;
+ }
+ ctx->Light.Light[l].QuadraticAttenuation = params[0];
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glLight" );
+ break;
+ }
+
+ ctx->NewState |= NEW_LIGHTING;
+}
+
+
+
+void gl_GetLightfv( GLcontext *ctx,
+ GLenum light, GLenum pname, GLfloat *params )
+{
+ GLint l = (GLint) (light - GL_LIGHT0);
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetLight");
+
+ if (l<0 || l>=MAX_LIGHTS) {
+ gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
+ return;
+ }
+
+ switch (pname) {
+ case GL_AMBIENT:
+ COPY_4V( params, ctx->Light.Light[l].Ambient );
+ break;
+ case GL_DIFFUSE:
+ COPY_4V( params, ctx->Light.Light[l].Diffuse );
+ break;
+ case GL_SPECULAR:
+ COPY_4V( params, ctx->Light.Light[l].Specular );
+ break;
+ case GL_POSITION:
+ COPY_4V( params, ctx->Light.Light[l].EyePosition );
+ break;
+ case GL_SPOT_DIRECTION:
+ COPY_3V( params, ctx->Light.Light[l].EyeDirection );
+ break;
+ case GL_SPOT_EXPONENT:
+ params[0] = ctx->Light.Light[l].SpotExponent;
+ break;
+ case GL_SPOT_CUTOFF:
+ params[0] = ctx->Light.Light[l].SpotCutoff;
+ break;
+ case GL_CONSTANT_ATTENUATION:
+ params[0] = ctx->Light.Light[l].ConstantAttenuation;
+ break;
+ case GL_LINEAR_ATTENUATION:
+ params[0] = ctx->Light.Light[l].LinearAttenuation;
+ break;
+ case GL_QUADRATIC_ATTENUATION:
+ params[0] = ctx->Light.Light[l].QuadraticAttenuation;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" );
+ break;
+ }
+}
+
+
+
+void gl_GetLightiv( GLcontext *ctx, GLenum light, GLenum pname, GLint *params )
+{
+ GLint l = (GLint) (light - GL_LIGHT0);
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetLight");
+
+ if (l<0 || l>=MAX_LIGHTS) {
+ gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
+ return;
+ }
+
+ switch (pname) {
+ case GL_AMBIENT:
+ params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]);
+ params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]);
+ params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]);
+ params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]);
+ break;
+ case GL_DIFFUSE:
+ params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]);
+ params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]);
+ params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]);
+ params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]);
+ break;
+ case GL_SPECULAR:
+ params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]);
+ params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]);
+ params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]);
+ params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]);
+ break;
+ case GL_POSITION:
+ params[0] = (GLint) ctx->Light.Light[l].EyePosition[0];
+ params[1] = (GLint) ctx->Light.Light[l].EyePosition[1];
+ params[2] = (GLint) ctx->Light.Light[l].EyePosition[2];
+ params[3] = (GLint) ctx->Light.Light[l].EyePosition[3];
+ break;
+ case GL_SPOT_DIRECTION:
+ params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0];
+ params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1];
+ params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2];
+ break;
+ case GL_SPOT_EXPONENT:
+ params[0] = (GLint) ctx->Light.Light[l].SpotExponent;
+ break;
+ case GL_SPOT_CUTOFF:
+ params[0] = (GLint) ctx->Light.Light[l].SpotCutoff;
+ break;
+ case GL_CONSTANT_ATTENUATION:
+ params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation;
+ break;
+ case GL_LINEAR_ATTENUATION:
+ params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation;
+ break;
+ case GL_QUADRATIC_ATTENUATION:
+ params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" );
+ break;
+ }
+}
+
+
+
+/**********************************************************************/
+/*** Light Model ***/
+/**********************************************************************/
+
+
+void gl_LightModelfv( GLcontext *ctx, GLenum pname, const GLfloat *params )
+{
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glLightModel");
+
+ switch (pname) {
+ case GL_LIGHT_MODEL_AMBIENT:
+ COPY_4V( ctx->Light.Model.Ambient, params );
+ break;
+ case GL_LIGHT_MODEL_LOCAL_VIEWER:
+ if (params[0]==0.0)
+ ctx->Light.Model.LocalViewer = GL_FALSE;
+ else
+ ctx->Light.Model.LocalViewer = GL_TRUE;
+ break;
+ case GL_LIGHT_MODEL_TWO_SIDE:
+ if (params[0]==0.0)
+ ctx->Light.Model.TwoSide = GL_FALSE;
+ else
+ ctx->Light.Model.TwoSide = GL_TRUE;
+ break;
+ case GL_LIGHT_MODEL_COLOR_CONTROL:
+ ctx->TriangleCaps &= ~DD_SEPERATE_SPECULAR;
+ if (params[0] == (GLfloat) GL_SINGLE_COLOR)
+ ctx->Light.Model.ColorControl = GL_SINGLE_COLOR;
+ else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR) {
+ ctx->Light.Model.ColorControl = GL_SEPARATE_SPECULAR_COLOR;
+ ctx->TriangleCaps |= DD_SEPERATE_SPECULAR;
+ } else
+ gl_error( ctx, GL_INVALID_ENUM, "glLightModel(param)" );
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glLightModel" );
+ break;
+ }
+ ctx->NewState |= NEW_LIGHTING;
+}
+
+
+
+
+/********** MATERIAL **********/
+
+
+/*
+ * Given a face and pname value (ala glColorMaterial), compute a bitmask
+ * of the targeted material values.
+ */
+GLuint gl_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname,
+ GLuint legal,
+ const char *where )
+{
+ GLuint bitmask = 0;
+
+ /* Make a bitmask indicating what material attribute(s) we're updating */
+ switch (pname) {
+ case GL_EMISSION:
+ bitmask |= FRONT_EMISSION_BIT | BACK_EMISSION_BIT;
+ break;
+ case GL_AMBIENT:
+ bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT;
+ break;
+ case GL_DIFFUSE:
+ bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT;
+ break;
+ case GL_SPECULAR:
+ bitmask |= FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT;
+ break;
+ case GL_SHININESS:
+ bitmask |= FRONT_SHININESS_BIT | BACK_SHININESS_BIT;
+ break;
+ case GL_AMBIENT_AND_DIFFUSE:
+ bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT;
+ bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT;
+ break;
+ case GL_COLOR_INDEXES:
+ bitmask |= FRONT_INDEXES_BIT | BACK_INDEXES_BIT;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, where );
+ return 0;
+ }
+
+ if (face==GL_FRONT) {
+ bitmask &= FRONT_MATERIAL_BITS;
+ }
+ else if (face==GL_BACK) {
+ bitmask &= BACK_MATERIAL_BITS;
+ }
+ else if (face != GL_FRONT_AND_BACK) {
+ gl_error( ctx, GL_INVALID_ENUM, where );
+ return 0;
+ }
+
+ if (bitmask & ~legal) {
+ gl_error( ctx, GL_INVALID_ENUM, where );
+ return 0;
+ }
+
+ return bitmask;
+}
+
+
+
+
+
+
+/*
+ * Check if the global material has to be updated with info that was
+ * associated with a vertex via glMaterial.
+ * This function is used when any material values get changed between
+ * glBegin/glEnd either by calling glMaterial() or by calling glColor()
+ * when GL_COLOR_MATERIAL is enabled.
+ *
+ * KW: Added code here to keep the precomputed variables uptodate.
+ * This means we can use the faster shade functions when using
+ * GL_COLOR_MATERIAL, and we can also now use the precomputed
+ * values in the slower shading functions, which further offsets
+ * the cost of doing this here.
+ */
+void gl_update_material( GLcontext *ctx,
+ struct gl_material *src,
+ GLuint bitmask )
+{
+ struct gl_light *light, *list = &ctx->Light.EnabledList;
+ GLfloat tmp[4];
+
+ if (ctx->Light.ColorMaterialEnabled)
+ bitmask &= ~ctx->Light.ColorMaterialBitmask;
+
+ if (!bitmask)
+ return;
+
+ if (bitmask & FRONT_AMBIENT_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[0];
+ SUB_3V( tmp, src[0].Ambient, mat->Ambient );
+ ACC_SCALE_3V( ctx->Light.BaseColor[0], ctx->Light.Model.Ambient, tmp);
+ foreach (light, list) {
+ ACC_SCALE_3V( ctx->Light.BaseColor[0], light->Ambient, tmp );
+ }
+ COPY_4FV( mat->Ambient, src[0].Ambient );
+ }
+ if (bitmask & BACK_AMBIENT_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[1];
+ SUB_3V( tmp, src[1].Ambient, mat->Ambient );
+ ACC_SCALE_3V( ctx->Light.BaseColor[1], ctx->Light.Model.Ambient, tmp);
+ foreach (light, list) {
+ ACC_SCALE_3V( ctx->Light.BaseColor[0], light->Ambient, tmp );
+ }
+ COPY_4FV( mat->Ambient, src[1].Ambient );
+ }
+ if (bitmask & FRONT_DIFFUSE_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[0];
+ SUB_3V( tmp, src[0].Diffuse, mat->Diffuse );
+ foreach (light, list) {
+ ACC_SCALE_3V( light->MatDiffuse[0], light->Diffuse, tmp );
+ }
+ COPY_4FV( mat->Diffuse, src[0].Diffuse );
+ FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[0], mat->Diffuse[3]);
+ }
+ if (bitmask & BACK_DIFFUSE_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[1];
+ SUB_3V( tmp, src[1].Diffuse, mat->Diffuse );
+ foreach (light, list) {
+ ACC_SCALE_3V( light->MatDiffuse[1], light->Diffuse, tmp );
+ }
+ COPY_4FV( mat->Diffuse, src[1].Diffuse );
+ FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[1], mat->Diffuse[3]);
+ }
+ if (bitmask & FRONT_SPECULAR_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[0];
+ SUB_3V( tmp, src[0].Specular, mat->Specular );
+ foreach (light, list) {
+ if (light->Flags & LIGHT_SPECULAR) {
+ ACC_SCALE_3V( light->MatSpecular[0], light->Specular, tmp );
+ light->IsMatSpecular[0] =
+ (LEN_SQUARED_3FV(light->MatSpecular[0]) > 1e-16);
+ }
+ }
+ COPY_4FV( mat->Specular, src[0].Specular );
+ }
+ if (bitmask & BACK_SPECULAR_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[1];
+ SUB_3V( tmp, src[1].Specular, mat->Specular );
+ foreach (light, list) {
+ if (light->Flags & LIGHT_SPECULAR) {
+ ACC_SCALE_3V( light->MatSpecular[1], light->Specular, tmp );
+ light->IsMatSpecular[1] =
+ (LEN_SQUARED_3FV(light->MatSpecular[1]) > 1e-16);
+ }
+ }
+ COPY_4FV( mat->Specular, src[1].Specular );
+ }
+ if (bitmask & FRONT_EMISSION_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[0];
+ SUB_3V( tmp, src[0].Emission, mat->Emission );
+ ACC_3V( ctx->Light.BaseColor[0], tmp );
+ COPY_4FV( mat->Emission, src[0].Emission );
+ }
+ if (bitmask & BACK_EMISSION_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[1];
+ SUB_3V( tmp, src[1].Emission, mat->Emission );
+ ACC_3V( ctx->Light.BaseColor[1], tmp );
+ COPY_4FV( mat->Emission, src[1].Emission );
+ }
+ if (bitmask & FRONT_SHININESS_BIT) {
+ GLfloat shininess = ctx->Light.Material[0].Shininess = src[0].Shininess;
+ gl_compute_shine_table( ctx, 0, shininess );
+ gl_compute_shine_table( ctx, 2, shininess * .5 );
+ }
+ if (bitmask & BACK_SHININESS_BIT) {
+ GLfloat shininess = ctx->Light.Material[1].Shininess = src[1].Shininess;
+ gl_compute_shine_table( ctx, 1, shininess );
+ gl_compute_shine_table( ctx, 3, shininess * .5 );
+ }
+ if (bitmask & FRONT_INDEXES_BIT) {
+ ctx->Light.Material[0].AmbientIndex = src[0].AmbientIndex;
+ ctx->Light.Material[0].DiffuseIndex = src[0].DiffuseIndex;
+ ctx->Light.Material[0].SpecularIndex = src[0].SpecularIndex;
+ }
+ if (bitmask & BACK_INDEXES_BIT) {
+ ctx->Light.Material[1].AmbientIndex = src[1].AmbientIndex;
+ ctx->Light.Material[1].DiffuseIndex = src[1].DiffuseIndex;
+ ctx->Light.Material[1].SpecularIndex = src[1].SpecularIndex;
+ }
+
+}
+
+
+
+
+
+
+void gl_update_color_material( GLcontext *ctx,
+ const GLubyte rgba[4] )
+{
+ struct gl_light *light, *list = &ctx->Light.EnabledList;
+ GLuint bitmask = ctx->Light.ColorMaterialBitmask;
+ GLfloat tmp[4], color[4];
+
+ UBYTE_RGBA_TO_FLOAT_RGBA( color, rgba );
+
+ if (bitmask & FRONT_AMBIENT_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[0];
+ SUB_3V( tmp, color, mat->Ambient );
+ ACC_SCALE_3V( ctx->Light.BaseColor[0], ctx->Light.Model.Ambient, tmp);
+ foreach (light, list) {
+ ACC_SCALE_3V( ctx->Light.BaseColor[0], light->Ambient, tmp );
+ }
+ COPY_4FV( mat->Ambient, color );
+ }
+
+ if (bitmask & BACK_AMBIENT_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[1];
+ SUB_3V( tmp, color, mat->Ambient );
+ ACC_SCALE_3V( ctx->Light.BaseColor[1], ctx->Light.Model.Ambient, tmp);
+ foreach (light, list) {
+ ACC_SCALE_3V( ctx->Light.BaseColor[0], light->Ambient, tmp );
+ }
+ COPY_4FV( mat->Ambient, color );
+ }
+
+ if (bitmask & FRONT_DIFFUSE_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[0];
+ SUB_3V( tmp, color, mat->Diffuse );
+ foreach (light, list) {
+ ACC_SCALE_3V( light->MatDiffuse[0], light->Diffuse, tmp );
+ }
+ COPY_4FV( mat->Diffuse, color );
+ FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[0], mat->Diffuse[3]);
+ }
+
+ if (bitmask & BACK_DIFFUSE_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[1];
+ SUB_3V( tmp, color, mat->Diffuse );
+ foreach (light, list) {
+ ACC_SCALE_3V( light->MatDiffuse[1], light->Diffuse, tmp );
+ }
+ COPY_4FV( mat->Diffuse, color );
+ FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[1], mat->Diffuse[3]);
+ }
+
+ if (bitmask & FRONT_SPECULAR_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[0];
+ SUB_3V( tmp, color, mat->Specular );
+ foreach (light, list) {
+ if (light->Flags & LIGHT_SPECULAR) {
+ ACC_SCALE_3V( light->MatSpecular[0], light->Specular, tmp );
+ light->IsMatSpecular[0] =
+ (LEN_SQUARED_3FV(light->MatSpecular[0]) > 1e-16);
+ }
+ }
+ COPY_4FV( mat->Specular, color );
+ }
+ if (bitmask & BACK_SPECULAR_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[1];
+ SUB_3V( tmp, color, mat->Specular );
+ foreach (light, list) {
+ if (light->Flags & LIGHT_SPECULAR) {
+ ACC_SCALE_3V( light->MatSpecular[1], light->Specular, tmp );
+ light->IsMatSpecular[1] =
+ (LEN_SQUARED_3FV(light->MatSpecular[1]) > 1e-16);
+ }
+ }
+ COPY_4FV( mat->Specular, color );
+ }
+ if (bitmask & FRONT_EMISSION_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[0];
+ SUB_3V( tmp, color, mat->Emission );
+ ACC_3V( ctx->Light.BaseColor[0], tmp );
+ COPY_4FV( mat->Emission, color );
+ }
+ if (bitmask & BACK_EMISSION_BIT) {
+ struct gl_material *mat = &ctx->Light.Material[1];
+ SUB_3V( tmp, color, mat->Emission );
+ ACC_3V( ctx->Light.BaseColor[1], tmp );
+ COPY_4FV( mat->Emission, color );
+ }
+}
+
+
+
+
+void gl_ColorMaterial( GLcontext *ctx, GLenum face, GLenum mode )
+{
+ GLuint bitmask;
+ GLuint legal = (FRONT_EMISSION_BIT | BACK_EMISSION_BIT |
+ FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT |
+ FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT |
+ FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT);
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glColorMaterial");
+
+ bitmask = gl_material_bitmask( ctx, face, mode, legal, "glColorMaterial" );
+
+ if (bitmask != 0) {
+ ctx->Light.ColorMaterialBitmask = bitmask;
+ ctx->Light.ColorMaterialFace = face;
+ ctx->Light.ColorMaterialMode = mode;
+ }
+}
+
+
+
+/* KW: This is now called directly (ie by name) from the glMaterial*
+ * API functions.
+ */
+void gl_Materialfv( GLcontext *ctx,
+ GLenum face, GLenum pname, const GLfloat *params )
+{
+ struct immediate *IM;
+ struct gl_material *mat;
+ GLuint bitmask;
+ GLuint count;
+
+ bitmask = gl_material_bitmask( ctx, face, pname, ~0, "gl_Materialfv" );
+ if (bitmask == 0)
+ return;
+
+ IM = ctx->input;
+ count = IM->Count;
+
+ if (!(IM->Flag[count] & VERT_MATERIAL)) {
+ IM->Flag[count] |= VERT_MATERIAL;
+ IM->MaterialMask[count] = 0;
+ }
+
+ IM->MaterialMask[count] |= bitmask;
+ mat = IM->Material[count];
+ IM->LastMaterial = count;
+
+ if (bitmask & FRONT_AMBIENT_BIT) {
+ COPY_4FV( mat[0].Ambient, params );
+ }
+ if (bitmask & BACK_AMBIENT_BIT) {
+ COPY_4FV( mat[1].Ambient, params );
+ }
+ if (bitmask & FRONT_DIFFUSE_BIT) {
+ COPY_4FV( mat[0].Diffuse, params );
+ }
+ if (bitmask & BACK_DIFFUSE_BIT) {
+ COPY_4FV( mat[1].Diffuse, params );
+ }
+ if (bitmask & FRONT_SPECULAR_BIT) {
+ COPY_4FV( mat[0].Specular, params );
+ }
+ if (bitmask & BACK_SPECULAR_BIT) {
+ COPY_4FV( mat[1].Specular, params );
+ }
+ if (bitmask & FRONT_EMISSION_BIT) {
+ COPY_4FV( mat[0].Emission, params );
+ }
+ if (bitmask & BACK_EMISSION_BIT) {
+ COPY_4FV( mat[1].Emission, params );
+ }
+ if (bitmask & FRONT_SHININESS_BIT) {
+ GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F );
+ mat[0].Shininess = shininess;
+ }
+ if (bitmask & BACK_SHININESS_BIT) {
+ GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F );
+ mat[1].Shininess = shininess;
+ }
+ if (bitmask & FRONT_INDEXES_BIT) {
+ mat[0].AmbientIndex = params[0];
+ mat[0].DiffuseIndex = params[1];
+ mat[0].SpecularIndex = params[2];
+ }
+ if (bitmask & BACK_INDEXES_BIT) {
+ mat[1].AmbientIndex = params[0];
+ mat[1].DiffuseIndex = params[1];
+ mat[1].SpecularIndex = params[2];
+ }
+}
+
+
+
+
+void gl_GetMaterialfv( GLcontext *ctx,
+ GLenum face, GLenum pname, GLfloat *params )
+{
+ GLuint f;
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetMaterialfv");
+
+ if (face==GL_FRONT) {
+ f = 0;
+ }
+ else if (face==GL_BACK) {
+ f = 1;
+ }
+ else {
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" );
+ return;
+ }
+ switch (pname) {
+ case GL_AMBIENT:
+ COPY_4FV( params, ctx->Light.Material[f].Ambient );
+ break;
+ case GL_DIFFUSE:
+ COPY_4FV( params, ctx->Light.Material[f].Diffuse );
+ break;
+ case GL_SPECULAR:
+ COPY_4FV( params, ctx->Light.Material[f].Specular );
+ break;
+ case GL_EMISSION:
+ COPY_4FV( params, ctx->Light.Material[f].Emission );
+ break;
+ case GL_SHININESS:
+ *params = ctx->Light.Material[f].Shininess;
+ break;
+ case GL_COLOR_INDEXES:
+ params[0] = ctx->Light.Material[f].AmbientIndex;
+ params[1] = ctx->Light.Material[f].DiffuseIndex;
+ params[2] = ctx->Light.Material[f].SpecularIndex;
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
+ }
+}
+
+
+
+void gl_GetMaterialiv( GLcontext *ctx,
+ GLenum face, GLenum pname, GLint *params )
+{
+ GLuint f;
+
+ ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetMaterialiv");
+
+ if (face==GL_FRONT) {
+ f = 0;
+ }
+ else if (face==GL_BACK) {
+ f = 1;
+ }
+ else {
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" );
+ return;
+ }
+ switch (pname) {
+ case GL_AMBIENT:
+ params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[0] );
+ params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[1] );
+ params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[2] );
+ params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[3] );
+ break;
+ case GL_DIFFUSE:
+ params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[0] );
+ params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[1] );
+ params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[2] );
+ params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[3] );
+ break;
+ case GL_SPECULAR:
+ params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[0] );
+ params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[1] );
+ params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[2] );
+ params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[3] );
+ break;
+ case GL_EMISSION:
+ params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[0] );
+ params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[1] );
+ params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[2] );
+ params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[3] );
+ break;
+ case GL_SHININESS:
+ *params = ROUNDF( ctx->Light.Material[f].Shininess );
+ break;
+ case GL_COLOR_INDEXES:
+ params[0] = ROUNDF( ctx->Light.Material[f].AmbientIndex );
+ params[1] = ROUNDF( ctx->Light.Material[f].DiffuseIndex );
+ params[2] = ROUNDF( ctx->Light.Material[f].SpecularIndex );
+ break;
+ default:
+ gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" );
+ }
+}
+
+
+
+
+/**********************************************************************/
+/***** Lighting computation *****/
+/**********************************************************************/
+
+
+/*
+ * Notes:
+ * When two-sided lighting is enabled we compute the color (or index)
+ * for both the front and back side of the primitive. Then, when the
+ * orientation of the facet is later learned, we can determine which
+ * color (or index) to use for rendering.
+ *
+ * KW: We now know orientation in advance and only shade for
+ * the side or sides which are actually required.
+ *
+ * Variables:
+ * n = normal vector
+ * V = vertex position
+ * P = light source position
+ * Pe = (0,0,0,1)
+ *
+ * Precomputed:
+ * IF P[3]==0 THEN
+ * // light at infinity
+ * IF local_viewer THEN
+ * VP_inf_norm = unit vector from V to P // Precompute
+ * ELSE
+ * // eye at infinity
+ * h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute
+ * ENDIF
+ * ENDIF
+ *
+ * Functions:
+ * Normalize( v ) = normalized vector v
+ * Magnitude( v ) = length of vector v
+ */
+
+
+
+/*
+ * Whenever the spotlight exponent for a light changes we must call
+ * this function to recompute the exponent lookup table.
+ */
+void gl_compute_spot_exp_table( struct gl_light *l )
+{
+ int i;
+ double exponent = l->SpotExponent;
+ double tmp = 0;
+ int clamp = 0;
+
+ l->SpotExpTable[0][0] = 0.0;
+
+ for (i=EXP_TABLE_SIZE-1;i>0;i--) {
+ if (clamp == 0) {
+ tmp = pow(i/(double)(EXP_TABLE_SIZE-1), exponent);
+ if (tmp < FLT_MIN*100.0) {
+ tmp = 0.0;
+ clamp = 1;
+ }
+ }
+ l->SpotExpTable[i][0] = tmp;
+ }
+ for (i=0;i<EXP_TABLE_SIZE-1;i++) {
+ l->SpotExpTable[i][1] = l->SpotExpTable[i+1][0] - l->SpotExpTable[i][0];
+ }
+ l->SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0;
+}
+
+
+
+
+/* Calculate a new shine table. Doing this here saves a branch in
+ * lighting, and the cost of doing it early may be partially offset
+ * by keeping a MRU cache of shine tables for various shine values.
+ */
+static void compute_shine_table( struct gl_shine_tab *tab, GLfloat shininess )
+{
+ int i;
+ GLfloat *m = tab->tab;
+
+ m[0] = 0;
+ if (shininess == 0) {
+ for (i = 1 ; i <= SHINE_TABLE_SIZE ; i++)
+ m[i] = 1;
+ } else {
+ for (i = 1 ; i <= SHINE_TABLE_SIZE ; i++) {
+ double t = pow( i/(GLfloat)SHINE_TABLE_SIZE, shininess );
+ m[i] = 0;
+ if (t > 1e-20) m[i] = t;
+ }
+ }
+
+ tab->shininess = shininess;
+}
+
+#define DISTSQR(a,b) ((a-b)*(a-b))
+
+void gl_compute_shine_table( GLcontext *ctx, GLuint i, GLfloat shininess )
+{
+ struct gl_shine_tab *list = ctx->ShineTabList;
+ struct gl_shine_tab *s;
+
+ foreach(s, list)
+ if ( DISTSQR(s->shininess, shininess) < 1e-4 )
+ break;
+
+ if (s == list)
+ {
+ foreach(s, list)
+ if (s->refcount == 0) break;
+
+ compute_shine_table( s, shininess );
+ }
+
+ ctx->ShineTable[i]->refcount--;
+ ctx->ShineTable[i] = s;
+ move_to_tail( list, s );
+ s->refcount++;
+}
+
+
+
+
+void gl_reinit_light_attrib( GLcontext *ctx, struct gl_light_attrib *l )
+{
+ GLuint i;
+
+ if (ctx->ShineTable[0]->shininess != l->Material[0].Shininess) {
+ gl_compute_shine_table( ctx, 0, l->Material[0].Shininess );
+ gl_compute_shine_table( ctx, 2, l->Material[0].Shininess * .5 );
+ }
+
+ if (ctx->ShineTable[1]->shininess != l->Material[1].Shininess) {
+ gl_compute_shine_table( ctx, 1, l->Material[1].Shininess );
+ gl_compute_shine_table( ctx, 3, l->Material[1].Shininess * .5 );
+ }
+
+ make_empty_list( &l->EnabledList );
+ for (i = 0 ; i < MAX_LIGHTS ; i++) {
+ if (l->Light[i].Enabled)
+ insert_at_tail( &l->EnabledList, &l->Light[i] );
+ }
+}
+
+
+
+/*
+ * Examine current lighting parameters to determine if the optimized lighting
+ * function can be used.
+ * Also, precompute some lighting values such as the products of light
+ * source and material ambient, diffuse and specular coefficients.
+ */
+void gl_update_lighting( GLcontext *ctx )
+{
+ struct gl_light *light;
+
+ ctx->Light.Flags = 0;
+
+ foreach(light, &ctx->Light.EnabledList) {
+
+ light->Flags = 0;
+
+ if (light->EyePosition[3] != 0.0F)
+ light->Flags |= LIGHT_POSITIONAL;
+
+ if (LEN_SQUARED_3FV(light->Specular) > 1e-16)
+ light->Flags |= LIGHT_SPECULAR;
+
+ if (light->SpotCutoff != 180.0F)
+ light->Flags |= LIGHT_SPOT;
+
+ ctx->Light.Flags |= light->Flags;
+ }
+
+ ctx->Light.NeedVertices =
+ ((ctx->Light.Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) ||
+ (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR) ||
+ (ctx->Light.Model.LocalViewer && (ctx->Light.Flags & LIGHT_SPECULAR)));
+
+
+ /* Precompute some shading values.
+ */
+ if (ctx->Visual->RGBAflag)
+ {
+ GLuint sides = ((ctx->TriangleCaps & DD_TRI_LIGHT_TWOSIDE) ? 2 : 1);
+ GLuint side;
+ for (side=0; side < sides; side++) {
+ struct gl_material *mat = &ctx->Light.Material[side];
+
+ COPY_3V(ctx->Light.BaseColor[side], mat->Emission);
+ ACC_SCALE_3V(ctx->Light.BaseColor[side],
+ ctx->Light.Model.Ambient,
+ mat->Ambient);
+
+ FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[side],
+ ctx->Light.Material[side].Diffuse[3] );
+ }
+
+ foreach (light, &ctx->Light.EnabledList) {
+ for (side=0; side< sides; side++) {
+ struct gl_material *mat = &ctx->Light.Material[side];
+ SCALE_3V( light->MatDiffuse[side], light->Diffuse, mat->Diffuse );
+ SCALE_3V( light->MatAmbient[side], light->Ambient, mat->Ambient );
+ ACC_3V( ctx->Light.BaseColor[side], light->MatAmbient[side] );
+ if (light->Flags & LIGHT_SPECULAR)
+ {
+ SCALE_3V( light->MatSpecular[side], light->Specular,
+ mat->Specular);
+ light->IsMatSpecular[side] =
+ (LEN_SQUARED_3FV(light->MatSpecular[side]) > 1e-16);
+ }
+ else
+ light->IsMatSpecular[side] = 0;
+ }
+ }
+ }
+ else
+ {
+ static GLfloat ci[3] = { .30, .59, .11 };
+
+ foreach(light, &ctx->Light.EnabledList) {
+ light->dli = DOT3(ci, light->Diffuse);
+ light->sli = DOT3(ci, light->Specular);
+ }
+ }
+}
+
+/* Need to seriously restrict the circumstances under which these
+ * calc's are performed.
+ */
+void gl_compute_light_positions( GLcontext *ctx )
+{
+ struct gl_light *light;
+
+ if (ctx->Light.NeedVertices && !ctx->Light.Model.LocalViewer) {
+ GLfloat eye_z[3] = { 0, 0, 1 };
+ if (!ctx->NeedEyeCoords) {
+ TRANSFORM_NORMAL( ctx->EyeZDir, eye_z, ctx->ModelView.m );
+ } else {
+ COPY_3V( ctx->EyeZDir, eye_z );
+ }
+ }
+
+ foreach (light, &ctx->Light.EnabledList) {
+
+ if (!ctx->NeedEyeCoords) {
+ TRANSFORM_POINT( light->Position, ctx->ModelView.inv,
+ light->EyePosition );
+ } else {
+ COPY_4FV( light->Position, light->EyePosition );
+ }
+
+ if (!(light->Flags & LIGHT_POSITIONAL))
+ {
+ /* VP (VP) = Normalize( Position ) */
+ COPY_3V( light->VP_inf_norm, light->Position );
+ NORMALIZE_3FV( light->VP_inf_norm );
+
+ if (!ctx->Light.Model.LocalViewer)
+ {
+ /* h_inf_norm = Normalize( V_to_P + <0,0,1> ) */
+ ADD_3V( light->h_inf_norm, light->VP_inf_norm, ctx->EyeZDir);
+ NORMALIZE_3FV( light->h_inf_norm );
+ }
+
+ light->VP_inf_spot_attenuation = 1.0;
+ }
+
+ if (light->Flags & LIGHT_SPOT)
+ {
+ if (ctx->NeedEyeNormals) {
+ COPY_3V( light->NormDirection, light->EyeDirection );
+ } else {
+ TRANSFORM_NORMAL( light->NormDirection,
+ light->EyeDirection,
+ ctx->ModelView.m);
+ }
+
+ NORMALIZE_3FV( light->NormDirection );
+
+
+ /* Unlikely occurrance?
+ */
+ if (!(light->Flags & LIGHT_POSITIONAL)) {
+ GLfloat PV_dot_dir = - DOT3(light->VP_inf_norm,
+ light->NormDirection);
+
+ if (PV_dot_dir > light->CosCutoff) {
+ double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
+ int k = (int) x;
+ light->VP_inf_spot_attenuation =
+ (light->SpotExpTable[k][0] +
+ (x-k)*light->SpotExpTable[k][1]);
+ }
+ else
+ light->VP_inf_spot_attenuation = 0;
+ }
+ }
+ }
+}
+
+
+
+
+
+void gl_update_normal_transform( GLcontext *ctx )
+{
+ GLuint new_flag = 0;
+ normal_func *last = ctx->NormalTransform;
+
+ ctx->vb_rescale_factor = 1.0;
+
+ if (ctx->NeedEyeCoords) {
+ if (ctx->NeedNormals) {
+ GLuint transform = NORM_TRANSFORM_NO_ROT;
+
+ if (ctx->ModelView.flags & (MAT_FLAG_GENERAL |
+ MAT_FLAG_ROTATION |
+ MAT_FLAG_GENERAL_3D |
+ MAT_FLAG_PERSPECTIVE))
+ transform = NORM_TRANSFORM;
+
+
+ new_flag = ctx->NewState & NEW_MODELVIEW;
+ ctx->vb_rescale_factor = ctx->rescale_factor;
+
+ if (ctx->Transform.Normalize)
+ {
+ ctx->NormalTransform = gl_normal_tab[transform | NORM_NORMALIZE];
+ }
+ else if (ctx->Transform.RescaleNormals &&
+ ctx->rescale_factor != 1.0)
+ {
+ ctx->NormalTransform = gl_normal_tab[transform | NORM_RESCALE];
+ }
+ else
+ {
+ ctx->NormalTransform = gl_normal_tab[transform];
+ }
+ } else {
+ ctx->NormalTransform = 0;
+ }
+ }
+ else {
+ if (ctx->NeedNormals) {
+ ctx->vb_rescale_factor = 1.0/ctx->rescale_factor;
+
+ if (ctx->Transform.Normalize)
+ {
+ ctx->NormalTransform = gl_normal_tab[NORM_NORMALIZE];
+ }
+ else if (!ctx->Transform.RescaleNormals &&
+ ctx->rescale_factor != 1.0)
+ {
+ ctx->NormalTransform = gl_normal_tab[NORM_RESCALE];
+ }
+ else
+ {
+ ctx->NormalTransform = 0;
+ }
+ } else {
+ ctx->NormalTransform = 0;
+ }
+ }
+
+ if (last != ctx->NormalTransform || new_flag)
+ ctx->NewState |= NEW_NORMAL_TRANSFORM;
+}
+