summaryrefslogtreecommitdiff
path: root/src/mesa/math/m_matrix.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesa/math/m_matrix.c')
-rw-r--r--src/mesa/math/m_matrix.c172
1 files changed, 86 insertions, 86 deletions
diff --git a/src/mesa/math/m_matrix.c b/src/mesa/math/m_matrix.c
index 8f8320f256..de002adb5d 100644
--- a/src/mesa/math/m_matrix.c
+++ b/src/mesa/math/m_matrix.c
@@ -1,21 +1,21 @@
-/* $Id: m_matrix.c,v 1.7 2001/03/07 05:06:12 brianp Exp $ */
+/* $Id: m_matrix.c,v 1.8 2001/03/12 00:48:41 gareth Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.5
- *
+ *
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
- *
+ *
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
- *
+ *
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
- *
+ *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
@@ -66,13 +66,13 @@ static GLfloat Identity[16] = {
/*
- * This matmul was contributed by Thomas Malik
+ * This matmul was contributed by Thomas Malik
*
* Perform a 4x4 matrix multiplication (product = a x b).
* Input: a, b - matrices to multiply
* Output: product - product of a and b
* WARNING: (product != b) assumed
- * NOTE: (product == a) allowed
+ * NOTE: (product == a) allowed
*
* KW: 4*16 = 64 muls
*/
@@ -94,7 +94,7 @@ static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
/* Multiply two matrices known to occupy only the top three rows, such
- * as typical model matrices, and ortho matrices.
+ * as typical model matrices, and ortho matrices.
*/
static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
{
@@ -127,8 +127,8 @@ static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
matmul34( mat->m, mat->m, m );
- else
- matmul4( mat->m, mat->m, m );
+ else
+ matmul4( mat->m, mat->m, m );
}
@@ -140,7 +140,7 @@ static void print_matrix_floats( const GLfloat m[16] )
}
}
-void
+void
_math_matrix_print( const GLmatrix *m )
{
fprintf(stderr, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
@@ -176,31 +176,31 @@ static GLboolean invert_matrix_general( GLmatrix *mat )
GLfloat wtmp[4][8];
GLfloat m0, m1, m2, m3, s;
GLfloat *r0, *r1, *r2, *r3;
-
+
r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
-
+
r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
-
+
r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
-
+
r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
-
+
r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
-
+
/* choose pivot - or die */
if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
if (0.0 == r0[0]) return GL_FALSE;
-
+
/* eliminate first variable */
m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
@@ -214,12 +214,12 @@ static GLboolean invert_matrix_general( GLmatrix *mat )
if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r0[7];
if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
-
+
/* choose pivot - or die */
if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
if (0.0 == r1[1]) return GL_FALSE;
-
+
/* eliminate second variable */
m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
@@ -228,23 +228,23 @@ static GLboolean invert_matrix_general( GLmatrix *mat )
s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
-
+
/* choose pivot - or die */
if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
if (0.0 == r2[2]) return GL_FALSE;
-
+
/* eliminate third variable */
m3 = r3[2]/r2[2];
r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
r3[7] -= m3 * r2[7];
-
+
/* last check */
if (0.0 == r3[3]) return GL_FALSE;
-
+
s = 1.0/r3[3]; /* now back substitute row 3 */
r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
-
+
m2 = r2[3]; /* now back substitute row 2 */
s = 1.0/r2[2];
r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
@@ -255,7 +255,7 @@ static GLboolean invert_matrix_general( GLmatrix *mat )
m0 = r0[3];
r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
-
+
m1 = r1[2]; /* now back substitute row 1 */
s = 1.0/r1[1];
r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
@@ -263,12 +263,12 @@ static GLboolean invert_matrix_general( GLmatrix *mat )
m0 = r0[2];
r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
-
+
m0 = r0[1]; /* now back substitute row 0 */
s = 1.0/r0[0];
r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
-
+
MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
@@ -276,15 +276,15 @@ static GLboolean invert_matrix_general( GLmatrix *mat )
MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
- MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
-
+ MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
+
return GL_TRUE;
}
#undef SWAP_ROWS
/* Adapted from graphics gems II.
- */
+ */
static GLboolean invert_matrix_3d_general( GLmatrix *mat )
{
const GLfloat *in = mat->m;
@@ -293,7 +293,7 @@ static GLboolean invert_matrix_3d_general( GLmatrix *mat )
GLfloat det;
/* Calculate the determinant of upper left 3x3 submatrix and
- * determine if the matrix is singular.
+ * determine if the matrix is singular.
*/
pos = neg = 0.0;
t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
@@ -316,9 +316,9 @@ static GLboolean invert_matrix_3d_general( GLmatrix *mat )
det = pos + neg;
- if (det*det < 1e-25)
+ if (det*det < 1e-25)
return GL_FALSE;
-
+
det = 1.0 / det;
MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
@@ -340,7 +340,7 @@ static GLboolean invert_matrix_3d_general( GLmatrix *mat )
MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
MAT(in,1,3) * MAT(out,2,1) +
MAT(in,2,3) * MAT(out,2,2) );
-
+
return GL_TRUE;
}
@@ -353,13 +353,13 @@ static GLboolean invert_matrix_3d( GLmatrix *mat )
if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
return invert_matrix_3d_general( mat );
}
-
+
if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
MAT(in,0,1) * MAT(in,0,1) +
MAT(in,0,2) * MAT(in,0,2));
- if (scale == 0.0)
+ if (scale == 0.0)
return GL_FALSE;
scale = 1.0 / scale;
@@ -395,7 +395,7 @@ static GLboolean invert_matrix_3d( GLmatrix *mat )
MAT(out,2,3) = - MAT(in,2,3);
return GL_TRUE;
}
-
+
if (mat->flags & MAT_FLAG_TRANSLATION) {
/* Do the translation part */
MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
@@ -411,11 +411,11 @@ static GLboolean invert_matrix_3d( GLmatrix *mat )
else {
MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
}
-
+
return GL_TRUE;
}
-
+
static GLboolean invert_matrix_identity( GLmatrix *mat )
{
@@ -429,9 +429,9 @@ static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
const GLfloat *in = mat->m;
GLfloat *out = mat->inv;
- if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
+ if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
return GL_FALSE;
-
+
MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
MAT(out,0,0) = 1.0 / MAT(in,0,0);
MAT(out,1,1) = 1.0 / MAT(in,1,1);
@@ -452,9 +452,9 @@ static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
const GLfloat *in = mat->m;
GLfloat *out = mat->inv;
- if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
+ if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
return GL_FALSE;
-
+
MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
MAT(out,0,0) = 1.0 / MAT(in,0,0);
MAT(out,1,1) = 1.0 / MAT(in,1,1);
@@ -517,7 +517,7 @@ static GLboolean matrix_invert( GLmatrix *mat )
mat->flags |= MAT_FLAG_SINGULAR;
MEMCPY( mat->inv, Identity, sizeof(Identity) );
return GL_FALSE;
- }
+ }
}
@@ -529,15 +529,15 @@ static GLboolean matrix_invert( GLmatrix *mat )
* Generate a 4x4 transformation matrix from glRotate parameters, and
* postmultiply the input matrix by it.
*/
-void
-_math_matrix_rotate( GLmatrix *mat,
+void
+_math_matrix_rotate( GLmatrix *mat,
GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
{
/* This function contributed by Erich Boleyn (erich@uruk.org) */
GLfloat mag, s, c;
GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
GLfloat m[16];
-
+
s = sin( angle * DEG2RAD );
c = cos( angle * DEG2RAD );
@@ -646,9 +646,9 @@ _math_matrix_rotate( GLmatrix *mat,
void
-_math_matrix_frustum( GLmatrix *mat,
+_math_matrix_frustum( GLmatrix *mat,
GLfloat left, GLfloat right,
- GLfloat bottom, GLfloat top,
+ GLfloat bottom, GLfloat top,
GLfloat nearval, GLfloat farval )
{
GLfloat x, y, a, b, c, d;
@@ -672,9 +672,9 @@ _math_matrix_frustum( GLmatrix *mat,
}
void
-_math_matrix_ortho( GLmatrix *mat,
+_math_matrix_ortho( GLmatrix *mat,
GLfloat left, GLfloat right,
- GLfloat bottom, GLfloat top,
+ GLfloat bottom, GLfloat top,
GLfloat nearval, GLfloat farval )
{
GLfloat x, y, z;
@@ -738,7 +738,7 @@ _math_matrix_ortho( GLmatrix *mat,
ZERO(3) | ZERO(7) | ZERO(15) )
#define SQ(x) ((x)*(x))
-
+
/* Determine type and flags from scratch. This is expensive enough to
* only want to do it once.
*/
@@ -751,7 +751,7 @@ static void analyse_from_scratch( GLmatrix *mat )
for (i = 0 ; i < 16 ; i++) {
if (m[i] == 0.0) mask |= (1<<i);
}
-
+
if (m[0] == 1.0F) mask |= (1<<16);
if (m[5] == 1.0F) mask |= (1<<21);
if (m[10] == 1.0F) mask |= (1<<26);
@@ -759,10 +759,10 @@ static void analyse_from_scratch( GLmatrix *mat )
mat->flags &= ~MAT_FLAGS_GEOMETRY;
- /* Check for translation - no-one really cares
+ /* Check for translation - no-one really cares
*/
- if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
- mat->flags |= MAT_FLAG_TRANSLATION;
+ if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
+ mat->flags |= MAT_FLAG_TRANSLATION;
/* Do the real work
*/
@@ -771,7 +771,7 @@ static void analyse_from_scratch( GLmatrix *mat )
}
else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) {
mat->type = MATRIX_2D_NO_ROT;
-
+
if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
mat->flags = MAT_FLAG_GENERAL_SCALE;
}
@@ -784,7 +784,7 @@ static void analyse_from_scratch( GLmatrix *mat )
/* Check for scale */
if (SQ(mm-1) > SQ(1e-6) ||
- SQ(m4m4-1) > SQ(1e-6))
+ SQ(m4m4-1) > SQ(1e-6))
mat->flags |= MAT_FLAG_GENERAL_SCALE;
/* Check for rotation */
@@ -798,7 +798,7 @@ static void analyse_from_scratch( GLmatrix *mat )
mat->type = MATRIX_3D_NO_ROT;
/* Check for scale */
- if (SQ(m[0]-m[5]) < SQ(1e-6) &&
+ if (SQ(m[0]-m[5]) < SQ(1e-6) &&
SQ(m[0]-m[10]) < SQ(1e-6)) {
if (SQ(m[0]-1.0) > SQ(1e-6)) {
mat->flags |= MAT_FLAG_UNIFORM_SCALE;
@@ -831,7 +831,7 @@ static void analyse_from_scratch( GLmatrix *mat )
if (SQ(d1) < SQ(1e-6)) {
CROSS3( cp, m, m+4 );
SUB_3V( cp, cp, (m+8) );
- if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
+ if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
mat->flags |= MAT_FLAG_ROTATION;
else
mat->flags |= MAT_FLAG_GENERAL_3D;
@@ -852,7 +852,7 @@ static void analyse_from_scratch( GLmatrix *mat )
/* Analyse a matrix given that its flags are accurate - this is the
- * more common operation, hopefully.
+ * more common operation, hopefully.
*/
static void analyse_from_flags( GLmatrix *mat )
{
@@ -872,7 +872,7 @@ static void analyse_from_flags( GLmatrix *mat )
}
}
else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
- if ( m[ 8]==0.0F
+ if ( m[ 8]==0.0F
&& m[ 9]==0.0F
&& m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
mat->type = MATRIX_2D;
@@ -893,11 +893,11 @@ static void analyse_from_flags( GLmatrix *mat )
}
-void
-_math_matrix_analyse( GLmatrix *mat )
+void
+_math_matrix_analyse( GLmatrix *mat )
{
if (mat->flags & MAT_DIRTY_TYPE) {
- if (mat->flags & MAT_DIRTY_FLAGS)
+ if (mat->flags & MAT_DIRTY_FLAGS)
analyse_from_scratch( mat );
else
analyse_from_flags( mat );
@@ -913,7 +913,7 @@ _math_matrix_analyse( GLmatrix *mat )
}
-void
+void
_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
{
MEMCPY( to->m, from->m, sizeof(Identity) );
@@ -931,7 +931,7 @@ _math_matrix_copy( GLmatrix *to, const GLmatrix *from )
}
-void
+void
_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
{
GLfloat *m = mat->m;
@@ -945,12 +945,12 @@ _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
else
mat->flags |= MAT_FLAG_GENERAL_SCALE;
- mat->flags |= (MAT_DIRTY_TYPE |
+ mat->flags |= (MAT_DIRTY_TYPE |
MAT_DIRTY_INVERSE);
}
-void
+void
_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
{
GLfloat *m = mat->m;
@@ -959,20 +959,20 @@ _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
- mat->flags |= (MAT_FLAG_TRANSLATION |
- MAT_DIRTY_TYPE |
+ mat->flags |= (MAT_FLAG_TRANSLATION |
+ MAT_DIRTY_TYPE |
MAT_DIRTY_INVERSE);
}
-void
+void
_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
{
MEMCPY( mat->m, m, 16*sizeof(GLfloat) );
mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
}
-void
+void
_math_matrix_ctr( GLmatrix *m )
{
if ( m->m == 0 ) {
@@ -984,7 +984,7 @@ _math_matrix_ctr( GLmatrix *m )
m->flags = 0;
}
-void
+void
_math_matrix_dtr( GLmatrix *m )
{
if ( m->m != 0 ) {
@@ -998,7 +998,7 @@ _math_matrix_dtr( GLmatrix *m )
}
-void
+void
_math_matrix_alloc_inv( GLmatrix *m )
{
if ( m->inv == 0 ) {
@@ -1008,32 +1008,32 @@ _math_matrix_alloc_inv( GLmatrix *m )
}
-void
+void
_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
{
dest->flags = (a->flags |
b->flags |
- MAT_DIRTY_TYPE |
+ MAT_DIRTY_TYPE |
MAT_DIRTY_INVERSE);
if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
matmul34( dest->m, a->m, b->m );
- else
+ else
matmul4( dest->m, a->m, b->m );
}
-void
+void
_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
{
dest->flags |= (MAT_FLAG_GENERAL |
- MAT_DIRTY_TYPE |
+ MAT_DIRTY_TYPE |
MAT_DIRTY_INVERSE);
- matmul4( dest->m, dest->m, m );
+ matmul4( dest->m, dest->m, m );
}
-void
+void
_math_matrix_set_identity( GLmatrix *mat )
{
MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) );
@@ -1049,7 +1049,7 @@ _math_matrix_set_identity( GLmatrix *mat )
-void
+void
_math_transposef( GLfloat to[16], const GLfloat from[16] )
{
to[0] = from[0];
@@ -1071,7 +1071,7 @@ _math_transposef( GLfloat to[16], const GLfloat from[16] )
}
-void
+void
_math_transposed( GLdouble to[16], const GLdouble from[16] )
{
to[0] = from[0];
@@ -1092,7 +1092,7 @@ _math_transposed( GLdouble to[16], const GLdouble from[16] )
to[15] = from[15];
}
-void
+void
_math_transposefd( GLfloat to[16], const GLdouble from[16] )
{
to[0] = from[0];