Age | Commit message (Collapse) | Author |
|
Fixes the following GCC warning on 32-bit platforms.
warning: format '%li' expects type 'long int', but argument 4 has type 'int'
|
|
i686-apple-darwin10-gcc-4.2.1 generated the following warning.
warning: 'score' may be used uninitialized in this function
GCC 4.4.3 on Linux didn't generate the above warning.
|
|
Partialy fix texturing from depth buffer, depth buffer is tiled
following different tile organisation that color buffer. This
properly set the tile type & array mode field of texture sampler
when sampling from db resource.
Add initial support to untiling buffer when transfering them,
it's kind of broken by corruption the vertex buffer of previous
draw.
Signed-off-by: Jerome Glisse <jglisse@redhat.com>
|
|
This is valid input, and asserting here does causes the test suites that
verify this to crash.
Also, the assert was wrongly accepting the case
max_index == vert_info->count
which, IIUC, is the first vertex outside the buffer. Assuming the
vert_info->count is precise (which often is not the case).
|
|
|
|
The variable is actually used but only in the body of an assert.
|
|
|
|
The 'vec4[12] foo' style already worked, but the 'vec4 foo[12]' style
did not. Also, 'vec4[] foo' was wrongly accepted.
Fixes piglit test cases array-19.vert and array-21.vert.
May fix fd.o bug #29684 (or at least part of it).
|
|
|
|
|
|
Fixes build error with MSVC.
|
|
Move declarations before code.
Fix void pointer arithmetic.
|
|
|
|
See comments for detailed rationale.
Thanks to Michal Krol and Zack Rusin for detecting and investigating this
in detail.
|
|
|
|
Add u_linear.c and u_linkages.c to SCons build.
Reorder list of files to be more alphabetical.
|
|
This patch reorders the list of files so that the order is more alphabetic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Not sure why this mostly works.
|
|
|
|
Might reduce the risk of running out of memory
|
|
For some reason nv30 seems to like to reset the viewport, even though
attempts to isolate where exactly it does that have currently been
inconclusive.
|
|
|
|
Still no control flow support, but basic stuff works.
|
|
|
|
This is a full rewrite of the drawing and buffer management logic.
It offers a lot of improvements:
1. A copy of buffers is now always kept in system memory. This is
necessary to allow software processing of them, which is necessary
or improves performance in many cases.
2. Support for pushing vertices on the FIFO, with index lookup if necessary.
3. "Smart" draw code that tries to intelligently choose the cheapest
way to draw something: whether to use inline vertices or hardware
vertex buffer, and whether to use hardware index buffers
4. Support for all vertex formats supported by the hardware
5. Usage of translate to push vertices, supporting all formats that are
sensible to use as vertex formats
6. Support for base vertex
7. Usage of Ben Skeggs' primitive splitter originally for nv50, allowing
correct splitting of line loops, triangle fans, etc.
8. Support for instancing
9. Precomputation using the vertex elements CSO
Thanks to Ben Skeggs for his primitive splitter originally for nv50.
Thanks to Christoph Bumiller for his nv50 push code, that was the basis
of this work, even though I changed his code dramatically, in particular
to replace his ad-hoc vertex data emitter with translate.
The changes could also go into nv50 too, but there are substantial
differences due to the additional nv50 hardware features.
|
|
This is a significant refactoring of the sampling code that:
- Moves all generic functions in nvfx_fragtex.c
- Adds a driver-specific sampler view structure and uses it to
precompute texture setup as it should be done
- Unifies a bit more of code between nv30 and nv40
- Adds support for sampler view swizzles
- Support for specifying as sampler view format different from the
resource one (only trivially)
- Support for sampler view specification of first and last level
- Support for depth textures on nv30, both for reading depth and
for compare
- Support for sRGB textures
- Unifies the format table between nv30 and nv40
- Expands the format table to include essentially all supportable formats
except mixed sign and "autonormal" formats
- Fixes the "is format supported" logic, which was quite broken, and
makes it use the format table
Only tested on nv30 currently.
|
|
Stop using the vtbl, and use real transfers for buffers too.
|
|
Seems a reasonable threshold for now.
Significantly speeds up Piglit's 1x1 glReadPixels (but, you know,
reading pixels in 1x1 blocks is NOT a good idea, especially if you
might be running on a less-than-perfect driver).
|
|
This patch adds support for creating temporary surfaces to allow
rendering to surfaces that cannot be rendered to.
It uses the _second_ version of the render temporary infrastructure.
This is necessary for swizzled 3D textures and small mipmaps of
swizzled 2D textures.
This version of the patch creates a resource to use as a temporary
instead of a raw BO, making the code simpler.
|
|
This uses nv30's _RECT formats.
|
|
Use an array indexed by the pipe format instead of doing a linear scan.
|
|
Now that the new 2D code is in place, swizzling can be safely enabled.
Render temporaries are needed in some cases, so this may degrade nv30
a bit until it gets render temporaries too.
|
|
This patch implements nv04_surface_copy/fill using the new 2D engine module.
It supports falling back to the 3D engine using the u_blitter module, which will be
added in a later patch.
Also adds support for using the 3D engine, reusing the u_blitter module
created for r300.
This is used for unswizzling and copies between swizzled surfaces.
|
|
This patch add a brand new nv04-nv40 2D engine module.
It should correctly implement all operations involving swizzled, and 3D-swizzled surfaces.
This code is independent from the Gallium framework and can thus be reused in the DDX and classic Mesa drivers (it's only likely to be useful in the latter, though).
Currently, surface_copy and surface_fill are broken for 3D textures, for swizzled source textures and possibly for some misaligned cases
The code is based around the new nv04_region structure, which encapsulates the information from pipe_surface needed for the 2D engine and CPU copies.
The use of nv04_region makes the code independent of the Gallium framework and allows to transform the nv04_region without clobbering the nv04_region.
The existing M2MF, blitter, and SWIZZLED_SURFACE paths have been improved and a new CPU path has been added.
There is also support to tell the caller to use the 3D engine.
The main feature of the copy/fill setup algorithm is linearization/contiguous-linearization of swizzled surfaces.
The idea of linearization is that some swizzled surfaces are laid out like linear ones (1xN, 2xN, Nx1) and can thus be used as such (e.g. useful for copying single pixels).
Also, some rectangles (e.g. the whole surface) are contiguous in memory. If both the source and destination rectangles are swizzled but contiguous, then they can be regarded as both linear: this is the idea of "contiguous linearization".
This, for instance, allows to use the 2D engine to duplicate the content of a swizzled surface to another swizzled surface, by pretending they are actually linear.
After linearization, the result may not be 64-byte aligned. Another transformation is done to enlarge the linear surface so that it becomes 64-byte aligned.
This is also used to 64-byte align swizzled texture mipmaps.
The inner loop of the CPU path is as optimized as possible without using SSE/SSE2.
Future improvements could include SSE/SSE2 support, and possibly a faster coordinate swizzling algorithm (which is however not used in the inner loop).
It may be a good idea to autogenerate swizzling code at least for all possible POT 2D texture dimensions (less than 256), maybe for all 3D ones too (less than 4096).
Also, it woud be a very good idea to make a copy with the GPU first if the source surface is in uncached memory.
|