Age | Commit message (Collapse) | Author |
|
Remove duplicated include.
Signed-off-by: Brian Paul <brianp@vmware.com>
|
|
Include p_compiler.h for stdint.h uint*_t symbols.
|
|
Not sure whether it works now (it is still disabled).
|
|
Changes in v5:
- Add sse2_movdqa
Changes in v4:
- Use _WIN64 instead of WIN64
Changes in v3:
- Add target and target caps functions, so that they could be different in
principle from the current CPU and they don't need #ifs to check
Changes in v2:
- Win64 support (untested)
- Use u_cpu_detect.h constants instead of #ifs
This commit adds minimal x86-64 support: only movs between registers
are supported for r8-r15, and x64_rexw() must be used to ask for 64-bit
operations.
It also adds several new instructions for the new translate_sse code.
movdqa
|
|
Currently, only 32-bit indices are supported, but some use cases
translate needs support for all types.
|
|
|
|
|
|
|
|
Into os/os_thread.h and util/u_atomic.h respectively.
|
|
Conflicts:
src/gallium/auxiliary/tgsi/tgsi_dump.c
src/gallium/include/pipe/p_shader_tokens.h
|
|
Conflicts:
docs/relnotes.html
src/gallium/drivers/llvmpipe/lp_tex_sample_c.c
src/gallium/drivers/r300/r300_cs.h
src/mesa/drivers/dri/i965/brw_wm_surface_state.c
src/mesa/main/enums.c
|
|
|
|
|
|
Makes integration of gallium into out of tree components much easier. No
pratical change for components in this tree,
|
|
|
|
|
|
As we're only using 32bit bitmasks.
|
|
|
|
Signed-off-by: Alan Coopersmith <alan.coopersmith@sun.com>
|
|
BSD supports pipe in the same way as linux hence options which
are safe for linux are also safe for BSD. Define PIPE_OS_BSD in
include/pipe/p_config.h and adjust the defines to make use of it.
Also define MAP_ANONYMOUS for BSD systems which use MAP_ANON
Signed-off-by: Benjamin Close <Benjamin.Close@clearchain.com>
|
|
The template makefile that most libraries in
gallium included was based on dri and had a bunch
unrelevant junk in it.
Update it and improve the depending makefiles.
|
|
The debug functions depend on several util function for os abstractions, and
these depend on debug functions, so a seperate module is not possible.
|
|
|
|
|
|
|
|
|
|
This is a set of changes that optimizes the memory use of fragment
operation programs (by using and transmitting only as much memory as is
needed for the fragment ops programs, instead of maximal sizes), as well
as eliminate the dependency on hard-coded maximal program sizes. State
that is not dependent on fragment facing (i.e. that isn't using
two-sided stenciling) will only save and transmit a single
fragment operation program, instead of two identical programs.
- Added the ability to emit a LNOP (No Operation (Load)) instruction.
This is used to pad the generated fragment operations programs to
a multiple of 8 bytes, which is necessary for proper operation of
the dual instruction pipeline, and also required for proper SPU-side
decoding.
- Added the ability to allocate and manage a variant-length
struct cell_command_fragment_ops. This structure now puts the
generated function field at the end, where it can be as large
as necessary.
- On the PPU side, we now combine the generated front-facing and
back-facing code into a single variant-length buffer (and only use one
if the two sets of code are identical) for transmission to the SPU.
- On the SPU side, we pull the correct sizes out of the buffer,
allocate a new code buffer if the one we have isn't large enough,
and save the code to that buffer. The buffer is deallocated when
the SPU exits.
- Commented out the emit_fetch() static function, which was not being used.
|
|
Many stencil tests were failing because of a failure to read the
stencil buffer, due to "twiddling" (or "untwiddling") "an unsupported
texture format". This is fixed for the case of a stencil/Z S824Z format
(which twiddles just like the 32-bit color formats).
tests/stencilwrap.c was failing on the GL_INVERT test, because
the emitted code for "spe_xori" turned out not to be an actual
"xori" instruction, but rather a "stqd" instruction, because
of a typo in the rtasm code. This is now fixed, and
tests/stencil_wrap now works.
|
|
|
|
|
|
|
|
|
|
|
|
With these changes, the tests/stencil_twoside test now works.
- Eliminate blending from the stencil_twoside test, as it produces an
unneeded dependency on having blending working
- The spe_splat() function will now work if the register being splatted
and the destination register are the same
- Separate fragment code generated for front-facing and back-facing
fragments. Often these are the same; if two-sided stenciling is on,
they can be different. This is easier and faster than generating
code that does both tests and merges the results.
- Fixed a cut/paste bug where if the back Z-pass stencil operation
were different from all the other operations, the back Z-fail
results were incorrect.
|
|
|
|
|
|
|
|
Was 32, now 5. The param is expressed as a power of two exponent.
The net effect is that the alignment was a no-op on X86 but on PPC we
always got the same memory address everytime rtasm_exec_malloc() was called.
|
|
functions in mesa/main/mm.c
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Plus, add ppc_reserve_register() func.
|
|
|
|
|
|
immediate field
This type of checking should be expanded to cover more instructions...
|
|
|