Age | Commit message (Collapse) | Author |
|
The vector operator collects 2, 3, or 4 scalar components into a
vector. Doing this has several advantages. First, it will make
ud-chain tracking for components of vectors much easier. Second, a
later optimization pass could collect scalars into vectors to allow
generation of SWZ instructions (or similar as operands to other
instructions on R200 and i915). It also enables an easy way to
generate IR for SWZ instructions in the ARB_vertex_program assembler.
|
|
The operate just like ir_unop_sin and ir_unop_cos except that they
expect their inputs to be limited to the range [-pi, pi]. Several
GPUs require this limited range for their sine and cosine
instructions, so having these as operations (along with a to-be-written
lowering pass) helps this architectures.
These new operations also matche the semantics of the
GL_ARB_fragment_program SCS instruction. Having these as operations
helps in generating GLSL IR directly from assembly fragment programs.
|
|
|
|
|
|
In ir_validate::visit_leave(), the cases for
- ir_binop_bit_and
- ir_binop_bit_xor
- ir_binop_bit_or
were incorrect. It was incorrectly asserted that both operands must be the
same type, when in fact one may be scalar and the other a vector. It was also
incorrectly asserted that the resultant type was the type of the left operand,
which in fact does not hold when the left operand is a scalar and the right
operand is a vector.
|
|
Implement by adding the following cases to ast_expression::hir():
- ast_lshift
- ast_rshift
Also, implement ir validation for the new operators by adding the following
cases to ir_validate::visit_leave():
- ir_binop_lshift
- ir_binop_rshift
|
|
Caught the bug in the previous commit.
|
|
It turns out that most people new to this IR are surprised when an
assignment to (say) 3 components on the LHS takes 4 components on the
RHS. It also makes for quite strange IR output:
(assign (constant bool (1)) (x) (var_ref color) (swiz x (var_ref v) ))
(assign (constant bool (1)) (y) (var_ref color) (swiz yy (var_ref v) ))
(assign (constant bool (1)) (z) (var_ref color) (swiz zzz (var_ref v) ))
But even worse, even we get it wrong, as shown by this line of our
current step(float, vec4):
(assign (constant bool (1)) (w)
(var_ref t)
(expression float b2f (expression bool >=
(swiz w (var_ref x))(var_ref edge))))
where we try to assign a float to the writemasked-out x channel and
don't supply anything for the actual w channel we're writing. Drivers
right now just get lucky since ir_to_mesa spams the float value across
all the source channels of a vec4.
Instead, the RHS will now have a number of components equal to the
number of components actually being written. Hopefully this confuses
everyone less, and it also makes codegen for a scalar target simpler.
Reviewed-by: Kenneth Graunke <kenneth@whitecape.org>
Reviewed-by: Ian Romanick <ian.d.romanick@intel.com>
|
|
Such as: "ir_validate.cpp:143: warning: format ‘%p’ expects type ‘void*’,
but argument 2 has type ‘ir_variable*’"
|
|
Silences a compiler warning. Still need to add some assertions
for this case.
|
|
Currently GLSL IR forbids any vector comparisons, and defines "ir_binop_equal"
and "ir_binop_nequal" to compare all elements and give a single bool.
This is highly unintuitive and prevents generation of optimal Mesa IR.
Hence, first rename "ir_binop_equal" to "ir_binop_all_equal" and
"ir_binop_nequal" to "ir_binop_any_nequal".
Second, readd "ir_binop_equal" and "ir_binop_nequal" with the same semantics
as less, lequal, etc.
Third, allow all comparisons to acts on vectors.
Signed-off-by: Ian Romanick <ian.d.romanick@intel.com>
|
|
|
|
|
|
The previous any() implementation would generate arg0.x || arg0.y ||
arg0.z. Having an expression operation for this makes it easy for the
backend to generate something easier (DPn + SNE for 915 FS, .any
predication on 965 VS)
|
|
This reverts commit a77a6bc008b3146c56431fa520a00e1f8dfa3938.
|
|
|
|
|
|
Fixes ir_to_mesa handling of unop_log, which used the weird ARB_vp LOG
opcode that doesn't do what we want. This also lets the multiplication
coefficients in there get constant-folded, possibly.
Fixes:
glsl-fs-log
|
|
|
|
An unnamed variable in a prototype will have a NULL ->name, so don't
worry about storage then.
Fixes:
CorrectFunction1.vert
CorrectParse1.frag
|
|
|
|
|
|
We use vector ir_unop_not to implement builtin not(), and that seems fine.
|
|
|
|
|
|
|
|
|
|
We're good at propagating error types around, but finding when the
first one was triggered can be painful if we aren't paying attention.
|
|
This is a big deal for debugging if nothing else ("what class is this
ir_instruction, really?"), but is also nice for avoiding building a
whole visitor or an if (node->as_whatever() || node->as_other_thing())
chain.
|
|
|
|
|
|
Add two invariant checks related to functions and function signatures:
1. Ensure that function definitions (ir_function) are not nested.
2. Ensure that the ir_function pointed to by an ir_function_signature
is the one that contains it in its signatures list.
|
|
|
|
|
|
|