/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "glsl_symbol_table.h" #include "ast.h" #include "glsl_types.h" #include "ir.h" static unsigned process_parameters(exec_list *instructions, exec_list *actual_parameters, exec_list *parameters, struct _mesa_glsl_parse_state *state) { unsigned count = 0; foreach_list (n, parameters) { ast_node *const ast = exec_node_data(ast_node, n, link); ir_rvalue *result = ast->hir(instructions, state); ir_constant *const constant = result->constant_expression_value(); if (constant != NULL) result = constant; actual_parameters->push_tail(result); count++; } return count; } static ir_rvalue * process_call(exec_list *instructions, ir_function *f, YYLTYPE *loc, exec_list *actual_parameters, struct _mesa_glsl_parse_state *state) { void *ctx = talloc_parent(state); const ir_function_signature *sig = f->matching_signature(actual_parameters); /* The instructions param will be used when the FINISHMEs below are done */ (void) instructions; if (sig != NULL) { /* Verify that 'out' and 'inout' actual parameters are lvalues. This * isn't done in ir_function::matching_signature because that function * cannot generate the necessary diagnostics. */ exec_list_iterator actual_iter = actual_parameters->iterator(); exec_list_iterator formal_iter = sig->parameters.iterator(); while (actual_iter.has_next()) { ir_rvalue *actual = (ir_rvalue *) actual_iter.get(); ir_variable *formal = (ir_variable *) formal_iter.get(); assert(actual != NULL); assert(formal != NULL); if ((formal->mode == ir_var_out) || (formal->mode == ir_var_inout)) { if (! actual->is_lvalue()) { /* FINISHME: Log a better diagnostic here. There is no way * FINISHME: to tell the user which parameter is invalid. */ _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue", (formal->mode == ir_var_out) ? "out" : "inout"); } } actual_iter.next(); formal_iter.next(); } /* FINISHME: The list of actual parameters needs to be modified to * FINISHME: include any necessary conversions. */ return new(ctx) ir_call(sig, actual_parameters); } else { /* FINISHME: Log a better error message here. G++ will show the types * FINISHME: of the actual parameters and the set of candidate * FINISHME: functions. A different error should also be logged when * FINISHME: multiple functions match. */ _mesa_glsl_error(loc, state, "no matching function for call to `%s'", f->name); return ir_call::get_error_instruction(); } } static ir_rvalue * match_function_by_name(exec_list *instructions, const char *name, YYLTYPE *loc, exec_list *actual_parameters, struct _mesa_glsl_parse_state *state) { ir_function *f = state->symbols->get_function(name); if (f == NULL) { _mesa_glsl_error(loc, state, "function `%s' undeclared", name); return ir_call::get_error_instruction(); } /* Once we've determined that the function being called might exist, try * to find an overload of the function that matches the parameters. */ return process_call(instructions, f, loc, actual_parameters, state); } /** * Perform automatic type conversion of constructor parameters */ static ir_rvalue * convert_component(ir_rvalue *src, const glsl_type *desired_type) { void *ctx = talloc_parent(src); const unsigned a = desired_type->base_type; const unsigned b = src->type->base_type; ir_expression *result = NULL; if (src->type->is_error()) return src; assert(a <= GLSL_TYPE_BOOL); assert(b <= GLSL_TYPE_BOOL); if ((a == b) || (src->type->is_integer() && desired_type->is_integer())) return src; switch (a) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: if (b == GLSL_TYPE_FLOAT) result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL); else { assert(b == GLSL_TYPE_BOOL); result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL); } break; case GLSL_TYPE_FLOAT: switch (b) { case GLSL_TYPE_UINT: result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL); break; case GLSL_TYPE_INT: result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL); break; case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL); break; } break; case GLSL_TYPE_BOOL: { ir_constant *zero = NULL; switch (b) { case GLSL_TYPE_UINT: zero = new(ctx) ir_constant(unsigned(0)); break; case GLSL_TYPE_INT: zero = new(ctx) ir_constant(int(0)); break; case GLSL_TYPE_FLOAT: zero = new(ctx) ir_constant(0.0f); break; } result = new(ctx) ir_expression(ir_binop_nequal, desired_type, src, zero); } } assert(result != NULL); ir_constant *const constant = result->constant_expression_value(); return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result; } /** * Dereference a specific component from a scalar, vector, or matrix */ static ir_rvalue * dereference_component(ir_rvalue *src, unsigned component) { void *ctx = talloc_parent(src); assert(component < src->type->components()); /* If the source is a constant, just create a new constant instead of a * dereference of the existing constant. */ ir_constant *constant = src->as_constant(); if (constant) return new(ctx) ir_constant(constant, component); if (src->type->is_scalar()) { return src; } else if (src->type->is_vector()) { return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1); } else { assert(src->type->is_matrix()); /* Dereference a row of the matrix, then call this function again to get * a specific element from that row. */ const int c = component / src->type->column_type()->vector_elements; const int r = component % src->type->column_type()->vector_elements; ir_constant *const col_index = new(ctx) ir_constant(c); ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index); col->type = src->type->column_type(); return dereference_component(col, r); } assert(!"Should not get here."); return NULL; } static ir_rvalue * process_array_constructor(exec_list *instructions, const glsl_type *constructor_type, YYLTYPE *loc, exec_list *parameters, struct _mesa_glsl_parse_state *state) { /* Array constructors come in two forms: sized and unsized. Sized array * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4 * variables. In this case the number of parameters must exactly match the * specified size of the array. * * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b' * are vec4 variables. In this case the size of the array being constructed * is determined by the number of parameters. * * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec: * * "There must be exactly the same number of arguments as the size of * the array being constructed. If no size is present in the * constructor, then the array is explicitly sized to the number of * arguments provided. The arguments are assigned in order, starting at * element 0, to the elements of the constructed array. Each argument * must be the same type as the element type of the array, or be a type * that can be converted to the element type of the array according to * Section 4.1.10 "Implicit Conversions."" */ exec_list actual_parameters; const unsigned parameter_count = process_parameters(instructions, &actual_parameters, parameters, state); if ((parameter_count == 0) || ((constructor_type->length != 0) && (constructor_type->length != parameter_count))) { const unsigned min_param = (constructor_type->length == 0) ? 1 : constructor_type->length; _mesa_glsl_error(loc, state, "array constructor must have %s %u " "parameter%s", (constructor_type->length != 0) ? "at least" : "exactly", min_param, (min_param <= 1) ? "" : "s"); return ir_call::get_error_instruction(); } if (constructor_type->length == 0) { constructor_type = glsl_type::get_array_instance(constructor_type->element_type(), parameter_count); assert(constructor_type != NULL); assert(constructor_type->length == parameter_count); } ir_function *f = state->symbols->get_function(constructor_type->name); /* If the constructor for this type of array does not exist, generate the * prototype and add it to the symbol table. */ if (f == NULL) { f = constructor_type->generate_constructor(state->symbols); } ir_rvalue *const r = process_call(instructions, f, loc, &actual_parameters, state); assert(r != NULL); assert(r->type->is_error() || (r->type == constructor_type)); return r; } /** * Try to convert a record constructor to a constant expression */ static ir_constant * constant_record_constructor(const glsl_type *constructor_type, YYLTYPE *loc, exec_list *parameters, struct _mesa_glsl_parse_state *state) { void *ctx = talloc_parent(state); bool all_parameters_are_constant = true; exec_node *node = parameters->head; for (unsigned i = 0; i < constructor_type->length; i++) { ir_instruction *ir = (ir_instruction *) node; if (node->is_tail_sentinal()) { _mesa_glsl_error(loc, state, "insufficient parameters to constructor for `%s'", constructor_type->name); return NULL; } if (ir->type != constructor_type->fields.structure[i].type) { _mesa_glsl_error(loc, state, "parameter type mismatch in constructor for `%s' " " (%s vs %s)", constructor_type->name, ir->type->name, constructor_type->fields.structure[i].type->name); return NULL; } if (ir->as_constant() == NULL) all_parameters_are_constant = false; node = node->next; } if (!all_parameters_are_constant) return NULL; return new(ctx) ir_constant(constructor_type, parameters); } /** * Generate data for a constant matrix constructor w/a single scalar parameter * * Matrix constructors in GLSL can be passed a single scalar of the * approriate type. In these cases, the resulting matrix is the identity * matrix multipled by the specified scalar. This function generates data for * that matrix. * * \param type Type of the desired matrix. * \param initializer Scalar value used to initialize the matrix diagonal. * \param data Location to store the resulting matrix. */ void generate_constructor_matrix(const glsl_type *type, ir_constant *initializer, ir_constant_data *data) { switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: for (unsigned i = 0; i < type->components(); i++) data->u[i] = 0; for (unsigned i = 0; i < type->matrix_columns; i++) { /* The array offset of the ith row and column of the matrix. */ const unsigned idx = (i * type->vector_elements) + i; data->u[idx] = initializer->value.u[0]; } break; case GLSL_TYPE_FLOAT: for (unsigned i = 0; i < type->components(); i++) data->f[i] = 0; for (unsigned i = 0; i < type->matrix_columns; i++) { /* The array offset of the ith row and column of the matrix. */ const unsigned idx = (i * type->vector_elements) + i; data->f[idx] = initializer->value.f[0]; } break; default: assert(!"Should not get here."); break; } } /** * Generate data for a constant vector constructor w/a single scalar parameter * * Vector constructors in GLSL can be passed a single scalar of the * approriate type. In these cases, the resulting vector contains the specified * value in all components. This function generates data for that vector. * * \param type Type of the desired vector. * \param initializer Scalar value used to initialize the vector. * \param data Location to store the resulting vector data. */ void generate_constructor_vector(const glsl_type *type, ir_constant *initializer, ir_constant_data *data) { switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: for (unsigned i = 0; i < type->components(); i++) data->u[i] = initializer->value.u[0]; break; case GLSL_TYPE_FLOAT: for (unsigned i = 0; i < type->components(); i++) data->f[i] = initializer->value.f[0]; break; case GLSL_TYPE_BOOL: for (unsigned i = 0; i < type->components(); i++) data->b[i] = initializer->value.b[0]; break; default: assert(!"Should not get here."); break; } } ir_rvalue * ast_function_expression::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) { void *ctx = talloc_parent(state); /* There are three sorts of function calls. * * 1. contstructors - The first subexpression is an ast_type_specifier. * 2. methods - Only the .length() method of array types. * 3. functions - Calls to regular old functions. * * Method calls are actually detected when the ast_field_selection * expression is handled. */ if (is_constructor()) { const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0]; YYLTYPE loc = type->get_location(); const char *name; const glsl_type *const constructor_type = type->glsl_type(& name, state); /* Constructors for samplers are illegal. */ if (constructor_type->is_sampler()) { _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'", constructor_type->name); return ir_call::get_error_instruction(); } if (constructor_type->is_array()) { if (state->language_version <= 110) { _mesa_glsl_error(& loc, state, "array constructors forbidden in GLSL 1.10"); return ir_call::get_error_instruction(); } return process_array_constructor(instructions, constructor_type, & loc, &this->expressions, state); } /* There are two kinds of constructor call. Constructors for built-in * language types, such as mat4 and vec2, are free form. The only * requirement is that the parameters must provide enough values of the * correct scalar type. Constructors for arrays and structures must * have the exact number of parameters with matching types in the * correct order. These constructors follow essentially the same type * matching rules as functions. */ if (constructor_type->is_numeric() || constructor_type->is_boolean()) { /* Constructing a numeric type has a couple steps. First all values * passed to the constructor are broken into individual parameters * and type converted to the base type of the thing being constructed. * * At that point we have some number of values that match the base * type of the thing being constructed. Now the constructor can be * treated like a function call. Each numeric type has a small set * of constructor functions. The set of new parameters will either * match one of those functions or the original constructor is * invalid. */ const glsl_type *const base_type = constructor_type->get_base_type(); /* Total number of components of the type being constructed. */ const unsigned type_components = constructor_type->components(); /* Number of components from parameters that have actually been * consumed. This is used to perform several kinds of error checking. */ unsigned components_used = 0; unsigned matrix_parameters = 0; unsigned nonmatrix_parameters = 0; exec_list actual_parameters; bool all_parameters_are_constant = true; /* This handles invalid constructor calls such as 'vec4 v = vec4();' */ if (this->expressions.is_empty()) { _mesa_glsl_error(& loc, state, "too few components to construct " "`%s'", constructor_type->name); return ir_call::get_error_instruction(); } foreach_list (n, &this->expressions) { ast_node *ast = exec_node_data(ast_node, n, link); ir_rvalue *result = ast->hir(instructions, state)->as_rvalue(); ir_variable *result_var = NULL; /* Attempt to convert the parameter to a constant valued expression. * After doing so, track whether or not all the parameters to the * constructor are trivially constant valued expressions. */ ir_rvalue *const constant = result->constant_expression_value(); if (constant != NULL) result = constant; else all_parameters_are_constant = false; /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * * "It is an error to provide extra arguments beyond this * last used argument." */ if (components_used >= type_components) { _mesa_glsl_error(& loc, state, "too many parameters to `%s' " "constructor", constructor_type->name); return ir_call::get_error_instruction(); } if (!result->type->is_numeric() && !result->type->is_boolean()) { _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " "non-numeric data type", constructor_type->name); return ir_call::get_error_instruction(); } /* Count the number of matrix and nonmatrix parameters. This * is used below to enforce some of the constructor rules. */ if (result->type->is_matrix()) matrix_parameters++; else nonmatrix_parameters++; /* We can't use the same instruction node in the multiple * swizzle dereferences that happen, so assign it to a * variable and deref that. Plus it saves computation for * complicated expressions and handles * glsl-vs-constructor-call.shader_test. */ if (result->type->components() >= 1 && !result->as_constant()) { result_var = new(ctx) ir_variable(result->type, "constructor_tmp"); ir_dereference_variable *lhs; lhs = new(ctx) ir_dereference_variable(result_var); instructions->push_tail(new(ctx) ir_assignment(lhs, result, NULL)); } /* Process each of the components of the parameter. Dereference * each component individually, perform any type conversions, and * add it to the parameter list for the constructor. */ for (unsigned i = 0; i < result->type->components(); i++) { if (components_used >= type_components) break; ir_rvalue *component; if (result_var) { ir_dereference *d = new(ctx) ir_dereference_variable(result_var); component = dereference_component(d, i); } else { component = dereference_component(result, i); } component = convert_component(component, base_type); /* All cases that could result in component->type being the * error type should have already been caught above. */ assert(component->type == base_type); if (component->as_constant() == NULL) all_parameters_are_constant = false; /* Don't actually generate constructor calls for scalars. * Instead, do the usual component selection and conversion, * and return the single component. */ if (constructor_type->is_scalar()) return component; actual_parameters.push_tail(component); components_used++; } } /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: * * "It is an error to construct matrices from other matrices. This * is reserved for future use." */ if ((state->language_version <= 110) && (matrix_parameters > 0) && constructor_type->is_matrix()) { _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " "matrix in GLSL 1.10", constructor_type->name); return ir_call::get_error_instruction(); } /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * * "If a matrix argument is given to a matrix constructor, it is * an error to have any other arguments." */ if ((matrix_parameters > 0) && ((matrix_parameters + nonmatrix_parameters) > 1) && constructor_type->is_matrix()) { _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " "matrix must be only parameter", constructor_type->name); return ir_call::get_error_instruction(); } /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: * * "In these cases, there must be enough components provided in the * arguments to provide an initializer for every component in the * constructed value." */ if ((components_used < type_components) && (components_used != 1)) { _mesa_glsl_error(& loc, state, "too few components to construct " "`%s'", constructor_type->name); return ir_call::get_error_instruction(); } ir_function *f = state->symbols->get_function(constructor_type->name); if (f == NULL) { _mesa_glsl_error(& loc, state, "no constructor for type `%s'", constructor_type->name); return ir_call::get_error_instruction(); } const ir_function_signature *sig = f->matching_signature(& actual_parameters); if (sig != NULL) { /* If all of the parameters are trivially constant, create a * constant representing the complete collection of parameters. */ if (all_parameters_are_constant) { if (components_used >= type_components) return new(ctx) ir_constant(sig->return_type, & actual_parameters); assert(sig->return_type->is_vector() || sig->return_type->is_matrix()); /* Constructors with exactly one component are special for * vectors and matrices. For vectors it causes all elements of * the vector to be filled with the value. For matrices it * causes the matrix to be filled with 0 and the diagonal to be * filled with the value. */ ir_constant_data data; ir_constant *const initializer = (ir_constant *) actual_parameters.head; if (sig->return_type->is_matrix()) generate_constructor_matrix(sig->return_type, initializer, &data); else generate_constructor_vector(sig->return_type, initializer, &data); return new(ctx) ir_constant(sig->return_type, &data); } else return new(ctx) ir_call(sig, & actual_parameters); } else { /* FINISHME: Log a better error message here. G++ will show the * FINSIHME: types of the actual parameters and the set of * FINSIHME: candidate functions. A different error should also be * FINSIHME: logged when multiple functions match. */ _mesa_glsl_error(& loc, state, "no matching constructor for `%s'", constructor_type->name); return ir_call::get_error_instruction(); } } return ir_call::get_error_instruction(); } else { const ast_expression *id = subexpressions[0]; YYLTYPE loc = id->get_location(); exec_list actual_parameters; process_parameters(instructions, &actual_parameters, &this->expressions, state); const glsl_type *const type = state->symbols->get_type(id->primary_expression.identifier); if ((type != NULL) && type->is_record()) { ir_constant *constant = constant_record_constructor(type, &loc, &actual_parameters, state); if (constant != NULL) return constant; } return match_function_by_name(instructions, id->primary_expression.identifier, & loc, &actual_parameters, state); } return ir_call::get_error_instruction(); }