/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include "glsl_symbol_table.h" #include "ast.h" #include "glsl_types.h" #include "ir.h" static ir_rvalue * match_function_by_name(exec_list *instructions, const char *name, YYLTYPE *loc, simple_node *parameters, struct _mesa_glsl_parse_state *state) { ir_function *f = state->symbols->get_function(name); if (f == NULL) { _mesa_glsl_error(loc, state, "function `%s' undeclared", name); return ir_call::get_error_instruction(); } /* Once we've determined that the function being called might exist, * process the parameters. */ exec_list actual_parameters; simple_node *const first = parameters; if (first != NULL) { simple_node *ptr = first; do { ir_instruction *const result = ((ast_node *) ptr)->hir(instructions, state); ptr = ptr->next; actual_parameters.push_tail(result); } while (ptr != first); } /* After processing the function's actual parameters, try to find an * overload of the function that matches. */ const ir_function_signature *sig = f->matching_signature(& actual_parameters); if (sig != NULL) { /* FINISHME: The list of actual parameters needs to be modified to * FINISHME: include any necessary conversions. */ return new ir_call(sig, & actual_parameters); } else { /* FINISHME: Log a better error message here. G++ will show the types * FINISHME: of the actual parameters and the set of candidate * FINISHME: functions. A different error should also be logged when * FINISHME: multiple functions match. */ _mesa_glsl_error(loc, state, "no matching function for call to `%s'", name); return ir_call::get_error_instruction(); } } /** * Perform automatic type conversion of constructor parameters */ static ir_rvalue * convert_component(ir_rvalue *src, const glsl_type *desired_type) { const unsigned a = desired_type->base_type; const unsigned b = src->type->base_type; if (src->type->is_error()) return src; assert(a <= GLSL_TYPE_BOOL); assert(b <= GLSL_TYPE_BOOL); if ((a == b) || (src->type->is_integer() && desired_type->is_integer())) return src; switch (a) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: if (b == GLSL_TYPE_FLOAT) return new ir_expression(ir_unop_f2i, desired_type, src, NULL); else { assert(b == GLSL_TYPE_BOOL); assert(!"FINISHME: Convert bool to int / uint."); } case GLSL_TYPE_FLOAT: switch (b) { case GLSL_TYPE_UINT: return new ir_expression(ir_unop_u2f, desired_type, src, NULL); case GLSL_TYPE_INT: return new ir_expression(ir_unop_i2f, desired_type, src, NULL); case GLSL_TYPE_BOOL: assert(!"FINISHME: Convert bool to float."); } break; case GLSL_TYPE_BOOL: { int z = 0; ir_constant *const zero = new ir_constant(src->type, &z); return new ir_expression(ir_binop_nequal, desired_type, src, zero); } } assert(!"Should not get here."); return NULL; } /** * Dereference a specific component from a scalar, vector, or matrix */ static ir_rvalue * dereference_component(ir_rvalue *src, unsigned component) { assert(component < src->type->components()); if (src->type->is_scalar()) { return src; } else if (src->type->is_vector()) { return new ir_swizzle(src, component, 0, 0, 0, 1); } else { assert(src->type->is_matrix()); /* Dereference a row of the matrix, then call this function again to get * a specific element from that row. */ const int c = component / src->type->column_type()->vector_elements; const int r = component % src->type->column_type()->vector_elements; ir_constant *const col_index = new ir_constant(glsl_type::int_type, &c); ir_dereference *const col = new ir_dereference(src, col_index); col->type = src->type->column_type(); return dereference_component(col, r); } assert(!"Should not get here."); return NULL; } ir_rvalue * ast_function_expression::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) { /* There are three sorts of function calls. * * 1. contstructors - The first subexpression is an ast_type_specifier. * 2. methods - Only the .length() method of array types. * 3. functions - Calls to regular old functions. * * Method calls are actually detected when the ast_field_selection * expression is handled. */ if (is_constructor()) { const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0]; YYLTYPE loc = type->get_location(); const glsl_type *const constructor_type = state->symbols->get_type(type->type_name); /* Constructors for samplers are illegal. */ if (constructor_type->is_sampler()) { _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'", constructor_type->name); return ir_call::get_error_instruction(); } /* There are two kinds of constructor call. Constructors for built-in * language types, such as mat4 and vec2, are free form. The only * requirement is that the parameters must provide enough values of the * correct scalar type. Constructors for arrays and structures must * have the exact number of parameters with matching types in the * correct order. These constructors follow essentially the same type * matching rules as functions. */ if (constructor_type->is_numeric() || constructor_type->is_boolean()) { /* Constructing a numeric type has a couple steps. First all values * passed to the constructor are broken into individual parameters * and type converted to the base type of the thing being constructed. * * At that point we have some number of values that match the base * type of the thing being constructed. Now the constructor can be * treated like a function call. Each numeric type has a small set * of constructor functions. The set of new parameters will either * match one of those functions or the original constructor is * invalid. */ const glsl_type *const base_type = constructor_type->get_base_type(); /* Total number of components of the type being constructed. */ const unsigned type_components = constructor_type->components(); /* Number of components from parameters that have actually been * consumed. This is used to perform several kinds of error checking. */ unsigned components_used = 0; unsigned matrix_parameters = 0; unsigned nonmatrix_parameters = 0; exec_list actual_parameters; simple_node *const first = subexpressions[1]; assert(first != NULL); if (first != NULL) { simple_node *ptr = first; do { ir_rvalue *const result = ((ast_node *) ptr)->hir(instructions, state)->as_rvalue(); ptr = ptr->next; /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * * "It is an error to provide extra arguments beyond this * last used argument." */ if (components_used >= type_components) { _mesa_glsl_error(& loc, state, "too many parameters to `%s' " "constructor", constructor_type->name); return ir_call::get_error_instruction(); } if (!result->type->is_numeric() && !result->type->is_boolean()) { _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " "non-numeric data type", constructor_type->name); return ir_call::get_error_instruction(); } /* Count the number of matrix and nonmatrix parameters. This * is used below to enforce some of the constructor rules. */ if (result->type->is_matrix()) matrix_parameters++; else nonmatrix_parameters++; /* Process each of the components of the parameter. Dereference * each component individually, perform any type conversions, and * add it to the parameter list for the constructor. */ for (unsigned i = 0; i < result->type->components(); i++) { if (components_used >= type_components) break; ir_rvalue *const component = convert_component(dereference_component(result, i), base_type); /* All cases that could result in component->type being the * error type should have already been caught above. */ assert(component->type == base_type); /* Don't actually generate constructor calls for scalars. * Instead, do the usual component selection and conversion, * and return the single component. */ if (constructor_type->is_scalar()) return component; actual_parameters.push_tail(component); components_used++; } } while (ptr != first); } /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: * * "It is an error to construct matrices from other matrices. This * is reserved for future use." */ if ((state->language_version <= 110) && (matrix_parameters > 0) && constructor_type->is_matrix()) { _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " "matrix in GLSL 1.10", constructor_type->name); return ir_call::get_error_instruction(); } /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * * "If a matrix argument is given to a matrix constructor, it is * an error to have any other arguments." */ if ((matrix_parameters > 0) && ((matrix_parameters + nonmatrix_parameters) > 1) && constructor_type->is_matrix()) { _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " "matrix must be only parameter", constructor_type->name); return ir_call::get_error_instruction(); } /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: * * "In these cases, there must be enough components provided in the * arguments to provide an initializer for every component in the * constructed value." */ if (components_used < type_components) { _mesa_glsl_error(& loc, state, "too few components to construct " "`%s'", constructor_type->name); return ir_call::get_error_instruction(); } ir_function *f = state->symbols->get_function(constructor_type->name); if (f == NULL) { _mesa_glsl_error(& loc, state, "no constructor for type `%s'", constructor_type->name); return ir_call::get_error_instruction(); } const ir_function_signature *sig = f->matching_signature(& actual_parameters); if (sig != NULL) { return new ir_call(sig, & actual_parameters); } else { /* FINISHME: Log a better error message here. G++ will show the * FINSIHME: types of the actual parameters and the set of * FINSIHME: candidate functions. A different error should also be * FINSIHME: logged when multiple functions match. */ _mesa_glsl_error(& loc, state, "no matching constructor for `%s'", constructor_type->name); return ir_call::get_error_instruction(); } } return ir_call::get_error_instruction(); } else { const ast_expression *id = subexpressions[0]; YYLTYPE loc = id->get_location(); return match_function_by_name(instructions, id->primary_expression.identifier, & loc, subexpressions[1], state); } return ir_call::get_error_instruction(); }