/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include "glsl_symbol_table.h" #include "glsl_parser_extras.h" #include "glsl_types.h" #include "ir.h" static void generate_unop(exec_list *instructions, ir_variable **declarations, const glsl_type *type, enum ir_expression_operation op) { ir_dereference *const arg = new ir_dereference(declarations[0]); ir_rvalue *result; result = new ir_expression(op, type, arg, NULL); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_binop(exec_list *instructions, ir_variable **declarations, const glsl_type *type, enum ir_expression_operation op) { ir_dereference *const arg1 = new ir_dereference(declarations[0]); ir_dereference *const arg2 = new ir_dereference(declarations[1]); ir_rvalue *result; result = new ir_expression(op, type, arg1, arg2); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_radians(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg = new ir_dereference(declarations[0]); ir_rvalue *result; result = new ir_expression(ir_binop_mul, type, arg, new ir_constant((float)(M_PI / 180.0))); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_degrees(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg = new ir_dereference(declarations[0]); ir_rvalue *result; result = new ir_expression(ir_binop_mul, type, arg, new ir_constant((float)(180.0 / M_PI))); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_exp(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_exp); } static void generate_log(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_log); } static void generate_exp2(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_exp2); } static void generate_log2(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_log2); } static void generate_rsq(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_rsq); } static void generate_sqrt(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_sqrt); } static void generate_abs(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_abs); } static void generate_ceil(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_ceil); } static void generate_floor(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_unop(instructions, declarations, type, ir_unop_floor); } static void generate_mod(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_binop(instructions, declarations, type, ir_binop_mod); } static void generate_min(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_binop(instructions, declarations, type, ir_binop_min); } static void generate_max(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_binop(instructions, declarations, type, ir_binop_max); } static void generate_clamp(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const x = new ir_dereference(declarations[0]); ir_dereference *const minval = new ir_dereference(declarations[1]); ir_dereference *const maxval = new ir_dereference(declarations[2]); ir_rvalue *result; result = new ir_expression(ir_binop_min, type, x, maxval); result = new ir_expression(ir_binop_max, type, result, minval); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_mix_vec(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const x = new ir_dereference(declarations[0]); ir_dereference *const y = new ir_dereference(declarations[1]); ir_dereference *const a = new ir_dereference(declarations[2]); ir_rvalue *result, *temp; temp = new ir_expression(ir_binop_sub, type, new ir_constant(1.0f), a); result = new ir_expression(ir_binop_mul, type, x, temp); temp = new ir_expression(ir_binop_mul, type, y, a); result = new ir_expression(ir_binop_add, type, result, temp); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_normalize(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg = new ir_dereference(declarations[0]); ir_rvalue *temp; ir_rvalue *result; temp = new ir_expression(ir_binop_dot, glsl_type::float_type, arg, arg); temp = new ir_expression(ir_unop_rsq, glsl_type::float_type, temp, NULL); result = new ir_expression(ir_binop_mul, type, arg, temp); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_pow(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_binop(instructions, declarations, type, ir_binop_pow); } void generate_function_instance(ir_function *f, const char *name, exec_list *instructions, int n_args, void (*generate)(exec_list *instructions, ir_variable **declarations, const glsl_type *type), const glsl_type *ret_type, const glsl_type *type) { ir_variable *declarations[16]; ir_function_signature *const sig = new ir_function_signature(ret_type); f->add_signature(sig); static const char *arg_names[] = { "arg0", "arg1", "arg2" }; int i; for (i = 0; i < n_args; i++) { ir_variable *var = new ir_variable(type, arg_names[i]); var->mode = ir_var_in; sig->parameters.push_tail(var); declarations[i] = var; } generate(&sig->body, declarations, type); sig->is_defined = true; } void make_gentype_function(glsl_symbol_table *symtab, exec_list *instructions, const char *name, int n_args, void (*generate)(exec_list *instructions, ir_variable **declarations, const glsl_type *type)) { ir_function *const f = new ir_function(name); const glsl_type *float_type = glsl_type::float_type; const glsl_type *vec2_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 2, 1); const glsl_type *vec3_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 3, 1); const glsl_type *vec4_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 4, 1); bool added = symtab->add_function(name, f); assert(added); instructions->push_tail(f); generate_function_instance(f, name, instructions, n_args, generate, float_type, float_type); generate_function_instance(f, name, instructions, n_args, generate, vec2_type, vec2_type); generate_function_instance(f, name, instructions, n_args, generate, vec3_type, vec3_type); generate_function_instance(f, name, instructions, n_args, generate, vec4_type, vec4_type); } static void generate_vec_compare(exec_list *instructions, ir_variable **declarations, const glsl_type *type, enum ir_expression_operation op) { ir_dereference *const x = new ir_dereference(declarations[0]); ir_dereference *const y = new ir_dereference(declarations[1]); ir_variable *temp; const glsl_type *return_type; int i; return_type = glsl_type::get_instance(GLSL_TYPE_BOOL, type->vector_elements, 1); temp = new ir_variable(return_type, "temp"); for (i = 0; i < type->vector_elements; i++) { ir_assignment *assign; ir_expression *compare; compare = new ir_expression(op, glsl_type::get_instance(type->base_type, 1, 1), new ir_swizzle(x, i, 0, 0, 0, 1), new ir_swizzle(y, i, 0, 0, 0, 1)); assign = new ir_assignment(new ir_swizzle(new ir_dereference(temp), i, 0, 0, 0, 1), compare, NULL); instructions->push_tail(assign); } ir_instruction *inst = new ir_return(new ir_dereference(temp)); instructions->push_tail(inst); } static void generate_lessThan(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_vec_compare(instructions, declarations, type, ir_binop_less); } static void generate_lessThanEqual(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_vec_compare(instructions, declarations, type, ir_binop_lequal); } static void generate_greaterThan(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_vec_compare(instructions, declarations, type, ir_binop_greater); } static void generate_greaterThanEqual(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_vec_compare(instructions, declarations, type, ir_binop_gequal); } static void generate_equal(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_vec_compare(instructions, declarations, type, ir_binop_equal); } static void generate_notEqual(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { generate_vec_compare(instructions, declarations, type, ir_binop_nequal); } static void generate_vec_compare_function(glsl_symbol_table *symtab, exec_list *instructions, const char *name, void (*generate)(exec_list *instructions, ir_variable **declarations, const glsl_type *type), bool do_bool) { ir_function *const f = new ir_function(name); const glsl_type *vec2_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 2, 1); const glsl_type *vec3_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 3, 1); const glsl_type *vec4_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 4, 1); const glsl_type *ivec2_type = glsl_type::get_instance(GLSL_TYPE_INT, 2, 1); const glsl_type *ivec3_type = glsl_type::get_instance(GLSL_TYPE_INT, 3, 1); const glsl_type *ivec4_type = glsl_type::get_instance(GLSL_TYPE_INT, 4, 1); const glsl_type *uvec2_type = glsl_type::get_instance(GLSL_TYPE_UINT, 2, 1); const glsl_type *uvec3_type = glsl_type::get_instance(GLSL_TYPE_UINT, 3, 1); const glsl_type *uvec4_type = glsl_type::get_instance(GLSL_TYPE_UINT, 4, 1); const glsl_type *bvec2_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 2, 1); const glsl_type *bvec3_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 3, 1); const glsl_type *bvec4_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 4, 1); bool added = symtab->add_function(name, f); assert(added); instructions->push_tail(f); generate_function_instance(f, name, instructions, 2, generate, bvec2_type, vec2_type); generate_function_instance(f, name, instructions, 2, generate, bvec3_type, vec3_type); generate_function_instance(f, name, instructions, 2, generate, bvec4_type, vec4_type); generate_function_instance(f, name, instructions, 2, generate, bvec2_type, ivec2_type); generate_function_instance(f, name, instructions, 2, generate, bvec3_type, ivec3_type); generate_function_instance(f, name, instructions, 2, generate, bvec4_type, ivec4_type); generate_function_instance(f, name, instructions, 2, generate, bvec2_type, uvec2_type); generate_function_instance(f, name, instructions, 2, generate, bvec3_type, uvec3_type); generate_function_instance(f, name, instructions, 2, generate, bvec4_type, uvec4_type); if (do_bool) { generate_function_instance(f, name, instructions, 2, generate, bvec2_type, bvec2_type); generate_function_instance(f, name, instructions, 2, generate, bvec3_type, bvec3_type); generate_function_instance(f, name, instructions, 2, generate, bvec4_type, bvec4_type); } } static void generate_length(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg = new ir_dereference(declarations[0]); ir_rvalue *result, *temp; (void)type; /* FINISHME: implement the abs(arg) variant for length(float f) */ temp = new ir_expression(ir_binop_dot, glsl_type::float_type, arg, arg); result = new ir_expression(ir_unop_sqrt, glsl_type::float_type, temp, NULL); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } void generate_length_functions(glsl_symbol_table *symtab, exec_list *instructions) { const char *name = "length"; ir_function *const f = new ir_function(name); const glsl_type *float_type = glsl_type::float_type; const glsl_type *vec2_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 2, 1); const glsl_type *vec3_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 3, 1); const glsl_type *vec4_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 4, 1); bool added = symtab->add_function(name, f); assert(added); instructions->push_tail(f); generate_function_instance(f, name, instructions, 1, generate_length, float_type, float_type); generate_function_instance(f, name, instructions, 1, generate_length, float_type, vec2_type); generate_function_instance(f, name, instructions, 1, generate_length, float_type, vec3_type); generate_function_instance(f, name, instructions, 1, generate_length, float_type, vec4_type); } static void generate_dot(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg0 = new ir_dereference(declarations[0]); ir_dereference *const arg1 = new ir_dereference(declarations[1]); ir_rvalue *result; (void)type; result = new ir_expression(ir_binop_dot, glsl_type::float_type, arg0, arg1); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } void generate_dot_functions(glsl_symbol_table *symtab, exec_list *instructions) { const char *name = "dot"; ir_function *const f = new ir_function(name); const glsl_type *float_type = glsl_type::float_type; const glsl_type *vec2_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 2, 1); const glsl_type *vec3_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 3, 1); const glsl_type *vec4_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 4, 1); bool added = symtab->add_function(name, f); assert(added); instructions->push_tail(f); generate_function_instance(f, name, instructions, 2, generate_dot, float_type, float_type); generate_function_instance(f, name, instructions, 2, generate_dot, float_type, vec2_type); generate_function_instance(f, name, instructions, 2, generate_dot, float_type, vec3_type); generate_function_instance(f, name, instructions, 2, generate_dot, float_type, vec4_type); } static void generate_any_bvec2(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg0 = new ir_dereference(declarations[0]); ir_rvalue *result; (void)type; result = new ir_expression(ir_binop_logic_or, glsl_type::bool_type, new ir_swizzle(arg0, 0, 0, 0, 0, 1), new ir_swizzle(arg0, 1, 0, 0, 0, 1)); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_any_bvec3(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg0 = new ir_dereference(declarations[0]); ir_rvalue *result; (void)type; result = new ir_expression(ir_binop_logic_or, glsl_type::bool_type, new ir_swizzle(arg0, 0, 0, 0, 0, 1), new ir_swizzle(arg0, 1, 0, 0, 0, 1)); result = new ir_expression(ir_binop_logic_or, glsl_type::bool_type, result, new ir_swizzle(arg0, 2, 0, 0, 0, 1)); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_any_bvec4(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg0 = new ir_dereference(declarations[0]); ir_rvalue *result; (void)type; result = new ir_expression(ir_binop_logic_or, glsl_type::bool_type, new ir_swizzle(arg0, 0, 0, 0, 0, 1), new ir_swizzle(arg0, 1, 0, 0, 0, 1)); result = new ir_expression(ir_binop_logic_or, glsl_type::bool_type, result, new ir_swizzle(arg0, 2, 0, 0, 0, 1)); result = new ir_expression(ir_binop_logic_or, glsl_type::bool_type, result, new ir_swizzle(arg0, 3, 0, 0, 0, 1)); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_all_bvec2(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg0 = new ir_dereference(declarations[0]); ir_rvalue *result; (void)type; result = new ir_expression(ir_binop_logic_and, glsl_type::bool_type, new ir_swizzle(arg0, 0, 0, 0, 0, 1), new ir_swizzle(arg0, 1, 0, 0, 0, 1)); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_all_bvec3(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg0 = new ir_dereference(declarations[0]); ir_rvalue *result; (void)type; result = new ir_expression(ir_binop_logic_and, glsl_type::bool_type, new ir_swizzle(arg0, 0, 0, 0, 0, 1), new ir_swizzle(arg0, 1, 0, 0, 0, 1)); result = new ir_expression(ir_binop_logic_and, glsl_type::bool_type, result, new ir_swizzle(arg0, 2, 0, 0, 0, 1)); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_all_bvec4(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg0 = new ir_dereference(declarations[0]); ir_rvalue *result; (void)type; result = new ir_expression(ir_binop_logic_and, glsl_type::bool_type, new ir_swizzle(arg0, 0, 0, 0, 0, 1), new ir_swizzle(arg0, 1, 0, 0, 0, 1)); result = new ir_expression(ir_binop_logic_and, glsl_type::bool_type, result, new ir_swizzle(arg0, 2, 0, 0, 0, 1)); result = new ir_expression(ir_binop_logic_and, glsl_type::bool_type, result, new ir_swizzle(arg0, 3, 0, 0, 0, 1)); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } static void generate_not(exec_list *instructions, ir_variable **declarations, const glsl_type *type) { ir_dereference *const arg0 = new ir_dereference(declarations[0]); ir_rvalue *result; result = new ir_expression(ir_unop_logic_not, type, arg0, NULL); ir_instruction *inst = new ir_return(result); instructions->push_tail(inst); } void generate_any_functions(glsl_symbol_table *symtab, exec_list *instructions) { const char *name = "any"; ir_function *const f = new ir_function(name); const glsl_type *bvec2_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 2, 1); const glsl_type *bvec3_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 3, 1); const glsl_type *bvec4_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 4, 1); bool added = symtab->add_function(name, f); assert(added); instructions->push_tail(f); generate_function_instance(f, name, instructions, 1, generate_any_bvec2, glsl_type::bool_type, bvec2_type); generate_function_instance(f, name, instructions, 1, generate_any_bvec3, glsl_type::bool_type, bvec3_type); generate_function_instance(f, name, instructions, 1, generate_any_bvec4, glsl_type::bool_type, bvec4_type); } void generate_all_functions(glsl_symbol_table *symtab, exec_list *instructions) { const char *name = "all"; ir_function *const f = new ir_function(name); const glsl_type *bvec2_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 2, 1); const glsl_type *bvec3_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 3, 1); const glsl_type *bvec4_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 4, 1); bool added = symtab->add_function(name, f); assert(added); instructions->push_tail(f); generate_function_instance(f, name, instructions, 1, generate_all_bvec2, glsl_type::bool_type, bvec2_type); generate_function_instance(f, name, instructions, 1, generate_all_bvec3, glsl_type::bool_type, bvec3_type); generate_function_instance(f, name, instructions, 1, generate_all_bvec4, glsl_type::bool_type, bvec4_type); } void generate_not_functions(glsl_symbol_table *symtab, exec_list *instructions) { const char *name = "not"; ir_function *const f = new ir_function(name); const glsl_type *bvec2_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 2, 1); const glsl_type *bvec3_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 3, 1); const glsl_type *bvec4_type = glsl_type::get_instance(GLSL_TYPE_BOOL, 4, 1); bool added = symtab->add_function(name, f); assert(added); instructions->push_tail(f); generate_function_instance(f, name, instructions, 1, generate_not, bvec2_type, bvec2_type); generate_function_instance(f, name, instructions, 1, generate_not, bvec3_type, bvec3_type); generate_function_instance(f, name, instructions, 1, generate_not, bvec4_type, bvec4_type); } void generate_110_functions(glsl_symbol_table *symtab, exec_list *instructions) { make_gentype_function(symtab, instructions, "radians", 1, generate_radians); make_gentype_function(symtab, instructions, "degrees", 1, generate_degrees); /* FINISHME: sin() */ /* FINISHME: cos() */ /* FINISHME: tan() */ /* FINISHME: asin() */ /* FINISHME: acos() */ /* FINISHME: atan(y,x) */ /* FINISHME: atan(y/x) */ make_gentype_function(symtab, instructions, "pow", 2, generate_pow); make_gentype_function(symtab, instructions, "exp", 1, generate_exp); make_gentype_function(symtab, instructions, "log", 1, generate_log); make_gentype_function(symtab, instructions, "exp2", 1, generate_exp2); make_gentype_function(symtab, instructions, "log2", 1, generate_log2); make_gentype_function(symtab, instructions, "sqrt", 1, generate_sqrt); make_gentype_function(symtab, instructions, "inversesqrt", 1, generate_rsq); make_gentype_function(symtab, instructions, "abs", 1, generate_abs); /* FINISHME: sign() */ make_gentype_function(symtab, instructions, "floor", 1, generate_floor); make_gentype_function(symtab, instructions, "ceil", 1, generate_ceil); /* FINISHME: fract() */ /* FINISHME: mod(x, float y) */ make_gentype_function(symtab, instructions, "mod", 2, generate_mod); make_gentype_function(symtab, instructions, "min", 2, generate_min); /* FINISHME: min(x, float y) */ make_gentype_function(symtab, instructions, "max", 2, generate_max); /* FINISHME: max(x, float y) */ make_gentype_function(symtab, instructions, "clamp", 3, generate_clamp); /* FINISHME: clamp() */ make_gentype_function(symtab, instructions, "mix", 3, generate_mix_vec); /* FINISHME: mix() */ /* FINISHME: step() */ /* FINISHME: step() */ /* FINISHME: smoothstep() */ /* FINISHME: smoothstep() */ /* FINISHME: floor() */ /* FINISHME: step() */ generate_length_functions(symtab, instructions); /* FINISHME: distance() */ generate_dot_functions(symtab, instructions); /* FINISHME: cross() */ make_gentype_function(symtab, instructions, "normalize", 1, generate_normalize); /* FINISHME: normalize() */ /* FINISHME: ftransform() */ /* FINISHME: faceforward() */ /* FINISHME: reflect() */ /* FINISHME: refract() */ /* FINISHME: matrixCompMult() */ generate_vec_compare_function(symtab, instructions, "lessThan", generate_lessThan, false); generate_vec_compare_function(symtab, instructions, "lessThanEqual", generate_lessThanEqual, false); generate_vec_compare_function(symtab, instructions, "greaterThan", generate_greaterThan, false); generate_vec_compare_function(symtab, instructions, "greaterThanEqual", generate_greaterThanEqual, false); generate_vec_compare_function(symtab, instructions, "equal", generate_equal, false); generate_vec_compare_function(symtab, instructions, "notEqual", generate_notEqual, false); generate_any_functions(symtab, instructions); generate_all_functions(symtab, instructions); generate_not_functions(symtab, instructions); /* FINISHME: texture*() */ /* FINISHME: shadow*() */ /* FINISHME: dFd[xy]() */ /* FINISHME: fwidth() */ } void _mesa_glsl_initialize_functions(exec_list *instructions, struct _mesa_glsl_parse_state *state) { generate_110_functions(state->symbols, instructions); }