/* * Copyright © 2009 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include "glsl_symbol_table.h" #include "glsl_parser_extras.h" #include "glsl_types.h" #include "builtin_types.h" static void add_types_to_symbol_table(glsl_symbol_table *symtab, const struct glsl_type *types, unsigned num_types) { unsigned i; for (i = 0; i < num_types; i++) { symtab->add_type(types[i].name, & types[i]); } } static void generate_110_types(glsl_symbol_table *symtab) { add_types_to_symbol_table(symtab, builtin_core_types, Elements(builtin_core_types)); add_types_to_symbol_table(symtab, builtin_structure_types, Elements(builtin_structure_types)); add_types_to_symbol_table(symtab, builtin_110_deprecated_structure_types, Elements(builtin_110_deprecated_structure_types)); add_types_to_symbol_table(symtab, & void_type, 1); } static void generate_120_types(glsl_symbol_table *symtab) { generate_110_types(symtab); add_types_to_symbol_table(symtab, builtin_120_types, Elements(builtin_120_types)); } static void generate_130_types(glsl_symbol_table *symtab) { generate_120_types(symtab); add_types_to_symbol_table(symtab, builtin_130_types, Elements(builtin_130_types)); } void _mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state) { switch (state->language_version) { case 110: generate_110_types(state->symbols); break; case 120: generate_120_types(state->symbols); break; case 130: generate_130_types(state->symbols); break; default: /* error */ break; } } const glsl_type *glsl_type::get_base_type() const { switch (base_type) { case GLSL_TYPE_UINT: return uint_type; case GLSL_TYPE_INT: return int_type; case GLSL_TYPE_FLOAT: return float_type; case GLSL_TYPE_BOOL: return bool_type; default: return error_type; } } /** * Generate the function intro for a constructor * * \param type Data type to be constructed * \param count Number of parameters to this concrete constructor. Most * types have at least two constructors. One will take a * single scalar parameter and the other will take "N" * scalar parameters. * \param parameters Storage for the list of parameters. These are * typically stored in an \c ir_function_signature. * \param instructions Storage for the preamble and body of the function. * \param declarations Pointers to the variable declarations for the function * parameters. These are used later to avoid having to use * the symbol table. */ static ir_label * generate_constructor_intro(const glsl_type *type, unsigned parameter_count, exec_list *parameters, exec_list *instructions, ir_variable **declarations) { /* Names of parameters used in vector and matrix constructors */ static const char *const names[] = { "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", }; assert(parameter_count <= Elements(names)); const glsl_type *const parameter_type = type->get_base_type(); ir_label *const label = new ir_label(type->name); instructions->push_tail(label); for (unsigned i = 0; i < parameter_count; i++) { ir_variable *var = new ir_variable(parameter_type, names[i]); var->mode = ir_var_in; parameters->push_tail(var); var = new ir_variable(parameter_type, names[i]); var->mode = ir_var_in; instructions->push_tail(var); declarations[i] = var; } ir_variable *retval = new ir_variable(type, "__retval"); instructions->push_tail(retval); declarations[16] = retval; return label; } /** * Generate the body of a vector constructor that takes a single scalar */ static void generate_vec_body_from_scalar(exec_list *instructions, ir_variable **declarations) { ir_instruction *inst; /* Generate a single assignment of the parameter to __retval.x and return * __retval.xxxx for however many vector components there are. */ ir_dereference *const lhs_ref = new ir_dereference(declarations[16]); ir_dereference *const rhs = new ir_dereference(declarations[0]); ir_swizzle *lhs = new ir_swizzle(lhs_ref, 0, 0, 0, 0, 1); inst = new ir_assignment(lhs, rhs, NULL); instructions->push_tail(inst); ir_dereference *const retref = new ir_dereference(declarations[16]); ir_swizzle *retval = new ir_swizzle(retref, 0, 0, 0, 0, declarations[16]->type->vector_elements); inst = new ir_return(retval); instructions->push_tail(inst); } /** * Generate the body of a vector constructor that takes multiple scalars */ static void generate_vec_body_from_N_scalars(exec_list *instructions, ir_variable **declarations) { ir_instruction *inst; const glsl_type *const vec_type = declarations[16]->type; /* Generate an assignment of each parameter to a single component of * __retval.x and return __retval. */ for (unsigned i = 0; i < vec_type->vector_elements; i++) { ir_dereference *const lhs_ref = new ir_dereference(declarations[16]); ir_dereference *const rhs = new ir_dereference(declarations[i]); ir_swizzle *lhs = new ir_swizzle(lhs_ref, 1, 0, 0, 0, 1); inst = new ir_assignment(lhs, rhs, NULL); instructions->push_tail(inst); } ir_dereference *retval = new ir_dereference(declarations[16]); inst = new ir_return(retval); instructions->push_tail(inst); } /** * Generate the body of a matrix constructor that takes a single scalar */ static void generate_mat_body_from_scalar(exec_list *instructions, ir_variable **declarations) { ir_instruction *inst; /* Generate an assignment of the parameter to the X component of a * temporary vector. Set the remaining fields of the vector to 0. The * size of the vector is equal to the number of rows of the matrix. * * Set each column of the matrix to a successive "rotation" of the * temporary vector. This fills the matrix with 0s, but writes the single * scalar along the matrix's diagonal. * * For a mat4x3, this is equivalent to: * * vec3 tmp; * mat4x3 __retval; * tmp.x = a; * tmp.y = 0.0; * tmp.z = 0.0; * __retval[0] = tmp.xyy; * __retval[1] = tmp.yxy; * __retval[2] = tmp.yyx; * __retval[3] = tmp.yyy; */ const glsl_type *const column_type = declarations[16]->type->column_type(); const glsl_type *const row_type = declarations[16]->type->row_type(); ir_variable *const column = new ir_variable(column_type, "v"); instructions->push_tail(column); ir_dereference *const lhs_ref = new ir_dereference(column); ir_dereference *const rhs = new ir_dereference(declarations[0]); ir_swizzle *lhs = new ir_swizzle(lhs_ref, 0, 0, 0, 0, 1); inst = new ir_assignment(lhs, rhs, NULL); instructions->push_tail(inst); const float z = 0.0f; ir_constant *const zero = new ir_constant(glsl_type::float_type, &z); for (unsigned i = 1; i < column_type->vector_elements; i++) { ir_dereference *const lhs_ref = new ir_dereference(column); ir_swizzle *lhs = new ir_swizzle(lhs_ref, i, 0, 0, 0, 1); inst = new ir_assignment(lhs, zero, NULL); instructions->push_tail(inst); } for (unsigned i = 0; i < row_type->vector_elements; i++) { static const unsigned swiz[] = { 1, 1, 1, 0, 1, 1, 1 }; ir_dereference *const rhs_ref = new ir_dereference(column); /* This will be .xyyy when i=0, .yxyy when i=1, etc. */ ir_swizzle *rhs = new ir_swizzle(rhs_ref, swiz[3 - i], swiz[4 - i], swiz[5 - i], swiz[6 - i], column_type->vector_elements); ir_constant *const idx = new ir_constant(glsl_type::int_type, &i); ir_dereference *const lhs = new ir_dereference(declarations[16], idx); inst = new ir_assignment(lhs, rhs, NULL); instructions->push_tail(inst); } ir_dereference *const retval = new ir_dereference(declarations[16]); inst = new ir_return(retval); instructions->push_tail(inst); } /** * Generate the body of a vector constructor that takes multiple scalars */ static void generate_mat_body_from_N_scalars(exec_list *instructions, ir_variable **declarations) { ir_instruction *inst; const glsl_type *const row_type = declarations[16]->type->row_type(); const glsl_type *const column_type = declarations[16]->type->column_type(); /* Generate an assignment of each parameter to a single component of * of a particular column of __retval and return __retval. */ for (unsigned i = 0; i < column_type->vector_elements; i++) { for (unsigned j = 0; j < row_type->vector_elements; j++) { ir_constant *row_index = new ir_constant(glsl_type::int_type, &i); ir_dereference *const row_access = new ir_dereference(declarations[16], row_index); ir_dereference *const component_access_ref = new ir_dereference(row_access); ir_swizzle *component_access = new ir_swizzle(component_access_ref, j, 0, 0, 0, 1); const unsigned param = (i * row_type->vector_elements) + j; ir_dereference *const rhs = new ir_dereference(declarations[param]); inst = new ir_assignment(component_access, rhs, NULL); instructions->push_tail(inst); } } ir_dereference *retval = new ir_dereference(declarations[16]); inst = new ir_return(retval); instructions->push_tail(inst); } /** * Generate the constructors for a set of GLSL types * * Constructor implementations are added to \c instructions, and the symbols * are added to \c symtab. */ static void generate_constructor(glsl_symbol_table *symtab, const struct glsl_type *types, unsigned num_types, exec_list *instructions) { ir_variable *declarations[17]; for (unsigned i = 0; i < num_types; i++) { /* Only numeric and boolean vectors and matrices get constructors here. * Structures need to be handled elsewhere. It is expected that scalar * constructors are never actually called, so they are not generated. */ if (!types[i].is_numeric() && !types[i].is_boolean()) continue; if (types[i].is_scalar()) continue; /* Generate the function name and add it to the symbol table. */ ir_function *const f = new ir_function(types[i].name); bool added = symtab->add_function(types[i].name, f); assert(added); /* Each type has several basic constructors. The total number of forms * depends on the derived type. * * Vectors: 1 scalar, N scalars * Matrices: 1 scalar, NxM scalars * * Several possible types of constructors are not included in this list. * * Scalar constructors are not included. The expectation is that the * IR generator won't actually generate these as constructor calls. The * expectation is that it will just generate the necessary type * conversion. * * Matrix contructors from matrices are also not included. The * expectation is that the IR generator will generate a call to the * appropriate from-scalars constructor. */ ir_function_signature *const sig = new ir_function_signature(& types[i]); f->signatures.push_tail(sig); sig->definition = generate_constructor_intro(& types[i], 1, & sig->parameters, instructions, declarations); if (types[i].is_vector()) { generate_vec_body_from_scalar(instructions, declarations); ir_function_signature *const vec_sig = new ir_function_signature(& types[i]); f->signatures.push_tail(vec_sig); vec_sig->definition = generate_constructor_intro(& types[i], types[i].vector_elements, & vec_sig->parameters, instructions, declarations); generate_vec_body_from_N_scalars(instructions, declarations); } else { assert(types[i].is_matrix()); generate_mat_body_from_scalar(instructions, declarations); ir_function_signature *const mat_sig = new ir_function_signature(& types[i]); f->signatures.push_tail(mat_sig); mat_sig->definition = generate_constructor_intro(& types[i], (types[i].vector_elements * types[i].matrix_columns), & mat_sig->parameters, instructions, declarations); generate_mat_body_from_N_scalars(instructions, declarations); } } } void generate_110_constructors(glsl_symbol_table *symtab, exec_list *instructions) { generate_constructor(symtab, builtin_core_types, Elements(builtin_core_types), instructions); } void generate_120_constructors(glsl_symbol_table *symtab, exec_list *instructions) { generate_110_constructors(symtab, instructions); generate_constructor(symtab, builtin_120_types, Elements(builtin_120_types), instructions); } void generate_130_constructors(glsl_symbol_table *symtab, exec_list *instructions) { generate_120_constructors(symtab, instructions); generate_constructor(symtab, builtin_130_types, Elements(builtin_130_types), instructions); } void _mesa_glsl_initialize_constructors(exec_list *instructions, struct _mesa_glsl_parse_state *state) { switch (state->language_version) { case 110: generate_110_constructors(state->symbols, instructions); break; case 120: generate_120_constructors(state->symbols, instructions); break; case 130: generate_130_constructors(state->symbols, instructions); break; default: /* error */ break; } } const glsl_type * glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns) { if (base_type == GLSL_TYPE_VOID) return &void_type; if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4)) return error_type; /* Treat GLSL vectors as Nx1 matrices. */ if (columns == 1) { switch (base_type) { case GLSL_TYPE_UINT: return uint_type + (rows - 1); case GLSL_TYPE_INT: return int_type + (rows - 1); case GLSL_TYPE_FLOAT: return float_type + (rows - 1); case GLSL_TYPE_BOOL: return bool_type + (rows - 1); default: return error_type; } } else { if ((base_type != GLSL_TYPE_FLOAT) || (rows == 1)) return error_type; /* GLSL matrix types are named mat{COLUMNS}x{ROWS}. Only the following * combinations are valid: * * 1 2 3 4 * 1 * 2 x x x * 3 x x x * 4 x x x */ #define IDX(c,r) (((c-1)*3) + (r-1)) switch (IDX(columns, rows)) { case IDX(2,2): return mat2_type; case IDX(2,3): return mat2x3_type; case IDX(2,4): return mat2x4_type; case IDX(3,2): return mat3x2_type; case IDX(3,3): return mat3_type; case IDX(3,4): return mat3x4_type; case IDX(4,2): return mat4x2_type; case IDX(4,3): return mat4x3_type; case IDX(4,4): return mat4_type; default: return error_type; } } assert(!"Should not get here."); return error_type; }