/* -*- c++ -*- */ /* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #pragma once #ifndef IR_H #define IR_H #include "list.h" #include "ir_visitor.h" struct ir_program { void *bong_hits; }; /** * Base class of all IR instructions */ class ir_instruction : public exec_node { public: const struct glsl_type *type; class ir_constant *constant_expression_value(); virtual void accept(ir_visitor *) = 0; /** * \name IR instruction downcast functions * * These functions either cast the object to a derived class or return * \c NULL if the object's type does not match the specified derived class. * Additional downcast functions will be added as needed. */ /*@{*/ virtual class ir_variable * as_variable() { return NULL; } virtual class ir_function * as_function() { return NULL; } virtual class ir_dereference * as_dereference() { return NULL; } virtual class ir_rvalue * as_rvalue() { return NULL; } virtual class ir_label * as_label() { return NULL; } virtual class ir_loop * as_loop() { return NULL; } virtual class ir_assignment * as_assignment() { return NULL; } virtual class ir_call * as_call() { return NULL; } virtual class ir_return * as_return() { return NULL; } virtual class ir_if * as_if() { return NULL; } virtual class ir_swizzle * as_swizzle() { return NULL; } /*@}*/ protected: ir_instruction() { /* empty */ } }; class ir_rvalue : public ir_instruction { public: virtual ir_rvalue * as_rvalue() { return this; } virtual bool is_lvalue() { return false; } protected: ir_rvalue() { /* empty */ } }; enum ir_variable_mode { ir_var_auto = 0, ir_var_uniform, ir_var_in, ir_var_out, ir_var_inout }; enum ir_varaible_interpolation { ir_var_smooth = 0, ir_var_flat, ir_var_noperspective }; class ir_variable : public ir_instruction { public: ir_variable(const struct glsl_type *, const char *); virtual ir_variable *as_variable() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } /** * Duplicate an IR variable * * \note * This will probably be made \c virtual and moved to the base class * eventually. */ ir_variable *clone() const { ir_variable *var = new ir_variable(type, name); var->max_array_access = this->max_array_access; var->read_only = this->read_only; var->centroid = this->centroid; var->invariant = this->invariant; var->mode = this->mode; var->interpolation = this->interpolation; return var; } const char *name; /** * Highest element accessed with a constant expression array index * * Not used for non-array variables. */ unsigned max_array_access; unsigned read_only:1; unsigned centroid:1; unsigned invariant:1; /** If the variable is initialized outside of the scope of the shader */ unsigned shader_in:1; /** * If the variable value is later used outside of the scope of the shader. */ unsigned shader_out:1; unsigned mode:3; unsigned interpolation:2; /** * Flag that the whole array is assignable * * In GLSL 1.20 and later whole arrays are assignable (and comparable for * equality). This flag enables this behavior. */ unsigned array_lvalue:1; /** * Emit a warning if this variable is accessed. */ const char *warn_extension; /** * Value assigned in the initializer of a variable declared "const" */ ir_constant *constant_value; }; /*@{*/ /** * The representation of a function instance; may be the full definition or * simply a prototype. */ class ir_function_signature : public ir_instruction { /* An ir_function_signature will be part of the list of signatures in * an ir_function. */ public: ir_function_signature(const glsl_type *return_type); virtual void accept(ir_visitor *v) { v->visit(this); } /** * Get the name of the function for which this is a signature */ const char *function_name() const; /** * Check whether the qualifiers match between this signature's parameters * and the supplied parameter list. If not, returns the name of the first * parameter with mismatched qualifiers (for use in error messages). */ const char *qualifiers_match(exec_list *params); /** * Replace the current parameter list with the given one. This is useful * if the current information came from a prototype, and either has invalid * or missing parameter names. */ void replace_parameters(exec_list *new_params); /** * Function return type. * * \note This discards the optional precision qualifier. */ const struct glsl_type *return_type; /** * List of ir_variable of function parameters. * * This represents the storage. The paramaters passed in a particular * call will be in ir_call::actual_paramaters. */ struct exec_list parameters; /** Whether or not this function has a body (which may be empty). */ unsigned is_defined:1; /** Body of instructions in the function. */ struct exec_list body; private: /** Function of which this signature is one overload. */ class ir_function *function; friend class ir_function; }; /** * Header for tracking multiple overloaded functions with the same name. * Contains a list of ir_function_signatures representing each of the * actual functions. */ class ir_function : public ir_instruction { public: ir_function(const char *name); virtual ir_function *as_function() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } void add_signature(ir_function_signature *sig) { sig->function = this; signatures.push_tail(sig); } /** * Get an iterator for the set of function signatures */ exec_list_iterator iterator() { return signatures.iterator(); } /** * Find a signature that matches a set of actual parameters, taking implicit * conversions into account. */ const ir_function_signature *matching_signature(exec_list *actual_param); /** * Find a signature that exactly matches a set of actual parameters without * any implicit type conversions. */ ir_function_signature *exact_matching_signature(exec_list *actual_ps); /** * Name of the function. */ const char *name; private: /** * List of ir_function_signature for each overloaded function with this name. */ struct exec_list signatures; }; inline const char *ir_function_signature::function_name() const { return function->name; } /*@}*/ /** * IR instruction representing high-level if-statements */ class ir_if : public ir_instruction { public: ir_if(ir_rvalue *condition) : condition(condition) { /* empty */ } virtual ir_if *as_if() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } ir_rvalue *condition; /** List of ir_instruction for the body of the then branch */ exec_list then_instructions; /** List of ir_instruction for the body of the else branch */ exec_list else_instructions; }; /** * IR instruction representing a high-level loop structure. */ class ir_loop : public ir_instruction { public: ir_loop() : from(NULL), to(NULL), increment(NULL), counter(NULL) { /* empty */ } virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_loop *as_loop() { return this; } /** * Get an iterator for the instructions of the loop body */ exec_list_iterator iterator() { return body_instructions.iterator(); } /** List of ir_instruction that make up the body of the loop. */ exec_list body_instructions; /** * \name Loop counter and controls */ /*@{*/ ir_rvalue *from; ir_rvalue *to; ir_rvalue *increment; ir_variable *counter; /*@}*/ }; class ir_assignment : public ir_rvalue { public: ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition); virtual void accept(ir_visitor *v) { v->visit(this); } virtual ir_assignment * as_assignment() { return this; } /** * Left-hand side of the assignment. */ ir_rvalue *lhs; /** * Value being assigned */ ir_rvalue *rhs; /** * Optional condition for the assignment. */ ir_rvalue *condition; }; /* Update ir_expression::num_operands() and operator_strs when * updating this list. */ enum ir_expression_operation { ir_unop_bit_not, ir_unop_logic_not, ir_unop_neg, ir_unop_abs, ir_unop_rcp, ir_unop_rsq, ir_unop_sqrt, ir_unop_exp, ir_unop_log, ir_unop_exp2, ir_unop_log2, ir_unop_f2i, /**< Float-to-integer conversion. */ ir_unop_i2f, /**< Integer-to-float conversion. */ ir_unop_f2b, /**< Float-to-boolean conversion */ ir_unop_b2f, /**< Boolean-to-float conversion */ ir_unop_i2b, /**< int-to-boolean conversion */ ir_unop_b2i, /**< Boolean-to-int conversion */ ir_unop_u2f, /**< Unsigned-to-float conversion. */ /** * \name Unary floating-point rounding operations. */ /*@{*/ ir_unop_trunc, ir_unop_ceil, ir_unop_floor, /*@}*/ ir_binop_add, ir_binop_sub, ir_binop_mul, ir_binop_div, ir_binop_mod, /** * \name Binary comparison operators */ /*@{*/ ir_binop_less, ir_binop_greater, ir_binop_lequal, ir_binop_gequal, ir_binop_equal, ir_binop_nequal, /*@}*/ /** * \name Bit-wise binary operations. */ /*@{*/ ir_binop_lshift, ir_binop_rshift, ir_binop_bit_and, ir_binop_bit_xor, ir_binop_bit_or, /*@}*/ ir_binop_logic_and, ir_binop_logic_xor, ir_binop_logic_or, ir_binop_dot, ir_binop_min, ir_binop_max, ir_binop_pow }; class ir_expression : public ir_rvalue { public: ir_expression(int op, const struct glsl_type *type, ir_rvalue *, ir_rvalue *); static unsigned int get_num_operands(ir_expression_operation); unsigned int get_num_operands() { return get_num_operands(operation); } /** * Return a string representing this expression's operator. */ const char *operator_string(); /** * Do a reverse-lookup to translate the given string into an operator. */ static ir_expression_operation get_operator(const char *); virtual void accept(ir_visitor *v) { v->visit(this); } ir_expression *clone(); ir_expression_operation operation; ir_rvalue *operands[2]; }; /** * IR instruction representing a function call */ class ir_call : public ir_rvalue { public: ir_call(const ir_function_signature *callee, exec_list *actual_parameters) : callee(callee) { assert(callee->return_type != NULL); type = callee->return_type; actual_parameters->move_nodes_to(& this->actual_parameters); } virtual ir_call *as_call() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } /** * Get a generic ir_call object when an error occurs */ static ir_call *get_error_instruction(); /** * Get an iterator for the set of acutal parameters */ exec_list_iterator iterator() { return actual_parameters.iterator(); } /** * Get the name of the function being called. */ const char *callee_name() const { return callee->function_name(); } const ir_function_signature *get_callee() { return callee; } /** * Generates an inline version of the function before @ir, * returning the return value of the function. */ ir_rvalue *generate_inline(ir_instruction *ir); private: ir_call() : callee(NULL) { /* empty */ } const ir_function_signature *callee; /* List of ir_rvalue of paramaters passed in this call. */ exec_list actual_parameters; }; /** * \name Jump-like IR instructions. * * These include \c break, \c continue, \c return, and \c discard. */ /*@{*/ class ir_jump : public ir_instruction { protected: ir_jump() { /* empty */ } }; class ir_return : public ir_jump { public: ir_return() : value(NULL) { /* empty */ } ir_return(ir_rvalue *value) : value(value) { /* empty */ } virtual ir_return *as_return() { return this; } ir_rvalue *get_value() const { return value; } virtual void accept(ir_visitor *v) { v->visit(this); } private: ir_rvalue *value; }; /** * Jump instructions used inside loops * * These include \c break and \c continue. The \c break within a loop is * different from the \c break within a switch-statement. * * \sa ir_switch_jump */ class ir_loop_jump : public ir_jump { public: enum jump_mode { jump_break, jump_continue }; ir_loop_jump(ir_loop *loop, jump_mode mode) : loop(loop), mode(mode) { /* empty */ } virtual void accept(ir_visitor *v) { v->visit(this); } bool is_break() const { return mode == jump_break; } bool is_continue() const { return mode == jump_continue; } private: /** Loop containing this break instruction. */ ir_loop *loop; /** Mode selector for the jump instruction. */ enum jump_mode mode; }; /*@}*/ struct ir_swizzle_mask { unsigned x:2; unsigned y:2; unsigned z:2; unsigned w:2; /** * Number of components in the swizzle. */ unsigned num_components:3; /** * Does the swizzle contain duplicate components? * * L-value swizzles cannot contain duplicate components. */ unsigned has_duplicates:1; }; class ir_swizzle : public ir_rvalue { public: ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w, unsigned count); ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask) : val(val), mask(mask) { /* empty */ } virtual ir_swizzle *as_swizzle() { return this; } ir_swizzle *clone() { return new ir_swizzle(this->val, this->mask); } /** * Construct an ir_swizzle from the textual representation. Can fail. */ static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length); virtual void accept(ir_visitor *v) { v->visit(this); } bool is_lvalue() { return val->is_lvalue() && !mask.has_duplicates; } ir_rvalue *val; ir_swizzle_mask mask; }; class ir_dereference : public ir_rvalue { public: ir_dereference(struct ir_instruction *); ir_dereference(ir_instruction *variable, ir_rvalue *array_index); virtual ir_dereference *as_dereference() { return this; } virtual void accept(ir_visitor *v) { v->visit(this); } bool is_lvalue(); enum { ir_reference_variable, ir_reference_array, ir_reference_record } mode; /** * Object being dereferenced. * * Must be either an \c ir_variable or an \c ir_rvalue. */ ir_instruction *var; union { ir_rvalue *array_index; const char *field; } selector; }; class ir_constant : public ir_rvalue { public: ir_constant(const struct glsl_type *type, const void *data); ir_constant(bool b); ir_constant(unsigned int u); ir_constant(int i); ir_constant(float f); virtual void accept(ir_visitor *v) { v->visit(this); } ir_constant *clone() { return new ir_constant(this->type, &this->value); } /** * Value of the constant. * * The field used to back the values supplied by the constant is determined * by the type associated with the \c ir_instruction. Constants may be * scalars, vectors, or matrices. */ union { unsigned u[16]; int i[16]; float f[16]; bool b[16]; } value; }; void visit_exec_list(exec_list *list, ir_visitor *visitor); extern void _mesa_glsl_initialize_variables(exec_list *instructions, struct _mesa_glsl_parse_state *state); extern void _mesa_glsl_initialize_functions(exec_list *instructions, struct _mesa_glsl_parse_state *state); #endif /* IR_H */