/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file ir_to_mesa.cpp * * Translates the IR to ARB_fragment_program text if possible, * printing the result * * The code generation is performed using monoburg. Because monoburg * produces a single C file with the definitions of the node types in * it, this file is included from the monoburg output. */ /* Quiet compiler warnings due to monoburg not marking functions defined * in the header as inline. */ #define g_new #define g_error #include "mesa_codegen.h" #include "ir.h" #include "ir_visitor.h" #include "ir_print_visitor.h" #include "ir_expression_flattening.h" #include "glsl_types.h" extern "C" { #include "shader/prog_instruction.h" #include "shader/prog_print.h" } ir_to_mesa_src_reg ir_to_mesa_undef = { PROGRAM_UNDEFINED, 0, SWIZZLE_NOOP }; ir_to_mesa_instruction * ir_to_mesa_emit_op3(struct mbtree *tree, enum prog_opcode op, ir_to_mesa_dst_reg dst, ir_to_mesa_src_reg src0, ir_to_mesa_src_reg src1, ir_to_mesa_src_reg src2) { ir_to_mesa_instruction *inst = new ir_to_mesa_instruction(); inst->op = op; inst->dst_reg = dst; inst->src_reg[0] = src0; inst->src_reg[1] = src1; inst->src_reg[2] = src2; inst->ir = tree->ir; tree->v->instructions.push_tail(inst); return inst; } ir_to_mesa_instruction * ir_to_mesa_emit_op2(struct mbtree *tree, enum prog_opcode op, ir_to_mesa_dst_reg dst, ir_to_mesa_src_reg src0, ir_to_mesa_src_reg src1) { return ir_to_mesa_emit_op3(tree, op, dst, src0, src1, ir_to_mesa_undef); } ir_to_mesa_instruction * ir_to_mesa_emit_op1(struct mbtree *tree, enum prog_opcode op, ir_to_mesa_dst_reg dst, ir_to_mesa_src_reg src0) { return ir_to_mesa_emit_op3(tree, op, dst, src0, ir_to_mesa_undef, ir_to_mesa_undef); } /** * Emits Mesa scalar opcodes to produce unique answers across channels. * * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X * channel determines the result across all channels. So to do a vec4 * of this operation, we want to emit a scalar per source channel used * to produce dest channels. */ void ir_to_mesa_emit_scalar_op1(struct mbtree *tree, enum prog_opcode op, ir_to_mesa_dst_reg dst, ir_to_mesa_src_reg src0) { int i, j; int done_mask = ~dst.writemask; /* Mesa RCP is a scalar operation splatting results to all channels, * like ARB_fp/vp. So emit as many RCPs as necessary to cover our * dst channels. */ for (i = 0; i < 4; i++) { int this_mask = (1 << i); ir_to_mesa_instruction *inst; ir_to_mesa_src_reg src = src0; if (done_mask & this_mask) continue; int src_swiz = GET_SWZ(src.swizzle, i); for (j = i + 1; j < 4; j++) { if (!(done_mask & (1 << j)) && GET_SWZ(src.swizzle, j) == src_swiz) { this_mask |= (1 << j); } } src.swizzle = MAKE_SWIZZLE4(src_swiz, src_swiz, src_swiz, src_swiz); inst = ir_to_mesa_emit_op1(tree, op, dst, src); inst->dst_reg.writemask = this_mask; done_mask |= this_mask; } } static void ir_to_mesa_set_tree_reg(struct mbtree *tree, int file, int index) { tree->dst_reg.file = file; tree->dst_reg.index = index; tree->src_reg.file = file; tree->src_reg.index = index; } struct mbtree * ir_to_mesa_visitor::create_tree(int op, ir_instruction *ir, struct mbtree *left, struct mbtree *right) { struct mbtree *tree = (struct mbtree *)calloc(sizeof(struct mbtree), 1); assert(ir); tree->op = op; tree->left = left; tree->right = right; tree->v = this; tree->src_reg.swizzle = SWIZZLE_XYZW; tree->dst_reg.writemask = WRITEMASK_XYZW; ir_to_mesa_set_tree_reg(tree, PROGRAM_UNDEFINED, 0); tree->ir = ir; return tree; } /** * In the initial pass of codegen, we assign temporary numbers to * intermediate results. (not SSA -- variable assignments will reuse * storage). Actual register allocation for the Mesa VM occurs in a * pass over the Mesa IR later. */ void ir_to_mesa_visitor::get_temp(struct mbtree *tree, int size) { int swizzle[4]; int i; ir_to_mesa_set_tree_reg(tree, PROGRAM_TEMPORARY, this->next_temp++); for (i = 0; i < size; i++) swizzle[i] = i; for (; i < 4; i++) swizzle[i] = size - 1; tree->src_reg.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); tree->dst_reg.writemask = (1 << size) - 1; } void ir_to_mesa_visitor::get_temp_for_var(ir_variable *var, struct mbtree *tree) { temp_entry *entry; foreach_iter(exec_list_iterator, iter, this->variable_storage) { entry = (temp_entry *)iter.get(); if (entry->var == var) { ir_to_mesa_set_tree_reg(tree, entry->file, entry->index); return; } } entry = new temp_entry(var, PROGRAM_TEMPORARY, this->next_temp++); this->variable_storage.push_tail(entry); ir_to_mesa_set_tree_reg(tree, entry->file, entry->index); } static void reduce(struct mbtree *t, int goal) { struct mbtree *kids[10]; int rule = mono_burg_rule((MBState *)t->state, goal); const uint16_t *nts = mono_burg_nts[rule]; int i; mono_burg_kids (t, rule, kids); for (i = 0; nts[i]; i++) { reduce(kids[i], nts[i]); } if (t->left) { if (mono_burg_func[rule]) { mono_burg_func[rule](t, NULL); } else { printf("no code for rules %s\n", mono_burg_rule_string[rule]); exit(1); } } else { if (mono_burg_func[rule]) { printf("unused code for rule %s\n", mono_burg_rule_string[rule]); exit(1); } } } void ir_to_mesa_visitor::visit(ir_variable *ir) { (void)ir; } void ir_to_mesa_visitor::visit(ir_loop *ir) { (void)ir; printf("Can't support loops, should be flattened before here\n"); exit(1); } void ir_to_mesa_visitor::visit(ir_loop_jump *ir) { (void) ir; printf("Can't support loops, should be flattened before here\n"); exit(1); } void ir_to_mesa_visitor::visit(ir_function_signature *ir) { assert(0); (void)ir; } void ir_to_mesa_visitor::visit(ir_function *ir) { /* Ignore function bodies other than main() -- we shouldn't see calls to * them since they should all be inlined before we get to ir_to_mesa. */ if (strcmp(ir->name, "main") == 0) { const ir_function_signature *sig; exec_list empty; sig = ir->matching_signature(&empty); assert(sig); foreach_iter(exec_list_iterator, iter, sig->body) { ir_instruction *ir = (ir_instruction *)iter.get(); ir->accept(this); } } } void ir_to_mesa_visitor::visit(ir_expression *ir) { unsigned int operand; struct mbtree *op[2]; const glsl_type *vec4_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 4, 1); const glsl_type *vec3_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 3, 1); const glsl_type *vec2_type = glsl_type::get_instance(GLSL_TYPE_FLOAT, 2, 1); for (operand = 0; operand < ir->get_num_operands(); operand++) { this->result = NULL; ir->operands[operand]->accept(this); if (!this->result) { ir_print_visitor v; printf("Failed to get tree for expression operand:\n"); ir->operands[operand]->accept(&v); exit(1); } op[operand] = this->result; } this->result = NULL; switch (ir->operation) { case ir_binop_add: this->result = this->create_tree(MB_TERM_add_vec4_vec4, ir, op[0], op[1]); break; case ir_binop_sub: this->result = this->create_tree(MB_TERM_sub_vec4_vec4, ir, op[0], op[1]); break; case ir_binop_mul: this->result = this->create_tree(MB_TERM_mul_vec4_vec4, ir, op[0], op[1]); break; case ir_binop_div: this->result = this->create_tree(MB_TERM_div_vec4_vec4, ir, op[0], op[1]); break; case ir_binop_dot: if (ir->operands[0]->type == vec4_type) { assert(ir->operands[1]->type == vec4_type); this->result = this->create_tree(MB_TERM_dp4_vec4_vec4, ir, op[0], op[1]); } else if (ir->operands[0]->type == vec3_type) { assert(ir->operands[1]->type == vec3_type); this->result = this->create_tree(MB_TERM_dp3_vec4_vec4, ir, op[0], op[1]); } else if (ir->operands[0]->type == vec2_type) { assert(ir->operands[1]->type == vec2_type); this->result = this->create_tree(MB_TERM_dp2_vec4_vec4, ir, op[0], op[1]); } break; case ir_unop_sqrt: this->result = this->create_tree(MB_TERM_sqrt_vec4, ir, op[0], op[1]); break; case ir_unop_i2f: /* Mesa IR lacks types, ints are stored as floats. */ this->result = op[0]; break; default: break; } if (!this->result) { ir_print_visitor v; printf("Failed to get tree for expression:\n"); ir->accept(&v); exit(1); } /* Allocate a temporary for the result. */ this->get_temp(this->result, ir->type->vector_elements); } void ir_to_mesa_visitor::visit(ir_swizzle *ir) { struct mbtree *tree; int i; int swizzle[4]; /* Note that this is only swizzles in expressions, not those on the left * hand side of an assignment, which do write masking. See ir_assignment * for that. */ ir->val->accept(this); assert(this->result); tree = this->create_tree(MB_TERM_swizzle_vec4, ir, this->result, NULL); this->get_temp(tree, 4); for (i = 0; i < 4; i++) { if (i < ir->type->vector_elements) { switch (i) { case 0: swizzle[i] = ir->mask.x; break; case 1: swizzle[i] = ir->mask.y; break; case 2: swizzle[i] = ir->mask.z; break; case 3: swizzle[i] = ir->mask.w; break; } } else { /* If the type is smaller than a vec4, replicate the last * channel out. */ swizzle[i] = ir->type->vector_elements - 1; } } tree->src_reg.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); this->result = tree; } void ir_to_mesa_visitor::visit(ir_dereference_variable *ir) { struct mbtree *tree; int size_swizzles[4] = { MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W), }; ir_variable *var = ir->var->as_variable(); /* By the time we make it to this stage, matric`es should be broken down * to vectors. */ assert(!var->type->is_matrix()); tree = this->create_tree(MB_TERM_reference_vec4, ir, NULL, NULL); if (strncmp(var->name, "gl_", 3) == 0) { if (strcmp(var->name, "gl_FragColor") == 0) { ir_to_mesa_set_tree_reg(tree, PROGRAM_INPUT, FRAG_ATTRIB_COL0); } else if (strcmp(var->name, "gl_Position") == 0) { ir_to_mesa_set_tree_reg(tree, PROGRAM_OUTPUT, VERT_RESULT_HPOS); } else { assert(0); } } else { this->get_temp_for_var(var, tree); } /* If the type is smaller than a vec4, replicate the last channel out. */ tree->src_reg.swizzle = size_swizzles[ir->type->vector_elements - 1]; this->result = tree; } void ir_to_mesa_visitor::visit(ir_dereference_array *ir) { struct mbtree *tree; int size_swizzles[4] = { MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y), MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X), }; ir_variable *var = ir->variable_referenced(); ir_constant *index = ir->array_index->constant_expression_value(); int file = PROGRAM_UNDEFINED; int base_index = 0; assert(var); assert(index); if (strcmp(var->name, "gl_TexCoord") == 0) { file = PROGRAM_INPUT; base_index = FRAG_ATTRIB_TEX0; } else if (strcmp(var->name, "gl_FragData") == 0) { file = PROGRAM_OUTPUT; base_index = FRAG_RESULT_DATA0; } tree = this->create_tree(MB_TERM_reference_vec4, ir, NULL, NULL); ir_to_mesa_set_tree_reg(tree, file, base_index + index->value.i[0]); /* If the type is smaller than a vec4, replicate the last channel out. */ tree->src_reg.swizzle = size_swizzles[ir->type->vector_elements - 1]; this->result = tree; } static struct mbtree * get_assignment_lhs(ir_instruction *ir, ir_to_mesa_visitor *v) { struct mbtree *tree = NULL; ir_dereference *deref; ir_swizzle *swiz; if ((deref = ir->as_dereference())) { ir->accept(v); tree = v->result; } else if ((swiz = ir->as_swizzle())) { tree = get_assignment_lhs(swiz->val, v); tree->dst_reg.writemask = 0; if (swiz->mask.num_components >= 1) tree->dst_reg.writemask |= (1 << swiz->mask.x); if (swiz->mask.num_components >= 2) tree->dst_reg.writemask |= (1 << swiz->mask.y); if (swiz->mask.num_components >= 3) tree->dst_reg.writemask |= (1 << swiz->mask.z); if (swiz->mask.num_components >= 4) tree->dst_reg.writemask |= (1 << swiz->mask.w); } assert(tree); return tree; } void ir_to_mesa_visitor::visit(ir_dereference_record *ir) { (void)ir; assert(0); } void ir_to_mesa_visitor::visit(ir_assignment *ir) { struct mbtree *l, *r, *t; l = get_assignment_lhs(ir->lhs, this); ir->rhs->accept(this); r = this->result; assert(l); assert(r); assert(!ir->condition); t = this->create_tree(MB_TERM_assign, ir, l, r); mono_burg_label(t, NULL); reduce(t, MB_NTERM_stmt); } void ir_to_mesa_visitor::visit(ir_constant *ir) { struct mbtree *tree; assert(!ir->type->is_matrix()); tree = this->create_tree(MB_TERM_reference_vec4, ir, NULL, NULL); assert(ir->type->base_type == GLSL_TYPE_FLOAT || ir->type->base_type == GLSL_TYPE_UINT || ir->type->base_type == GLSL_TYPE_INT || ir->type->base_type == GLSL_TYPE_BOOL); /* FINISHME: This will end up being _mesa_add_unnamed_constant, * which handles sharing values and sharing channels of vec4 * constants for small values. */ /* FINISHME: Do something with the constant values for now. */ ir_to_mesa_set_tree_reg(tree, PROGRAM_CONSTANT, this->next_constant++); tree->src_reg.swizzle = SWIZZLE_NOOP; this->result = tree; } void ir_to_mesa_visitor::visit(ir_call *ir) { printf("Can't support call to %s\n", ir->callee_name()); exit(1); } void ir_to_mesa_visitor::visit(ir_texture *ir) { assert(0); ir->coordinate->accept(this); } void ir_to_mesa_visitor::visit(ir_return *ir) { assert(0); ir->get_value()->accept(this); } void ir_to_mesa_visitor::visit(ir_if *ir) { (void)ir; printf("Can't support conditionals, should be flattened before here.\n"); exit(1); } ir_to_mesa_visitor::ir_to_mesa_visitor() { result = NULL; next_temp = 1; next_constant = 0; } static struct prog_src_register mesa_src_reg_from_ir_src_reg(ir_to_mesa_src_reg reg) { struct prog_src_register mesa_reg; mesa_reg.File = reg.file; assert(reg.index < (1 << INST_INDEX_BITS) - 1); mesa_reg.Index = reg.index; mesa_reg.Swizzle = reg.swizzle; return mesa_reg; } void do_ir_to_mesa(exec_list *instructions) { ir_to_mesa_visitor v; struct prog_instruction *mesa_instructions, *mesa_inst; ir_instruction *last_ir = NULL; visit_exec_list(instructions, &v); int num_instructions = 0; foreach_iter(exec_list_iterator, iter, v.instructions) { num_instructions++; } mesa_instructions = (struct prog_instruction *)calloc(num_instructions, sizeof(*mesa_instructions)); mesa_inst = mesa_instructions; foreach_iter(exec_list_iterator, iter, v.instructions) { ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get(); if (last_ir != inst->ir) { ir_print_visitor print; inst->ir->accept(&print); printf("\n"); last_ir = inst->ir; } mesa_inst->Opcode = inst->op; mesa_inst->DstReg.File = inst->dst_reg.file; mesa_inst->DstReg.Index = inst->dst_reg.index; mesa_inst->DstReg.CondMask = COND_TR; mesa_inst->DstReg.WriteMask = inst->dst_reg.writemask; mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src_reg[0]); mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src_reg[1]); mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src_reg[2]); _mesa_print_instruction(mesa_inst); mesa_inst++; } }