/* $Id: stex3d.c,v 1.6 2002/04/22 16:03:37 brianp Exp $ */ /*----------------------------- * stex3d.c GL example of the mesa 3d-texture extention to simulate procedural * texturing, it uses a perlin noise and turbulence functions. * * Author: Daniel Barrero * barrero@irit.fr * dbarrero@pegasus.uniandes.edu.co * * Converted to GLUT by brianp on 1/1/98 * * * cc stex3d.c -o stex3d -lglut -lMesaGLU -lMesaGL -lX11 -lXext -lm * *---------------------------- */ #include #include #include #include #include #include /* function declarations */ #ifndef M_PI #define M_PI 3.14159265358979323846 #endif void init(void), printHelp(void), create3Dtexture(void), setDefaults(void), drawScene(void), resize(int w, int h), buildFigure(void), initNoise(void); float turbulence(float point[3], float lofreq, float hifreq); void KeyHandler( unsigned char key, int x, int y ); GLenum parseCmdLine(int argc, char **argv); float noise3(float vec[3]); /* global variables */ GLenum rgb, doubleBuffer, directRender, windType; /* visualization state*/ float tex_width,tex_height,tex_depth; /* texture volume dimensions */ unsigned char *voxels; /* texture data ptr */ int angx,angy,angz; GLuint figure; /*function definitions */ int main(int argc, char **argv) { if (parseCmdLine(argc, argv) == GL_FALSE) { exit(0); } glutInitWindowPosition(0, 0); glutInitWindowSize(400, 400); windType = (rgb) ? GLUT_RGB : GLUT_INDEX; windType |= (doubleBuffer) ? GLUT_DOUBLE : GLUT_SINGLE; windType |= GLUT_DEPTH; glutInitDisplayMode(windType); if (glutCreateWindow("stex3d") <= 0) { exit(0); } /* init all */ init(); glutReshapeFunc(resize); glutKeyboardFunc(KeyHandler); glutDisplayFunc(drawScene); glutMainLoop(); return 0; } void init() { /* init light */ GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 }; GLfloat mat_shininess[] = { 25.0 }; GLfloat gray[] = { 0.6, 0.6, 0.6, 0.0 }; GLfloat white[] = { 1.0, 1.0, 1.0, 0.0 }; GLfloat light_position[] = { 0.0, 1.0, 1.0, 0.0 }; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess); glLightfv(GL_LIGHT1, GL_POSITION, light_position); glLightfv(GL_LIGHT1, GL_AMBIENT, gray); glLightfv(GL_LIGHT1, GL_DIFFUSE, white); glLightfv(GL_LIGHT1, GL_SPECULAR, white); glColorMaterial(GL_FRONT, GL_DIFFUSE); glEnable(GL_COLOR_MATERIAL); glEnable(GL_LIGHTING); glEnable(GL_LIGHT1); /* create torus for texturing */ figure=glGenLists(1); buildFigure(); /* tkSolidTorus(figure,0.3,1.2);*/ /* start the noise function variables */ initNoise(); /* see if we have OpenGL 1.2 or later, for 3D texturing */ { const char *version = (const char *) glGetString(GL_VERSION); if (strncmp(version, "1.0", 3) == 0 || strncmp(version, "1.1", 3) == 0) { printf("Sorry, OpenGL 1.2 or later is required\n"); exit(1); } } /* if texture is supported then generate the texture */ create3Dtexture(); glEnable(GL_TEXTURE_3D); /* glBlendFunc(GL_SRC_COLOR, GL_SRC_ALPHA); glEnable(GL_BLEND); */ glEnable(GL_DEPTH_TEST); glShadeModel(GL_FLAT); glColor3f(0.6,0.7,0.8); } void buildFigure(void) { GLint i, j; float theta1, phi1, theta2, phi2, rings, sides; float v0[03], v1[3], v2[3], v3[3]; float t0[03], t1[3], t2[3], t3[3]; float n0[3], n1[3], n2[3], n3[3]; float innerRadius=0.4; float outerRadius=0.8; float scalFac; rings = 8; sides = 10; scalFac=1/(outerRadius*2); glNewList(figure, GL_COMPILE); for (i = 0; i < rings; i++) { theta1 = (float)i * 2.0 * M_PI / rings; theta2 = (float)(i + 1) * 2.0 * M_PI / rings; for (j = 0; j < sides; j++) { phi1 = (float)j * 2.0 * M_PI / sides; phi2 = (float)(j + 1) * 2.0 * M_PI / sides; v0[0] = cos(theta1) * (outerRadius + innerRadius * cos(phi1)); v0[1] = -sin(theta1) * (outerRadius + innerRadius * cos(phi1)); v0[2] = innerRadius * sin(phi1); v1[0] = cos(theta2) * (outerRadius + innerRadius * cos(phi1)); v1[1] = -sin(theta2) * (outerRadius + innerRadius * cos(phi1)); v1[2] = innerRadius * sin(phi1); v2[0] = cos(theta2) * (outerRadius + innerRadius * cos(phi2)); v2[1] = -sin(theta2) * (outerRadius + innerRadius * cos(phi2)); v2[2] = innerRadius * sin(phi2); v3[0] = cos(theta1) * (outerRadius + innerRadius * cos(phi2)); v3[1] = -sin(theta1) * (outerRadius + innerRadius * cos(phi2)); v3[2] = innerRadius * sin(phi2); n0[0] = cos(theta1) * (cos(phi1)); n0[1] = -sin(theta1) * (cos(phi1)); n0[2] = sin(phi1); n1[0] = cos(theta2) * (cos(phi1)); n1[1] = -sin(theta2) * (cos(phi1)); n1[2] = sin(phi1); n2[0] = cos(theta2) * (cos(phi2)); n2[1] = -sin(theta2) * (cos(phi2)); n2[2] = sin(phi2); n3[0] = cos(theta1) * (cos(phi2)); n3[1] = -sin(theta1) * (cos(phi2)); n3[2] = sin(phi2); t0[0] = v0[0]*scalFac + 0.5; t0[1] = v0[1]*scalFac + 0.5; t0[2] = v0[2]*scalFac + 0.5; t1[0] = v1[0]*scalFac + 0.5; t1[1] = v1[1]*scalFac + 0.5; t1[2] = v1[2]*scalFac + 0.5; t2[0] = v2[0]*scalFac + 0.5; t2[1] = v2[1]*scalFac + 0.5; t2[2] = v2[2]*scalFac + 0.5; t3[0] = v3[0]*scalFac + 0.5; t3[1] = v3[1]*scalFac + 0.5; t3[2] = v3[2]*scalFac + 0.5; glBegin(GL_POLYGON); glNormal3fv(n3); glTexCoord3fv(t3); glVertex3fv(v3); glNormal3fv(n2); glTexCoord3fv(t2); glVertex3fv(v2); glNormal3fv(n1); glTexCoord3fv(t1); glVertex3fv(v1); glNormal3fv(n0); glTexCoord3fv(t0); glVertex3fv(v0); glEnd(); } } glEndList(); } void create3Dtexture() { int i,j,k; unsigned char *vp; float vec[3]; int tmp; printf("creating 3d textures...\n"); voxels = (unsigned char *) malloc((size_t)(4*tex_width*tex_height*tex_depth)); vp=voxels; for (i=0;i\n"); printf(" cmd line options:\n"); printf(" -help print this help!\n"); printf(" -rgb RGBA mode. (Default)\n"); printf(" -ci Color index mode.\n"); printf(" -sb Single buffer mode. (Default)\n"); printf(" -db Double buffer mode. \n"); printf(" -dr Direct render mode.\n"); printf(" -ir Indirect render mode. (Default)\n"); printf(" -wxxx Width of the texture (Default=64)\n"); printf(" -hxxx Height of the texture (Default=64)\n"); printf(" -dxxx Depth of the texture (Default=64)\n"); printf(" Keyboard Options:\n"); printf(" 1 Object Texture coordinates (Default)\n"); printf(" 2 Eye Texture coordinates \n"); printf(" x rotate around x clockwise\n"); printf(" X rotate around x counter clockwise\n"); printf(" y rotate around y clockwise\n"); printf(" Y rotate around y counter clockwise\n"); printf(" z rotate around z clockwise\n"); printf(" Z rotate around z counter clockwise\n"); printf(" t enable 3-D texuring (Default)\n"); printf(" T disable 3-D texuring\n"); printf(" s smooth shading \n"); printf(" S flat shading (Default)\n"); } void setDefaults() { /* visualization defaults */ rgb = GL_TRUE; doubleBuffer = GL_FALSE; directRender = GL_TRUE; angx=130; angy=30; angz=0; /* texture values */ tex_width=64; tex_height=64; tex_depth=64; } GLenum parseCmdLine(int argc, char **argv) { GLint i; setDefaults(); for (i = 1; i < argc; i++) { if (strcmp(argv[i], "-ci") == 0) { rgb = GL_FALSE; } else if (strcmp(argv[i], "-rgb") == 0) { rgb = GL_TRUE; } else if (strcmp(argv[i], "-sb") == 0) { doubleBuffer = GL_FALSE; } else if (strcmp(argv[i], "-db") == 0) { doubleBuffer = GL_TRUE; } else if (strcmp(argv[i], "-dr") == 0) { directRender = GL_TRUE; } else if (strcmp(argv[i], "-ir") == 0) { directRender = GL_FALSE; } else if (strstr(argv[i], "-w") == 0) { tex_width=atoi((argv[i])+2); } else if (strstr(argv[i], "-h") == 0) { tex_height=atoi((argv[i])+2); } else if (strstr(argv[i], "-d") == 0) { tex_depth=atoi((argv[i])+2); } else if (strcmp(argv[i], "-help") == 0) { printHelp(); return GL_FALSE; } else { printf("%s (Bad option).\n", argv[i]); printHelp(); return GL_FALSE; } } if(tex_width==0 || tex_height==0 || tex_depth==0) { printf("%s (Bad option).\n", "size parameters can't be 0"); printHelp(); return GL_FALSE; } return GL_TRUE; } void drawScene() { /* clear background, z buffer etc */ glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT); glPushMatrix(); glRotatef(angx,1.0,0.0,0.0); glRotatef(angy,0.0,1.0,0.0); glRotatef(angz,0.0,0.0,1.0); glCallList(figure); glPopMatrix(); glFlush(); if(doubleBuffer) glutSwapBuffers(); ; } void resize(int w, int h) { glViewport(0, 0, (GLint)w, (GLint)h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(-2,2,-2,2,-5,10); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0,0,-5); } static void cleanEverything(void) { /* free(voxels); */ } void KeyHandler( unsigned char key, int x, int y ) { (void) x; (void) y; switch(key) { case 27: case 'q': case 'Q': /* quit game. */ cleanEverything(); exit(0); break; case 'x': angx+=10; break; case 'X': angx-=10; break; case 'y': angy+=10; break; case 'Y': angy-=10; break; case 'z': angz+=10; break; case 'Z': angz-=10; break; case 't': glEnable(GL_TEXTURE_3D); break; case 'T': glDisable(GL_TEXTURE_3D); break; case 's': glShadeModel(GL_SMOOTH); break; case 'S': glShadeModel(GL_FLAT); break; case '1': glDisable(GL_TEXTURE_GEN_S); glDisable(GL_TEXTURE_GEN_T); glDisable(GL_TEXTURE_GEN_R); break; case '2': glEnable(GL_TEXTURE_GEN_S); glEnable(GL_TEXTURE_GEN_T); glEnable(GL_TEXTURE_GEN_R); break; default: break; } glutPostRedisplay(); } /*-------------------------------------------------------------------- noise function over R3 - implemented by a pseudorandom tricubic spline EXCERPTED FROM SIGGRAPH 92, COURSE 23 PROCEDURAL MODELING Ken Perlin New York University ----------------------------------------------------------------------*/ #define DOT(a,b) (a[0] * b[0] + a[1] * b[1] + a[2] * b[2]) #define B 256 static int p[B + B + 2]; static float g[B + B + 2][3]; #define setup(i,b0,b1,r0,r1) \ t = vec[i] + 10000.; \ b0 = ((int)t) & (B-1); \ b1 = (b0+1) & (B-1); \ r0 = t - (int)t; \ r1 = r0 - 1.; float noise3(float vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, rz0, rz1, *q, sx, sy, sz, a, b, c, d, t, u, v; register int i, j; setup(0, bx0,bx1, rx0,rx1); setup(1, by0,by1, ry0,ry1); setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; #define at(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) #define surve(t) ( t * t * (3. - 2. * t) ) #define lerp(t, a, b) ( a + t * (b - a) ) sx = surve(rx0); sy = surve(ry0); sz = surve(rz0); q = g[ b00 + bz0 ] ; u = at(rx0,ry0,rz0); q = g[ b10 + bz0 ] ; v = at(rx1,ry0,rz0); a = lerp(sx, u, v); q = g[ b01 + bz0 ] ; u = at(rx0,ry1,rz0); q = g[ b11 + bz0 ] ; v = at(rx1,ry1,rz0); b = lerp(sx, u, v); c = lerp(sy, a, b); /* interpolate in y at lo x */ q = g[ b00 + bz1 ] ; u = at(rx0,ry0,rz1); q = g[ b10 + bz1 ] ; v = at(rx1,ry0,rz1); a = lerp(sx, u, v); q = g[ b01 + bz1 ] ; u = at(rx0,ry1,rz1); q = g[ b11 + bz1 ] ; v = at(rx1,ry1,rz1); b = lerp(sx, u, v); d = lerp(sy, a, b); /* interpolate in y at hi x */ return 1.5 * lerp(sz, c, d); /* interpolate in z */ } void initNoise() { /*long random();*/ int i, j, k; float v[3], s; /* Create an array of random gradient vectors uniformly on the unit sphere */ /*srandom(1);*/ srand(1); for (i = 0 ; i < B ; i++) { do { /* Choose uniformly in a cube */ for (j=0 ; j<3 ; j++) v[j] = (float)((rand() % (B + B)) - B) / B; s = DOT(v,v); } while (s > 1.0); /* If not in sphere try again */ s = sqrt(s); for (j = 0 ; j < 3 ; j++) /* Else normalize */ g[i][j] = v[j] / s; } /* Create a pseudorandom permutation of [1..B] */ for (i = 0 ; i < B ; i++) p[i] = i; for (i = B ; i > 0 ; i -= 2) { k = p[i]; p[i] = p[j = rand() % B]; p[j] = k; } /* Extend g and p arrays to allow for faster indexing */ for (i = 0 ; i < B + 2 ; i++) { p[B + i] = p[i]; for (j = 0 ; j < 3 ; j++) g[B + i][j] = g[i][j]; } } float turbulence(float point[3], float lofreq, float hifreq) { float freq, t, p[3]; p[0] = point[0] + 123.456; p[1] = point[1]; p[2] = point[2]; t = 0; for (freq = lofreq ; freq < hifreq ; freq *= 2.) { t += fabs(noise3(p)) / freq; p[0] *= 2.; p[1] *= 2.; p[2] *= 2.; } return t - 0.3; /* readjust to make mean value = 0.0 */ }