/* * Copyright (c) 1991, 1992, 1993 Silicon Graphics, Inc. * * Permission to use, copy, modify, distribute, and sell this software and * its documentation for any purpose is hereby granted without fee, provided * that (i) the above copyright notices and this permission notice appear in * all copies of the software and related documentation, and (ii) the name of * Silicon Graphics may not be used in any advertising or * publicity relating to the software without the specific, prior written * permission of Silicon Graphics. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF * ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL SILICON GRAPHICS BE LIABLE FOR * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ /* * Nov 20, 1995 use stdlib's rand()/srand() instead of random()/srand48(), etc. */ /* * Modified by Stephane Raimbault to be able to run in VxWorks 07/18/01 * * Modified by Li Wei(liwei@aiar.xjtu.edu.cn) to be able to run in Windows * 6/13 * * Modified by Brian Paul to compile with Windows OR Unix. 7/23/97 */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <math.h> #include <ugl/ugl.h> #include <ugl/uglevent.h> #include <ugl/uglinput.h> #include <ugl/uglucode.h> #include <GL/uglmesa.h> #include <GL/glu.h> #ifndef RAND_MAX # define RAND_MAX 32767 #endif #define XSIZE 100 #define YSIZE 75 #define RINGS 5 #define BLUERING 0 #define BLACKRING 1 #define REDRING 2 #define YELLOWRING 3 #define GREENRING 4 #define BACKGROUND 8 UGL_LOCAL UGL_EVENT_SERVICE_ID eventServiceId; UGL_LOCAL UGL_EVENT_Q_ID qId; UGL_LOCAL UGL_MESA_CONTEXT umc; UGL_LOCAL volatile UGL_BOOL stopWex; UGL_LOCAL int rgb; UGL_LOCAL unsigned char rgb_colors[RINGS][3]; UGL_LOCAL int mapped_colors[RINGS]; UGL_LOCAL float dests[RINGS][3]; UGL_LOCAL float offsets[RINGS][3]; UGL_LOCAL float angs[RINGS]; UGL_LOCAL float rotAxis[RINGS][3]; UGL_LOCAL int iters[RINGS]; UGL_LOCAL GLuint theTorus; enum { COLOR_BLACK = 0, COLOR_RED, COLOR_GREEN, COLOR_YELLOW, COLOR_BLUE, COLOR_MAGENTA, COLOR_CYAN, COLOR_WHITE }; /* UGL_LOCAL float RGBMap[9][3] = { {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {1, 1, 0}, {0, 0, 1}, {1, 0, 1}, {0, 1, 1}, {1, 1, 1}, {0.5, 0.5, 0.5} }; UGL_LOCAL void SetColor(int c) { (rgb) ? glColor3fv(RGBMap[c]): glIndexf(c); } UGL_LOCAL void InitMap(void) { int i; if (rgb) return; for (i = 0; i < 9; i++) uglMesaSetColor(i, RGBMap[i][0], RGBMap[i][1], RGBMap[i][2]); } UGL_LOCAL void SetFogRamp(int density, int startIndex) { int fogValues, colorValues; int i, j, k; float intensity; fogValues = 1 << density; colorValues = 1 << startIndex; for (i = 0; i < colorValues; i++) { for (j = 0; j < fogValues; j++) { k = i * fogValues + j; intensity = (i * fogValues + j * colorValues) / 255.0; uglMesaSetColor(k, intensity, intensity, intensity); } } } UGL_LOCAL void SetGreyRamp(void) { int i; float intensity; for (i = 0; i < 255; i++) { intensity = i / 255.0; uglMesaSetColor(i, intensity, intensity, intensity); } } */ UGL_LOCAL void FillTorus(float rc, int numc, float rt, int numt) { int i, j, k; double s, t; double x, y, z; double pi, twopi; pi = 3.14159265358979323846; twopi = 2 * pi; for (i = 0; i < numc; i++) { glBegin(GL_QUAD_STRIP); for (j = 0; j <= numt; j++) { for (k = 1; k >= 0; k--) { s = (i + k) % numc + 0.5; t = j % numt; x = cos(t*twopi/numt) * cos(s*twopi/numc); y = sin(t*twopi/numt) * cos(s*twopi/numc); z = sin(s*twopi/numc); glNormal3f(x, y, z); x = (rt + rc * cos(s*twopi/numc)) * cos(t*twopi/numt); y = (rt + rc * cos(s*twopi/numc)) * sin(t*twopi/numt); z = rc * sin(s*twopi/numc); glVertex3f(x, y, z); } } glEnd(); } } UGL_LOCAL float Clamp(int iters_left, float t) { if (iters_left < 3) { return 0.0; } return (iters_left-2)*t/iters_left; } UGL_LOCAL void drawGL(void) { int i, j; for (i = 0; i < RINGS; i++) { if (iters[i]) { for (j = 0; j < 3; j++) { offsets[i][j] = Clamp(iters[i], offsets[i][j]); } angs[i] = Clamp(iters[i], angs[i]); iters[i]--; } } glPushMatrix(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); gluLookAt(0,0,10, 0,0,0, 0,1,0); for (i = 0; i < RINGS; i++) { if (rgb) { glColor3ubv(rgb_colors[i]); } else { glIndexi(mapped_colors[i]); } glPushMatrix(); glTranslatef(dests[i][0]+offsets[i][0], dests[i][1]+offsets[i][1], dests[i][2]+offsets[i][2]); glRotatef(angs[i], rotAxis[i][0], rotAxis[i][1], rotAxis[i][2]); glCallList(theTorus); glPopMatrix(); } glPopMatrix(); glFlush(); uglMesaSwapBuffers(); } UGL_LOCAL float MyRand(void) { return 10.0 * ( (float) rand() / (float) RAND_MAX - 0.5 ); } UGL_LOCAL void ReInit(void) { int i; float deviation; deviation = MyRand() / 2; deviation = deviation * deviation; for (i = 0; i < RINGS; i++) { offsets[i][0] = MyRand(); offsets[i][1] = MyRand(); offsets[i][2] = MyRand(); angs[i] = 260.0 * MyRand(); rotAxis[i][0] = MyRand(); rotAxis[i][1] = MyRand(); rotAxis[i][2] = MyRand(); iters[i] = (deviation * MyRand() + 60.0); } } UGL_LOCAL void initGL(void) { float base, height; float aspect, x, y; int i; float top_y = 1.0; float bottom_y = 0.0; float top_z = 0.15; float bottom_z = 0.69; float spacing = 2.5; static float lmodel_ambient[] = {0.0, 0.0, 0.0, 0.0}; static float lmodel_twoside[] = {GL_FALSE}; static float lmodel_local[] = {GL_FALSE}; static float light0_ambient[] = {0.1, 0.1, 0.1, 1.0}; static float light0_diffuse[] = {1.0, 1.0, 1.0, 0.0}; static float light0_position[] = {0.8660254, 0.5, 1, 0}; static float light0_specular[] = {1.0, 1.0, 1.0, 0.0}; static float bevel_mat_ambient[] = {0.0, 0.0, 0.0, 1.0}; static float bevel_mat_shininess[] = {40.0}; static float bevel_mat_specular[] = {1.0, 1.0, 1.0, 0.0}; static float bevel_mat_diffuse[] = {1.0, 0.0, 0.0, 0.0}; ReInit(); for (i = 0; i < RINGS; i++) { rgb_colors[i][0] = rgb_colors[i][1] = rgb_colors[i][2] = 0; } rgb_colors[BLUERING][2] = 255; rgb_colors[REDRING][0] = 255; rgb_colors[GREENRING][1] = 255; rgb_colors[YELLOWRING][0] = 255; rgb_colors[YELLOWRING][1] = 255; mapped_colors[BLUERING] = COLOR_BLUE; mapped_colors[REDRING] = COLOR_RED; mapped_colors[GREENRING] = COLOR_GREEN; mapped_colors[YELLOWRING] = COLOR_YELLOW; mapped_colors[BLACKRING] = COLOR_BLACK; dests[BLUERING][0] = -spacing; dests[BLUERING][1] = top_y; dests[BLUERING][2] = top_z; dests[BLACKRING][0] = 0.0; dests[BLACKRING][1] = top_y; dests[BLACKRING][2] = top_z; dests[REDRING][0] = spacing; dests[REDRING][1] = top_y; dests[REDRING][2] = top_z; dests[YELLOWRING][0] = -spacing / 2.0; dests[YELLOWRING][1] = bottom_y; dests[YELLOWRING][2] = bottom_z; dests[GREENRING][0] = spacing / 2.0; dests[GREENRING][1] = bottom_y; dests[GREENRING][2] = bottom_z; base = 2.0; height = 2.0; theTorus = glGenLists(1); glNewList(theTorus, GL_COMPILE); FillTorus(0.1, 8, 1.0, 25); glEndList(); x = (float)XSIZE; y = (float)YSIZE; aspect = x / y; glEnable(GL_CULL_FACE); glCullFace(GL_BACK); glEnable(GL_DEPTH_TEST); glClearDepth(1.0); if (rgb) { glClearColor(0.5, 0.5, 0.5, 0.0); glLightfv(GL_LIGHT0, GL_AMBIENT, light0_ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, light0_diffuse); glLightfv(GL_LIGHT0, GL_SPECULAR, light0_specular); glLightfv(GL_LIGHT0, GL_POSITION, light0_position); glEnable(GL_LIGHT0); glLightModelfv(GL_LIGHT_MODEL_LOCAL_VIEWER, lmodel_local); glLightModelfv(GL_LIGHT_MODEL_TWO_SIDE, lmodel_twoside); glLightModelfv(GL_LIGHT_MODEL_AMBIENT, lmodel_ambient); glEnable(GL_LIGHTING); glMaterialfv(GL_FRONT, GL_AMBIENT, bevel_mat_ambient); glMaterialfv(GL_FRONT, GL_SHININESS, bevel_mat_shininess); glMaterialfv(GL_FRONT, GL_SPECULAR, bevel_mat_specular); glMaterialfv(GL_FRONT, GL_DIFFUSE, bevel_mat_diffuse); glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE); glEnable(GL_COLOR_MATERIAL); glShadeModel(GL_SMOOTH); } else { glClearIndex(BACKGROUND); glShadeModel(GL_FLAT); } glMatrixMode(GL_PROJECTION); gluPerspective(45, 1.33, 0.1, 100.0); glMatrixMode(GL_MODELVIEW); } UGL_LOCAL void echoUse(void) { printf("tOlympic keys:\n"); printf(" SPACE Reinitialize\n"); printf(" ESC Exit\n"); } UGL_LOCAL void readKey (UGL_WCHAR key) { switch(key) { case UGL_UNI_SPACE: ReInit(); break; case UGL_UNI_ESCAPE: stopWex = 1; break; } } UGL_LOCAL void loopEvent(void) { UGL_EVENT event; UGL_INPUT_EVENT * pInputEvent; UGL_FOREVER { if (uglEventGet (qId, &event, sizeof (event), UGL_NO_WAIT) != UGL_STATUS_Q_EMPTY) { pInputEvent = (UGL_INPUT_EVENT *)&event; if (pInputEvent->header.type == UGL_EVENT_TYPE_KEYBOARD && pInputEvent->modifiers & UGL_KEYBOARD_KEYDOWN) readKey(pInputEvent->type.keyboard.key); } drawGL(); if (stopWex) break; } } void windMLOlympic (UGL_BOOL windMLMode); void uglolympic (void) { taskSpawn("tOlympic", 210, VX_FP_TASK, 100000, (FUNCPTR)windMLOlympic, 0,1,2,3,4,5,6,7,8,9); } void windMLOlympic(UGL_BOOL windMLMode) { UGL_INPUT_DEVICE_ID keyboardDevId; uglInitialize(); uglDriverFind (UGL_KEYBOARD_TYPE, 0, (UGL_UINT32 *)&keyboardDevId); if (uglDriverFind (UGL_EVENT_SERVICE_TYPE, 0, (UGL_UINT32 *)&eventServiceId) == UGL_STATUS_OK) { qId = uglEventQCreate (eventServiceId, 100); } else { eventServiceId = UGL_NULL; } if (windMLMode) umc = uglMesaCreateNewContext(UGL_MESA_DOUBLE | UGL_MESA_WINDML_EXCLUSIVE, NULL); else umc = uglMesaCreateNewContext(UGL_MESA_DOUBLE, NULL); if (umc == NULL) { uglDeinitialize(); return; } uglMesaMakeCurrentContext(umc, 0, 0, UGL_MESA_FULLSCREEN_WIDTH, UGL_MESA_FULLSCREEN_HEIGHT); uglMesaGetIntegerv(UGL_MESA_RGB, &rgb); initGL(); echoUse(); stopWex = 0; loopEvent(); if (eventServiceId != UGL_NULL) uglEventQDestroy (eventServiceId, qId); uglMesaDestroyContext(); uglDeinitialize(); return; }