/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* Authors: Keith Whitwell */ /** * Notes on wide points and sprite mode: * * In wide point/sprite mode we effectively need to convert each incoming * vertex into four outgoing vertices specifying the corners of a quad. * Since we don't (yet) have geometry shaders, we have to handle this here * in the draw module. * * For sprites, it also means that this is where we have to handle texcoords * for the vertices of the quad. OpenGL's GL_COORD_REPLACE state specifies * if/how enabled texcoords are automatically generated for sprites. We pass * that info through gallium in the pipe_rasterizer_state::sprite_coord_mode * array. * * Additionally, GLSL's gl_PointCoord fragment attribute has to be handled * here as well. This is basically an additional texture/generic attribute * that varies .x from 0 to 1 horizontally across the point and varies .y * vertically from 0 to 1 down the sprite. * * With geometry shaders, the state tracker could create a GS to do * most/all of this. */ #include "pipe/p_context.h" #include "util/u_math.h" #include "util/u_memory.h" #include "pipe/p_defines.h" #include "pipe/p_shader_tokens.h" #include "draw_fs.h" #include "draw_vs.h" #include "draw_pipe.h" struct widepoint_stage { struct draw_stage stage; /**< base class */ float half_point_size; float xbias; float ybias; /** for automatic texcoord generation/replacement */ uint num_texcoord_gen; uint texcoord_gen_slot[PIPE_MAX_SHADER_OUTPUTS]; int psize_slot; }; static INLINE struct widepoint_stage * widepoint_stage( struct draw_stage *stage ) { return (struct widepoint_stage *)stage; } /** * Set the vertex texcoords for sprite mode. * Coords may be left untouched or set to a right-side-up or upside-down * orientation. */ static void set_texcoords(const struct widepoint_stage *wide, struct vertex_header *v, const float tc[4]) { const struct draw_context *draw = wide->stage.draw; const struct pipe_rasterizer_state *rast = draw->rasterizer; const uint texcoord_mode = rast->sprite_coord_mode; uint i; for (i = 0; i < wide->num_texcoord_gen; i++) { const uint slot = wide->texcoord_gen_slot[i]; v->data[slot][0] = tc[0]; if (texcoord_mode == PIPE_SPRITE_COORD_LOWER_LEFT) v->data[slot][1] = 1.0f - tc[1]; else v->data[slot][1] = tc[1]; v->data[slot][2] = tc[2]; v->data[slot][3] = tc[3]; } } /* If there are lots of sprite points (and why wouldn't there be?) it * would probably be more sensible to change hardware setup to * optimize this rather than doing the whole thing in software like * this. */ static void widepoint_point( struct draw_stage *stage, struct prim_header *header ) { const struct widepoint_stage *wide = widepoint_stage(stage); const unsigned pos = draw_current_shader_position_output(stage->draw); const boolean sprite = (boolean) stage->draw->rasterizer->point_quad_rasterization; float half_size; float left_adj, right_adj, bot_adj, top_adj; struct prim_header tri; /* four dups of original vertex */ struct vertex_header *v0 = dup_vert(stage, header->v[0], 0); struct vertex_header *v1 = dup_vert(stage, header->v[0], 1); struct vertex_header *v2 = dup_vert(stage, header->v[0], 2); struct vertex_header *v3 = dup_vert(stage, header->v[0], 3); float *pos0 = v0->data[pos]; float *pos1 = v1->data[pos]; float *pos2 = v2->data[pos]; float *pos3 = v3->data[pos]; /* point size is either per-vertex or fixed size */ if (wide->psize_slot >= 0) { half_size = header->v[0]->data[wide->psize_slot][0]; half_size *= 0.5f; } else { half_size = wide->half_point_size; } left_adj = -half_size + wide->xbias; right_adj = half_size + wide->xbias; bot_adj = half_size + wide->ybias; top_adj = -half_size + wide->ybias; pos0[0] += left_adj; pos0[1] += top_adj; pos1[0] += left_adj; pos1[1] += bot_adj; pos2[0] += right_adj; pos2[1] += top_adj; pos3[0] += right_adj; pos3[1] += bot_adj; if (sprite) { static const float tex00[4] = { 0, 0, 0, 1 }; static const float tex01[4] = { 0, 1, 0, 1 }; static const float tex11[4] = { 1, 1, 0, 1 }; static const float tex10[4] = { 1, 0, 0, 1 }; set_texcoords( wide, v0, tex00 ); set_texcoords( wide, v1, tex01 ); set_texcoords( wide, v2, tex10 ); set_texcoords( wide, v3, tex11 ); } tri.det = header->det; /* only the sign matters */ tri.v[0] = v0; tri.v[1] = v2; tri.v[2] = v3; stage->next->tri( stage->next, &tri ); tri.v[0] = v0; tri.v[1] = v3; tri.v[2] = v1; stage->next->tri( stage->next, &tri ); } static void widepoint_first_point(struct draw_stage *stage, struct prim_header *header) { struct widepoint_stage *wide = widepoint_stage(stage); struct draw_context *draw = stage->draw; struct pipe_context *pipe = draw->pipe; const struct pipe_rasterizer_state *rast = draw->rasterizer; void *r; wide->half_point_size = 0.5f * rast->point_size; wide->xbias = 0.0; wide->ybias = 0.0; if (rast->gl_rasterization_rules) { wide->xbias = 0.125; wide->ybias = -0.125; } /* Disable triangle culling, stippling, unfilled mode etc. */ r = draw_get_rasterizer_no_cull(draw, rast->scissor, rast->flatshade); draw->suspend_flushing = TRUE; pipe->bind_rasterizer_state(pipe, r); draw->suspend_flushing = FALSE; /* XXX we won't know the real size if it's computed by the vertex shader! */ if ((rast->point_size > draw->pipeline.wide_point_threshold) || (rast->point_quad_rasterization && draw->pipeline.point_sprite)) { stage->point = widepoint_point; } else { stage->point = draw_pipe_passthrough_point; } draw_remove_extra_vertex_attribs(draw); if (rast->point_quad_rasterization) { const struct draw_fragment_shader *fs = draw->fs.fragment_shader; uint i; wide->num_texcoord_gen = 0; /* Loop over fragment shader inputs looking for generic inputs * for which bit 'k' in sprite_coord_enable is set. */ for (i = 0; i < fs->info.num_inputs; i++) { if (fs->info.input_semantic_name[i] == TGSI_SEMANTIC_GENERIC) { const int generic_index = fs->info.input_semantic_index[i]; /* Note that sprite_coord enable is a bitfield of * PIPE_MAX_SHADER_OUTPUTS bits. */ if (generic_index < PIPE_MAX_SHADER_OUTPUTS && (rast->sprite_coord_enable & (1 << generic_index))) { /* OK, this generic attribute needs to be replaced with a * texcoord (see above). */ int slot = draw_find_shader_output(draw, TGSI_SEMANTIC_GENERIC, generic_index); if (slot > 0) { /* there's already a post-vertex shader attribute * for this fragment shader input attribute. */ } else { /* need to allocate a new post-vertex shader attribute */ slot = draw_alloc_extra_vertex_attrib(draw, TGSI_SEMANTIC_GENERIC, generic_index); } /* add this slot to the texcoord-gen list */ wide->texcoord_gen_slot[wide->num_texcoord_gen++] = slot; } } } } wide->psize_slot = -1; if (rast->point_size_per_vertex) { /* find PSIZ vertex output */ const struct draw_vertex_shader *vs = draw->vs.vertex_shader; uint i; for (i = 0; i < vs->info.num_outputs; i++) { if (vs->info.output_semantic_name[i] == TGSI_SEMANTIC_PSIZE) { wide->psize_slot = i; break; } } } stage->point( stage, header ); } static void widepoint_flush( struct draw_stage *stage, unsigned flags ) { struct draw_context *draw = stage->draw; struct pipe_context *pipe = draw->pipe; stage->point = widepoint_first_point; stage->next->flush( stage->next, flags ); draw_remove_extra_vertex_attribs(draw); /* restore original rasterizer state */ if (draw->rast_handle) { draw->suspend_flushing = TRUE; pipe->bind_rasterizer_state(pipe, draw->rast_handle); draw->suspend_flushing = FALSE; } } static void widepoint_reset_stipple_counter( struct draw_stage *stage ) { stage->next->reset_stipple_counter( stage->next ); } static void widepoint_destroy( struct draw_stage *stage ) { draw_free_temp_verts( stage ); FREE( stage ); } struct draw_stage *draw_wide_point_stage( struct draw_context *draw ) { struct widepoint_stage *wide = CALLOC_STRUCT(widepoint_stage); if (wide == NULL) goto fail; wide->stage.draw = draw; wide->stage.name = "wide-point"; wide->stage.next = NULL; wide->stage.point = widepoint_first_point; wide->stage.line = draw_pipe_passthrough_line; wide->stage.tri = draw_pipe_passthrough_tri; wide->stage.flush = widepoint_flush; wide->stage.reset_stipple_counter = widepoint_reset_stipple_counter; wide->stage.destroy = widepoint_destroy; if (!draw_alloc_temp_verts( &wide->stage, 4 )) goto fail; return &wide->stage; fail: if (wide) wide->stage.destroy( &wide->stage ); return NULL; }