/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "pipe/p_util.h" #include "draw/draw_context.h" #include "draw/draw_vbuf.h" #include "draw/draw_vertex.h" #include "draw/draw_pt.h" #include "draw/draw_vs.h" #include "translate/translate.h" struct fetch_pipeline_middle_end { struct draw_pt_middle_end base; struct draw_context *draw; struct pt_emit *emit; struct pt_fetch *fetch; struct pt_post_vs *post_vs; unsigned vertex_data_offset; unsigned vertex_size; unsigned prim; unsigned opt; }; static void fetch_pipeline_prepare( struct draw_pt_middle_end *middle, unsigned prim, unsigned opt ) { struct fetch_pipeline_middle_end *fpme = (struct fetch_pipeline_middle_end *)middle; struct draw_context *draw = fpme->draw; struct draw_vertex_shader *vs = draw->vertex_shader; /* Add one to num_outputs because the pipeline occasionally tags on * an additional texcoord, eg for AA lines. */ unsigned nr = MAX2( vs->info.num_inputs, vs->info.num_outputs + 1 ); fpme->prim = prim; fpme->opt = opt; /* Always leave room for the vertex header whether we need it or * not. It's hard to get rid of it in particular because of the * viewport code in draw_pt_post_vs.c. */ fpme->vertex_size = sizeof(struct vertex_header) + nr * 4 * sizeof(float); draw_pt_fetch_prepare( fpme->fetch, fpme->vertex_size ); /* XXX: it's not really gl rasterization rules we care about here, * but gl vs dx9 clip spaces. */ draw_pt_post_vs_prepare( fpme->post_vs, draw->bypass_clipping, draw->identity_viewport, draw->rasterizer->gl_rasterization_rules ); if (!(opt & PT_PIPELINE)) draw_pt_emit_prepare( fpme->emit, prim ); /* No need to prepare the shader. */ vs->prepare(vs, draw); } static void fetch_pipeline_run( struct draw_pt_middle_end *middle, const unsigned *fetch_elts, unsigned fetch_count, const ushort *draw_elts, unsigned draw_count ) { struct fetch_pipeline_middle_end *fpme = (struct fetch_pipeline_middle_end *)middle; struct draw_context *draw = fpme->draw; struct draw_vertex_shader *shader = draw->vertex_shader; unsigned opt = fpme->opt; unsigned alloc_count = align_int( fetch_count, 4 ); struct vertex_header *pipeline_verts = (struct vertex_header *)MALLOC(fpme->vertex_size * alloc_count); if (!pipeline_verts) { /* Not much we can do here - just skip the rendering. */ assert(0); return; } /* Fetch into our vertex buffer */ draw_pt_fetch_run( fpme->fetch, fetch_elts, fetch_count, (char *)pipeline_verts ); /* Run the shader, note that this overwrites the data[] parts of * the pipeline verts. If there is no shader, ie a bypass shader, * then the inputs == outputs, and are already in the correct * place. */ if (opt & PT_SHADE) { shader->run_linear(shader, (const float (*)[4])pipeline_verts->data, ( float (*)[4])pipeline_verts->data, (const float (*)[4])draw->pt.user.constants, fetch_count, fpme->vertex_size, fpme->vertex_size); } if (draw_pt_post_vs_run( fpme->post_vs, pipeline_verts, fetch_count, fpme->vertex_size )) { opt |= PT_PIPELINE; } /* Do we need to run the pipeline? */ if (opt & PT_PIPELINE) { draw_pipeline_run( fpme->draw, fpme->prim, pipeline_verts, fetch_count, fpme->vertex_size, draw_elts, draw_count ); } else { draw_pt_emit( fpme->emit, (const float (*)[4])pipeline_verts->data, fetch_count, fpme->vertex_size, draw_elts, draw_count ); } FREE(pipeline_verts); } static void fetch_pipeline_linear_run( struct draw_pt_middle_end *middle, unsigned fetch_start, unsigned fetch_count, const ushort *draw_elts, unsigned draw_count ) { struct fetch_pipeline_middle_end *fpme = (struct fetch_pipeline_middle_end *)middle; struct draw_context *draw = fpme->draw; struct draw_vertex_shader *shader = draw->vertex_shader; unsigned opt = fpme->opt; unsigned alloc_count = align_int( fetch_count, 4 ); struct vertex_header *pipeline_verts = (struct vertex_header *)MALLOC(fpme->vertex_size * alloc_count); if (!pipeline_verts) { /* Not much we can do here - just skip the rendering. */ assert(0); return; } /* Fetch into our vertex buffer */ draw_pt_fetch_run_linear( fpme->fetch, fetch_start, fetch_count, (char *)pipeline_verts ); /* Run the shader, note that this overwrites the data[] parts of * the pipeline verts. If there is no shader, ie a bypass shader, * then the inputs == outputs, and are already in the correct * place. */ if (opt & PT_SHADE) { shader->run_linear(shader, (const float (*)[4])pipeline_verts->data, ( float (*)[4])pipeline_verts->data, (const float (*)[4])draw->pt.user.constants, fetch_count, fpme->vertex_size, fpme->vertex_size); } if (draw_pt_post_vs_run( fpme->post_vs, pipeline_verts, fetch_count, fpme->vertex_size )) { opt |= PT_PIPELINE; } /* Do we need to run the pipeline? */ if (opt & PT_PIPELINE) { draw_pipeline_run( fpme->draw, fpme->prim, pipeline_verts, fetch_count, fpme->vertex_size, draw_elts, draw_count ); } else { draw_pt_emit_linear( fpme->emit, (const float (*)[4])pipeline_verts->data, fetch_count, fpme->vertex_size, 0, /*start*/ draw_count ); } FREE(pipeline_verts); } static void fetch_pipeline_finish( struct draw_pt_middle_end *middle ) { /* nothing to do */ } static void fetch_pipeline_destroy( struct draw_pt_middle_end *middle ) { struct fetch_pipeline_middle_end *fpme = (struct fetch_pipeline_middle_end *)middle; if (fpme->fetch) draw_pt_fetch_destroy( fpme->fetch ); if (fpme->emit) draw_pt_emit_destroy( fpme->emit ); if (fpme->post_vs) draw_pt_post_vs_destroy( fpme->post_vs ); FREE(middle); } struct draw_pt_middle_end *draw_pt_fetch_pipeline_or_emit( struct draw_context *draw ) { struct fetch_pipeline_middle_end *fpme = CALLOC_STRUCT( fetch_pipeline_middle_end ); if (!fpme) goto fail; fpme->base.prepare = fetch_pipeline_prepare; fpme->base.run = fetch_pipeline_run; fpme->base.run_linear = fetch_pipeline_linear_run; fpme->base.finish = fetch_pipeline_finish; fpme->base.destroy = fetch_pipeline_destroy; fpme->draw = draw; fpme->fetch = draw_pt_fetch_create( draw ); if (!fpme->fetch) goto fail; fpme->post_vs = draw_pt_post_vs_create( draw ); if (!fpme->post_vs) goto fail; fpme->emit = draw_pt_emit_create( draw ); if (!fpme->emit) goto fail; return &fpme->base; fail: if (fpme) fetch_pipeline_destroy( &fpme->base ); return NULL; }