/************************************************************************** * * Copyright 2008 Dennis Smit * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * AUTHORS, COPYRIGHT HOLDERS, AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * CPU feature detection. * * @author Dennis Smit * @author Based on the work of Eric Anholt */ #include "pipe/p_config.h" #include "u_debug.h" #include "u_cpu_detect.h" #if defined(PIPE_ARCH_PPC) #if defined(PIPE_OS_DARWIN) #include #else #include #include #endif #endif #if defined(PIPE_OS_NETBSD) || defined(PIPE_OS_OPENBSD) #include #include #include #endif #if defined(PIPE_OS_FREEBSD) #include #include #endif #if defined(PIPE_OS_LINUX) #include #endif #ifdef PIPE_OS_UNIX #include #endif #if defined(PIPE_OS_WINDOWS) #include #endif struct util_cpu_caps util_cpu_caps; static int has_cpuid(void); static int cpuid(unsigned int ax, unsigned int *p); #if defined(PIPE_ARCH_X86) /* The sigill handlers */ #if defined(PIPE_OS_LINUX) //&& defined(_POSIX_SOURCE) && defined(X86_FXSR_MAGIC) static void sigill_handler_sse(int signal, struct sigcontext sc) { /* Both the "xorps %%xmm0,%%xmm0" and "divps %xmm0,%%xmm1" * instructions are 3 bytes long. We must increment the instruction * pointer manually to avoid repeated execution of the offending * instruction. * * If the SIGILL is caused by a divide-by-zero when unmasked * exceptions aren't supported, the SIMD FPU status and control * word will be restored at the end of the test, so we don't need * to worry about doing it here. Besides, we may not be able to... */ sc.eip += 3; util_cpu_caps.has_sse=0; } static void sigfpe_handler_sse(int signal, struct sigcontext sc) { if (sc.fpstate->magic != 0xffff) { /* Our signal context has the extended FPU state, so reset the * divide-by-zero exception mask and clear the divide-by-zero * exception bit. */ sc.fpstate->mxcsr |= 0x00000200; sc.fpstate->mxcsr &= 0xfffffffb; } else { /* If we ever get here, we're completely hosed. */ } } #endif /* PIPE_OS_LINUX && _POSIX_SOURCE && X86_FXSR_MAGIC */ #if defined(PIPE_OS_WINDOWS) static LONG CALLBACK win32_sig_handler_sse(EXCEPTION_POINTERS* ep) { if(ep->ExceptionRecord->ExceptionCode==EXCEPTION_ILLEGAL_INSTRUCTION){ ep->ContextRecord->Eip +=3; util_cpu_caps.has_sse=0; return EXCEPTION_CONTINUE_EXECUTION; } return EXCEPTION_CONTINUE_SEARCH; } #endif /* PIPE_OS_WINDOWS */ #endif /* PIPE_ARCH_X86 */ #if defined(PIPE_ARCH_PPC) && !defined(PIPE_OS_DARWIN) static sigjmp_buf __lv_powerpc_jmpbuf; static volatile sig_atomic_t __lv_powerpc_canjump = 0; static void sigill_handler(int sig) { if (!__lv_powerpc_canjump) { signal (sig, SIG_DFL); raise (sig); } __lv_powerpc_canjump = 0; siglongjmp(__lv_powerpc_jmpbuf, 1); } static void check_os_altivec_support(void) { #if defined(PIPE_OS_DARWIN) int sels[2] = {CTL_HW, HW_VECTORUNIT}; int has_vu = 0; int len = sizeof (has_vu); int err; err = sysctl(sels, 2, &has_vu, &len, NULL, 0); if (err == 0) { if (has_vu != 0) { util_cpu_caps.has_altivec = 1; } } #else /* !PIPE_OS_DARWIN */ /* no Darwin, do it the brute-force way */ /* this is borrowed from the libmpeg2 library */ signal(SIGILL, sigill_handler); if (sigsetjmp(__lv_powerpc_jmpbuf, 1)) { signal(SIGILL, SIG_DFL); } else { __lv_powerpc_canjump = 1; __asm __volatile ("mtspr 256, %0\n\t" "vand %%v0, %%v0, %%v0" : : "r" (-1)); signal(SIGILL, SIG_DFL); util_cpu_caps.has_altivec = 1; } #endif } #endif /* If we're running on a processor that can do SSE, let's see if we * are allowed to or not. This will catch 2.4.0 or later kernels that * haven't been configured for a Pentium III but are running on one, * and RedHat patched 2.2 kernels that have broken exception handling * support for user space apps that do SSE. */ static void check_os_katmai_support(void) { #if defined(PIPE_ARCH_X86) #if defined(PIPE_OS_FREEBSD) int has_sse=0, ret; int len = sizeof (has_sse); ret = sysctlbyname("hw.instruction_sse", &has_sse, &len, NULL, 0); if (ret || !has_sse) util_cpu_caps.has_sse=0; #elif defined(PIPE_OS_NETBSD) || defined(PIPE_OS_OPENBSD) int has_sse, has_sse2, ret, mib[2]; int varlen; mib[0] = CTL_MACHDEP; mib[1] = CPU_SSE; varlen = sizeof (has_sse); ret = sysctl(mib, 2, &has_sse, &varlen, NULL, 0); if (ret < 0 || !has_sse) { util_cpu_caps.has_sse = 0; } else { util_cpu_caps.has_sse = 1; } mib[1] = CPU_SSE2; varlen = sizeof (has_sse2); ret = sysctl(mib, 2, &has_sse2, &varlen, NULL, 0); if (ret < 0 || !has_sse2) { util_cpu_caps.has_sse2 = 0; } else { util_cpu_caps.has_sse2 = 1; } util_cpu_caps.has_sse = 0; /* FIXME ?!?!? */ #elif defined(PIPE_OS_WINDOWS) LPTOP_LEVEL_EXCEPTION_FILTER exc_fil; if (util_cpu_caps.has_sse) { exc_fil = SetUnhandledExceptionFilter(win32_sig_handler_sse); #if defined(PIPE_CC_GCC) __asm __volatile ("xorps %xmm0, %xmm0"); #elif defined(PIPE_CC_MSVC) __asm { xorps xmm0, xmm0 // executing SSE instruction } #else #error Unsupported compiler #endif SetUnhandledExceptionFilter(exc_fil); } #elif defined(PIPE_OS_LINUX) struct sigaction saved_sigill; struct sigaction saved_sigfpe; /* Save the original signal handlers. */ sigaction(SIGILL, NULL, &saved_sigill); sigaction(SIGFPE, NULL, &saved_sigfpe); signal(SIGILL, (void (*)(int))sigill_handler_sse); signal(SIGFPE, (void (*)(int))sigfpe_handler_sse); /* Emulate test for OSFXSR in CR4. The OS will set this bit if it * supports the extended FPU save and restore required for SSE. If * we execute an SSE instruction on a PIII and get a SIGILL, the OS * doesn't support Streaming SIMD Exceptions, even if the processor * does. */ if (util_cpu_caps.has_sse) { __asm __volatile ("xorps %xmm1, %xmm0"); } /* Emulate test for OSXMMEXCPT in CR4. The OS will set this bit if * it supports unmasked SIMD FPU exceptions. If we unmask the * exceptions, do a SIMD divide-by-zero and get a SIGILL, the OS * doesn't support unmasked SIMD FPU exceptions. If we get a SIGFPE * as expected, we're okay but we need to clean up after it. * * Are we being too stringent in our requirement that the OS support * unmasked exceptions? Certain RedHat 2.2 kernels enable SSE by * setting CR4.OSFXSR but don't support unmasked exceptions. Win98 * doesn't even support them. We at least know the user-space SSE * support is good in kernels that do support unmasked exceptions, * and therefore to be safe I'm going to leave this test in here. */ if (util_cpu_caps.has_sse) { // test_os_katmai_exception_support(); } /* Restore the original signal handlers. */ sigaction(SIGILL, &saved_sigill, NULL); sigaction(SIGFPE, &saved_sigfpe, NULL); #else /* We can't use POSIX signal handling to test the availability of * SSE, so we disable it by default. */ util_cpu_caps.has_sse = 0; #endif /* __linux__ */ #endif #if defined(PIPE_ARCH_X86_64) util_cpu_caps.has_sse = 1; #endif } static int has_cpuid(void) { #if defined(PIPE_ARCH_X86) #if defined(PIPE_OS_GCC) int a, c; __asm __volatile ("pushf\n" "popl %0\n" "movl %0, %1\n" "xorl $0x200000, %0\n" "push %0\n" "popf\n" "pushf\n" "popl %0\n" : "=a" (a), "=c" (c) : : "cc"); return a != c; #else /* FIXME */ return 1; #endif #elif defined(PIPE_ARCH_X86_64) return 1; #else return 0; #endif } static INLINE int cpuid(unsigned int ax, unsigned int *p) { int ret = -1; #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86) __asm __volatile ( "movl %%ebx, %%esi\n\t" "cpuid\n\t" "xchgl %%ebx, %%esi" : "=a" (p[0]), "=S" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax) ); ret = 0; #elif defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86_64) __asm __volatile ( "movq %%rbx, %%rsi\n\t" "cpuid\n\t" "xchgq %%rbx, %%rsi" : "=a" (p[0]), "=S" (p[1]), "=c" (p[2]), "=d" (p[3]) : "0" (ax) ); ret = 0; #elif defined(PIPE_CC_MSVC) __cpuid(ax, p); ret = 0; #endif return ret; } void util_cpu_detect(void) { static boolean util_cpu_detect_initialized = FALSE; if(util_cpu_detect_initialized) return; memset(&util_cpu_caps, 0, sizeof util_cpu_caps); /* Check for arch type */ #if defined(PIPE_ARCH_MIPS) util_cpu_caps.arch = UTIL_CPU_ARCH_MIPS; #elif defined(PIPE_ARCH_ALPHA) util_cpu_caps.arch = UTIL_CPU_ARCH_ALPHA; #elif defined(PIPE_ARCH_SPARC) util_cpu_caps.arch = UTIL_CPU_ARCH_SPARC; #elif defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64) util_cpu_caps.arch = UTIL_CPU_ARCH_X86; #elif defined(PIPE_ARCH_PPC) util_cpu_caps.arch = UTIL_CPU_ARCH_POWERPC; #else util_cpu_caps.arch = UTIL_CPU_ARCH_UNKNOWN; #endif /* Count the number of CPUs in system */ #if !defined(PIPE_OS_WINDOWS) && !defined(PIPE_OS_UNKNOWN) && defined(_SC_NPROCESSORS_ONLN) util_cpu_caps.nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); if (util_cpu_caps.nr_cpus == -1) util_cpu_caps.nr_cpus = 1; #elif defined(PIPE_OS_NETBSD) || defined(PIPE_OS_FREEBSD) || defined(PIPE_OS_OPENBSD) { int mib[2], ncpu; int len; mib[0] = CTL_HW; mib[1] = HW_NCPU; len = sizeof (ncpu); sysctl(mib, 2, &ncpu, &len, NULL, 0); util_cpu_caps.nr_cpus = ncpu; } #else util_cpu_caps.nr_cpus = 1; #endif #if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64) if (has_cpuid()) { unsigned int regs[4]; unsigned int regs2[4]; util_cpu_caps.cacheline = 32; /* Get max cpuid level */ cpuid(0x00000000, regs); if (regs[0] >= 0x00000001) { unsigned int cacheline; cpuid (0x00000001, regs2); util_cpu_caps.x86_cpu_type = (regs2[0] >> 8) & 0xf; if (util_cpu_caps.x86_cpu_type == 0xf) util_cpu_caps.x86_cpu_type = 8 + ((regs2[0] >> 20) & 255); /* use extended family (P4, IA64) */ /* general feature flags */ util_cpu_caps.has_tsc = (regs2[3] & (1 << 8 )) >> 8; /* 0x0000010 */ util_cpu_caps.has_mmx = (regs2[3] & (1 << 23 )) >> 23; /* 0x0800000 */ util_cpu_caps.has_sse = (regs2[3] & (1 << 25 )) >> 25; /* 0x2000000 */ util_cpu_caps.has_sse2 = (regs2[3] & (1 << 26 )) >> 26; /* 0x4000000 */ util_cpu_caps.has_sse3 = (regs2[2] & (1)); /* 0x0000001 */ util_cpu_caps.has_ssse3 = (regs2[2] & (1 << 9 )) >> 9; /* 0x0000020 */ util_cpu_caps.has_sse4_1 = (regs2[2] & (1 << 19)) >> 19; util_cpu_caps.has_mmx2 = util_cpu_caps.has_sse; /* SSE cpus supports mmxext too */ cacheline = ((regs2[1] >> 8) & 0xFF) * 8; if (cacheline > 0) util_cpu_caps.cacheline = cacheline; } cpuid(0x80000000, regs); if (regs[0] >= 0x80000001) { cpuid(0x80000001, regs2); util_cpu_caps.has_mmx |= (regs2[3] & (1 << 23 )) >> 23; /* 0x0800000 */ util_cpu_caps.has_mmx2 |= (regs2[3] & (1 << 22 )) >> 22; /* 0x400000 */ util_cpu_caps.has_3dnow = (regs2[3] & (1 << 31 )) >> 31; /* 0x80000000 */ util_cpu_caps.has_3dnow_ext = (regs2[3] & (1 << 30 )) >> 30; } if (regs[0] >= 0x80000006) { cpuid(0x80000006, regs2); util_cpu_caps.cacheline = regs2[2] & 0xFF; } #if defined(PIPE_OS_LINUX) || defined(PIPE_OS_FREEBSD) || defined(PIPE_OS_NETBSD) || defined(PIPE_OS_CYGWIN) || defined(PIPE_OS_OPENBSD) if (util_cpu_caps.has_sse) check_os_katmai_support(); if (!util_cpu_caps.has_sse) { util_cpu_caps.has_sse2 = 0; util_cpu_caps.has_sse3 = 0; util_cpu_caps.has_ssse3 = 0; } #else util_cpu_caps.has_sse = 0; util_cpu_caps.has_sse2 = 0; util_cpu_caps.has_sse3 = 0; util_cpu_caps.has_ssse3 = 0; #endif } #endif /* PIPE_ARCH_X86 || PIPE_ARCH_X86_64 */ #if defined(PIPE_ARCH_PPC) check_os_altivec_support(); #endif /* PIPE_ARCH_PPC */ #ifdef DEBUG debug_printf("util_cpu_caps.arch = %i\n", util_cpu_caps.arch); debug_printf("util_cpu_caps.nr_cpus = %u\n", util_cpu_caps.nr_cpus); debug_printf("util_cpu_caps.x86_cpu_type = %u\n", util_cpu_caps.x86_cpu_type); debug_printf("util_cpu_caps.cacheline = %u\n", util_cpu_caps.cacheline); debug_printf("util_cpu_caps.has_tsc = %u\n", util_cpu_caps.has_tsc); debug_printf("util_cpu_caps.has_mmx = %u\n", util_cpu_caps.has_mmx); debug_printf("util_cpu_caps.has_mmx2 = %u\n", util_cpu_caps.has_mmx2); debug_printf("util_cpu_caps.has_sse = %u\n", util_cpu_caps.has_sse); debug_printf("util_cpu_caps.has_sse2 = %u\n", util_cpu_caps.has_sse2); debug_printf("util_cpu_caps.has_sse3 = %u\n", util_cpu_caps.has_sse3); debug_printf("util_cpu_caps.has_ssse3 = %u\n", util_cpu_caps.has_ssse3); debug_printf("util_cpu_caps.has_sse4_1 = %u\n", util_cpu_caps.has_sse4_1); debug_printf("util_cpu_caps.has_3dnow = %u\n", util_cpu_caps.has_3dnow); debug_printf("util_cpu_caps.has_3dnow_ext = %u\n", util_cpu_caps.has_3dnow_ext); debug_printf("util_cpu_caps.has_altivec = %u\n", util_cpu_caps.has_altivec); #endif util_cpu_detect_initialized = TRUE; }