#!/usr/bin/env python ''' /************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Pixel format packing and unpacking functions. * * @author Jose Fonseca */ ''' import sys import math from u_format_parse import * def generate_f16_to_f32(): '''Naive implementation, need something faster that operates on bits''' print ''' static float f16_to_f32(uint16_t h) { unsigned mantissa = h & 0x3ff; unsigned exponent = (h >> 10) & 0x1f; float sign = (h & 0x8000) ? -1.0f : 1.0f; if (exponent == 0) { if (mantissa == 0) { return sign * 0.0f; } return sign * powf(2.0f, -14.0f) * (float)mantissa / 1024.0f; } if (exponent == 31) { if (mantissa == 0) { /* XXX: infinity */ return sign * 100000.0f; } /* XXX: NaN */ return 1000.0f; } return sign * powf(2.0f, (float)exponent - 15.0f) * (1.0f + (float)mantissa / 1024.0f); } ''' def generate_f32_to_f16(): print ''' static uint16_t f32_to_f16(float f) { /* TODO */ return 0; } ''' def generate_format_type(format): '''Generate a structure that describes the format.''' print 'union util_format_%s {' % format.short_name() if format.is_bitmask() or format.short_name() == "r11g11b10_float": print ' uint%u_t value;' % (format.block_size(),) print ' struct {' for channel in format.channels: if (format.is_bitmask() or format.is_mixed()) and not format.is_array() or format.short_name() == "r11g11b10_float": if channel.type == VOID: if channel.size: print ' unsigned %s:%u;' % (channel.name, channel.size) elif channel.type == UNSIGNED: print ' unsigned %s:%u;' % (channel.name, channel.size) elif channel.type == SIGNED: print ' int %s:%u;' % (channel.name, channel.size) elif channel.type == FLOAT: if channel.size == 32: print ' float %s;' % (channel.name) else: print ' unsigned %s:%u;' % (channel.name, channel.size) else: assert 0 else: assert channel.size % 8 == 0 and is_pot(channel.size) if channel.type == VOID: if channel.size: print ' uint%u_t %s;' % (channel.size, channel.name) elif channel.type == UNSIGNED: print ' uint%u_t %s;' % (channel.size, channel.name) elif channel.type in (SIGNED, FIXED): print ' int%u_t %s;' % (channel.size, channel.name) elif channel.type == FLOAT: if channel.size == 64: print ' double %s;' % (channel.name) elif channel.size == 32: print ' float %s;' % (channel.name) elif channel.size == 16: print ' uint16_t %s;' % (channel.name) else: assert 0 else: assert 0 print ' } chan;' print '};' print def generate_srgb_tables(): print 'static ubyte srgb_to_linear[256] = {' for i in range(256): print ' %s,' % (int(math.pow((i / 255.0 + 0.055) / 1.055, 2.4) * 255)) print '};' print print 'static ubyte linear_to_srgb[256] = {' print ' 0,' for i in range(1, 256): print ' %s,' % (int((1.055 * math.pow(i / 255.0, 0.41666) - 0.055) * 255)) print '};' print def bswap_format(format): '''Generate a structure that describes the format.''' if format.is_bitmask() and not format.is_array(): print '#ifdef PIPE_ARCH_BIG_ENDIAN' print ' pixel.value = util_bswap%u(pixel.value);' % format.block_size() print '#endif' def is_format_supported(format): '''Determines whether we actually have the plumbing necessary to generate the to read/write to/from this format.''' # FIXME: Ideally we would support any format combination here. if format.layout != PLAIN: return False for i in range(4): channel = format.channels[i] if channel.type not in (VOID, UNSIGNED, SIGNED, FLOAT): return False # We can only read a color from a depth/stencil format if the depth channel is present if format.colorspace == 'zs' and format.swizzles[0] == SWIZZLE_NONE: return False return True def native_type(format): '''Get the native appropriate for a format.''' if format.layout == PLAIN: if not format.is_array(): # For arithmetic pixel formats return the integer type that matches the whole pixel return 'uint%u_t' % format.block_size() else: # For array pixel formats return the integer type that matches the color channel channel = format.channels[0] if channel.type in (UNSIGNED, VOID): return 'uint%u_t' % channel.size elif channel.type == SIGNED: return 'int%u_t' % channel.size elif channel.type == FLOAT: if channel.size == 16: return 'uint16_t' elif channel.size == 32: return 'float' elif channel.size == 64: return 'double' else: assert False else: assert False else: assert False def intermediate_native_type(bits, sign): '''Find a native type adequate to hold intermediate results of the request bit size.''' bytes = 4 # don't use anything smaller than 32bits while bytes * 8 < bits: bytes *= 2 bits = bytes*8 if sign: return 'int%u_t' % bits else: return 'uint%u_t' % bits def get_one_shift(type): '''Get the number of the bit that matches unity for this type.''' if type.type == 'FLOAT': assert False if not type.norm: return 0 if type.type == UNSIGNED: return type.size if type.type == SIGNED: return type.size - 1 if type.type == FIXED: return type.size / 2 assert False def get_one(type): '''Get the value of unity for this type.''' if type.type == 'FLOAT' or not type.norm: return 1 else: return (1 << get_one_shift(type)) - 1 def clamp_expr(src_channel, dst_channel, dst_native_type, value): '''Generate the expression to clamp the value in the source type to the destination type range.''' if src_channel == dst_channel: return value src_min = src_channel.min() src_max = src_channel.max() dst_min = dst_channel.min() dst_max = dst_channel.max() if src_min < dst_min and src_max > dst_max: return 'CLAMP(%s, %s, %s)' % (value, dst_min, dst_max) if src_max > dst_max: return 'MIN2(%s, %s)' % (value, dst_max) if src_min < dst_min: return 'MAX2(%s, %s)' % (value, dst_min) return value def conversion_expr(src_channel, dst_channel, dst_native_type, value, clamp=True): '''Generate the expression to convert a value between two types.''' if src_channel == dst_channel: return value if src_channel.type == FLOAT and dst_channel.type == FLOAT: if src_channel.size == dst_channel.size: return value if src_channel.size == 64: value = '(float)%s' % (value) elif src_channel.size == 16: value = 'f16_to_f32(%s)' % (value) if dst_channel.size == 16: value = 'f32_to_f16(%s)' % (value) elif dst_channel.size == 64: value = '(double)%s' % (value) return value if clamp: value = clamp_expr(src_channel, dst_channel, dst_native_type, value) if dst_channel.type == FLOAT: if src_channel.norm: one = get_one(src_channel) if src_channel.size <= 23: scale = '(1.0f/0x%x)' % one else: # bigger than single precision mantissa, use double scale = '(1.0/0x%x)' % one value = '(%s * %s)' % (value, scale) return '(%s)%s' % (dst_native_type, value) if src_channel.type == FLOAT: if dst_channel.norm: dst_one = get_one(dst_channel) if dst_channel.size <= 23: scale = '0x%x' % dst_one else: # bigger than single precision mantissa, use double scale = '(double)0x%x' % dst_one value = '(%s * %s)' % (value, scale) return '(%s)%s' % (dst_native_type, value) if src_channel.type in (SIGNED, UNSIGNED) and dst_channel.type in (SIGNED, UNSIGNED): if not src_channel.norm and not dst_channel.norm: # neither is normalized -- just cast return '(%s)%s' % (dst_native_type, value) src_one = get_one(src_channel) dst_one = get_one(dst_channel) if src_one > dst_one and src_channel.norm and dst_channel.norm: # We can just bitshift src_shift = get_one_shift(src_channel) dst_shift = get_one_shift(dst_channel) value = '(%s >> %s)' % (value, src_shift - dst_shift) else: # We need to rescale using an intermediate type big enough to hold the multiplication of both tmp_native_type = intermediate_native_type(src_channel.size + dst_channel.size, src_channel.sign and dst_channel.sign) value = '((%s)%s)' % (tmp_native_type, value) value = '(%s * 0x%x / 0x%x)' % (value, dst_one, src_one) value = '(%s)%s' % (dst_native_type, value) return value assert False def generate_unpack_kernel(format, dst_channel, dst_native_type): if not is_format_supported(format): return assert format.layout == PLAIN src_native_type = native_type(format) if format.is_bitmask(): depth = format.block_size() print ' uint%u_t value = *(uint%u_t *)src;' % (depth, depth) # Declare the intermediate variables for i in range(format.nr_channels()): src_channel = format.channels[i] if src_channel.type == UNSIGNED: print ' uint%u_t %s;' % (depth, src_channel.name) elif src_channel.type == SIGNED: print ' int%u_t %s;' % (depth, src_channel.name) print ' #ifdef PIPE_ARCH_BIG_ENDIAN' print ' value = util_bswap%u(value);' % depth print ' #endif' # Compute the intermediate unshifted values shift = 0 for i in range(format.nr_channels()): src_channel = format.channels[i] value = 'value' if src_channel.type == UNSIGNED: if shift: value = '%s >> %u' % (value, shift) if shift + src_channel.size < depth: value = '(%s) & 0x%x' % (value, (1 << src_channel.size) - 1) elif src_channel.type == SIGNED: if shift + src_channel.size < depth: # Align the sign bit lshift = depth - (shift + src_channel.size) value = '%s << %u' % (value, lshift) # Cast to signed value = '(int%u_t)(%s) ' % (depth, value) if src_channel.size < depth: # Align the LSB bit rshift = depth - src_channel.size value = '(%s) >> %u' % (value, rshift) else: value = None if value is not None: print ' %s = %s;' % (src_channel.name, value) shift += src_channel.size # Convert, swizzle, and store final values for i in range(4): swizzle = format.swizzles[i] if swizzle < 4: src_channel = format.channels[swizzle] value = src_channel.name value = conversion_expr(src_channel, dst_channel, dst_native_type, value) elif swizzle == SWIZZLE_0: value = '0' elif swizzle == SWIZZLE_1: value = get_one(dst_channel) elif swizzle == SWIZZLE_NONE: value = '0' else: assert False if format.colorspace == ZS: if i == 3: value = get_one(dst_channel) elif i >= 1: value = 'dst[0]' print ' dst[%u] = %s; /* %s */' % (i, value, 'rgba'[i]) else: print ' union util_format_%s pixel;' % format.short_name() print ' memcpy(&pixel, src, sizeof pixel);' bswap_format(format) for i in range(4): swizzle = format.swizzles[i] if swizzle < 4: src_channel = format.channels[swizzle] value = 'pixel.chan.%s' % src_channel.name value = conversion_expr(src_channel, dst_channel, dst_native_type, value) elif swizzle == SWIZZLE_0: value = '0' elif swizzle == SWIZZLE_1: value = get_one(dst_channel) elif swizzle == SWIZZLE_NONE: value = '0' else: assert False if format.colorspace == ZS: if i == 3: value = get_one(dst_channel) elif i >= 1: value = 'dst[0]' print ' dst[%u] = %s; /* %s */' % (i, value, 'rgba'[i]) def generate_pack_kernel(format, src_channel, src_native_type): if not is_format_supported(format): return dst_native_type = native_type(format) assert format.layout == PLAIN inv_swizzle = format.inv_swizzles() if format.is_bitmask(): depth = format.block_size() print ' uint%u_t value = 0;' % depth shift = 0 for i in range(4): dst_channel = format.channels[i] if inv_swizzle[i] is not None: value ='src[%u]' % inv_swizzle[i] value = conversion_expr(src_channel, dst_channel, dst_native_type, value) if format.colorspace == ZS: if i == 3: value = get_one(dst_channel) elif i >= 1: value = '0' if dst_channel.type in (UNSIGNED, SIGNED): if shift + dst_channel.size < depth: value = '(%s) & 0x%x' % (value, (1 << dst_channel.size) - 1) if shift: value = '(%s) << %u' % (value, shift) if dst_channel.type == SIGNED: # Cast to unsigned value = '(uint%u_t)(%s) ' % (depth, value) else: value = None if value is not None: print ' value |= %s;' % (value) shift += dst_channel.size print '#ifdef PIPE_ARCH_BIG_ENDIAN' print ' value = util_bswap%u(value);' % depth print '#endif' print ' *(uint%u_t *)dst = value;' % depth else: print ' union util_format_%s pixel;' % format.short_name() for i in range(4): dst_channel = format.channels[i] width = dst_channel.size if inv_swizzle[i] is None: continue value ='src[%u]' % inv_swizzle[i] value = conversion_expr(src_channel, dst_channel, dst_native_type, value) if format.colorspace == ZS: if i == 3: value = get_one(dst_channel) elif i >= 1: value = '0' print ' pixel.chan.%s = %s;' % (dst_channel.name, value) bswap_format(format) print ' memcpy(dst, &pixel, sizeof pixel);' def generate_format_unpack(format, dst_channel, dst_native_type, dst_suffix): '''Generate the function to unpack pixels from a particular format''' name = format.short_name() print 'static INLINE void' print 'util_format_%s_unpack_%s(%s *dst, const uint8_t *src, unsigned length)' % (name, dst_suffix, dst_native_type) print '{' if is_format_supported(format): print ' while(length--) {' generate_unpack_kernel(format, dst_channel, dst_native_type) print ' src += %u;' % (format.block_size() / 8,) print ' dst += 4;' print ' }' print '}' print def generate_format_pack(format, src_channel, src_native_type, src_suffix): '''Generate the function to pack pixels to a particular format''' name = format.short_name() print 'static INLINE void' print 'util_format_%s_pack_%s(uint8_t *dst, const %s *src, unsigned length)' % (name, src_suffix, src_native_type) print '{' if is_format_supported(format): print ' while(length--) {' generate_pack_kernel(format, src_channel, src_native_type) print ' src += 4;' print ' dst += %u;' % (format.block_size() / 8,) print ' }' print '}' print def generate_format_fetch(format, dst_channel, dst_native_type, dst_suffix): '''Generate the function to unpack pixels from a particular format''' name = format.short_name() print 'static INLINE void' print 'util_format_%s_fetch_%s(%s *dst, const uint8_t *src, unsigned i, unsigned j)' % (name, dst_suffix, dst_native_type) print '{' if is_format_supported(format): generate_unpack_kernel(format, dst_channel, dst_native_type) print '}' print def generate(formats): print print '#include "pipe/p_compiler.h"' print '#include "u_math.h"' print '#include "u_format.h"' print generate_f16_to_f32() generate_f32_to_f16() for format in formats: if is_format_supported(format): generate_format_type(format) channel = Channel(FLOAT, False, 32) native_type = 'float' suffix = 'float' for format in formats: generate_format_unpack(format, channel, native_type, suffix) generate_format_pack(format, channel, native_type, suffix) generate_format_fetch(format, channel, native_type, suffix) channel = Channel(UNSIGNED, True, 8) native_type = 'uint8_t' suffix = '8unorm' for format in formats: generate_format_unpack(format, channel, native_type, suffix) generate_format_pack(format, channel, native_type, suffix)