/************************************************************************** * * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * Copyright 2008 VMware, Inc. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Mipmap generation utility * * @author Brian Paul */ #include "pipe/p_context.h" #include "util/u_debug.h" #include "pipe/p_defines.h" #include "util/u_inlines.h" #include "pipe/p_shader_tokens.h" #include "pipe/p_state.h" #include "util/u_format.h" #include "util/u_memory.h" #include "util/u_draw_quad.h" #include "util/u_gen_mipmap.h" #include "util/u_simple_shaders.h" #include "util/u_math.h" #include "util/u_texture.h" #include "util/u_half.h" #include "util/u_surface.h" #include "cso_cache/cso_context.h" struct gen_mipmap_state { struct pipe_context *pipe; struct cso_context *cso; struct pipe_blend_state blend; struct pipe_depth_stencil_alpha_state depthstencil; struct pipe_rasterizer_state rasterizer; struct pipe_sampler_state sampler; struct pipe_clip_state clip; struct pipe_vertex_element velem[2]; void *vs; void *fs[TGSI_TEXTURE_COUNT]; /**< Not all are used, but simplifies code */ struct pipe_resource *vbuf; /**< quad vertices */ unsigned vbuf_slot; float vertices[4][2][4]; /**< vertex/texcoords for quad */ }; enum dtype { DTYPE_UBYTE, DTYPE_UBYTE_3_3_2, DTYPE_USHORT, DTYPE_USHORT_4_4_4_4, DTYPE_USHORT_5_6_5, DTYPE_USHORT_1_5_5_5_REV, DTYPE_UINT, DTYPE_FLOAT, DTYPE_HALF_FLOAT }; typedef uint16_t half_float; /** * \name Support macros for do_row and do_row_3d * * The macro madness is here for two reasons. First, it compacts the code * slightly. Second, it makes it much easier to adjust the specifics of the * filter to tune the rounding characteristics. */ /*@{*/ #define DECLARE_ROW_POINTERS(t, e) \ const t(*rowA)[e] = (const t(*)[e]) srcRowA; \ const t(*rowB)[e] = (const t(*)[e]) srcRowB; \ const t(*rowC)[e] = (const t(*)[e]) srcRowC; \ const t(*rowD)[e] = (const t(*)[e]) srcRowD; \ t(*dst)[e] = (t(*)[e]) dstRow #define DECLARE_ROW_POINTERS0(t) \ const t *rowA = (const t *) srcRowA; \ const t *rowB = (const t *) srcRowB; \ const t *rowC = (const t *) srcRowC; \ const t *rowD = (const t *) srcRowD; \ t *dst = (t *) dstRow #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \ ((unsigned) Aj + (unsigned) Ak \ + (unsigned) Bj + (unsigned) Bk \ + (unsigned) Cj + (unsigned) Ck \ + (unsigned) Dj + (unsigned) Dk \ + 4) >> 3 #define FILTER_3D(e) \ do { \ dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \ rowB[j][e], rowB[k][e], \ rowC[j][e], rowC[k][e], \ rowD[j][e], rowD[k][e]); \ } while(0) #define FILTER_F_3D(e) \ do { \ dst[i][e] = (rowA[j][e] + rowA[k][e] \ + rowB[j][e] + rowB[k][e] \ + rowC[j][e] + rowC[k][e] \ + rowD[j][e] + rowD[k][e]) * 0.125F; \ } while(0) #define FILTER_HF_3D(e) \ do { \ const float aj = util_half_to_float(rowA[j][e]); \ const float ak = util_half_to_float(rowA[k][e]); \ const float bj = util_half_to_float(rowB[j][e]); \ const float bk = util_half_to_float(rowB[k][e]); \ const float cj = util_half_to_float(rowC[j][e]); \ const float ck = util_half_to_float(rowC[k][e]); \ const float dj = util_half_to_float(rowD[j][e]); \ const float dk = util_half_to_float(rowD[k][e]); \ dst[i][e] = util_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \ * 0.125F); \ } while(0) /*@}*/ /** * Average together two rows of a source image to produce a single new * row in the dest image. It's legal for the two source rows to point * to the same data. The source width must be equal to either the * dest width or two times the dest width. * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc. * \param comps number of components per pixel (1..4) */ static void do_row(enum dtype datatype, uint comps, int srcWidth, const void *srcRowA, const void *srcRowB, int dstWidth, void *dstRow) { const uint k0 = (srcWidth == dstWidth) ? 0 : 1; const uint colStride = (srcWidth == dstWidth) ? 1 : 2; assert(comps >= 1); assert(comps <= 4); /* This assertion is no longer valid with non-power-of-2 textures assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth); */ if (datatype == DTYPE_UBYTE && comps == 4) { uint i, j, k; const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA; const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB; ubyte(*dst)[4] = (ubyte(*)[4]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == DTYPE_UBYTE && comps == 3) { uint i, j, k; const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA; const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB; ubyte(*dst)[3] = (ubyte(*)[3]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == DTYPE_UBYTE && comps == 2) { uint i, j, k; const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA; const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB; ubyte(*dst)[2] = (ubyte(*)[2]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2; } } else if (datatype == DTYPE_UBYTE && comps == 1) { uint i, j, k; const ubyte *rowA = (const ubyte *) srcRowA; const ubyte *rowB = (const ubyte *) srcRowB; ubyte *dst = (ubyte *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2; } } else if (datatype == DTYPE_USHORT && comps == 4) { uint i, j, k; const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA; const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB; ushort(*dst)[4] = (ushort(*)[4]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == DTYPE_USHORT && comps == 3) { uint i, j, k; const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA; const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB; ushort(*dst)[3] = (ushort(*)[3]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == DTYPE_USHORT && comps == 2) { uint i, j, k; const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA; const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB; ushort(*dst)[2] = (ushort(*)[2]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; } } else if (datatype == DTYPE_USHORT && comps == 1) { uint i, j, k; const ushort *rowA = (const ushort *) srcRowA; const ushort *rowB = (const ushort *) srcRowB; ushort *dst = (ushort *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; } } else if (datatype == DTYPE_FLOAT && comps == 4) { uint i, j, k; const float(*rowA)[4] = (const float(*)[4]) srcRowA; const float(*rowB)[4] = (const float(*)[4]) srcRowB; float(*dst)[4] = (float(*)[4]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) * 0.25F; } } else if (datatype == DTYPE_FLOAT && comps == 3) { uint i, j, k; const float(*rowA)[3] = (const float(*)[3]) srcRowA; const float(*rowB)[3] = (const float(*)[3]) srcRowB; float(*dst)[3] = (float(*)[3]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; } } else if (datatype == DTYPE_FLOAT && comps == 2) { uint i, j, k; const float(*rowA)[2] = (const float(*)[2]) srcRowA; const float(*rowB)[2] = (const float(*)[2]) srcRowB; float(*dst)[2] = (float(*)[2]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; } } else if (datatype == DTYPE_FLOAT && comps == 1) { uint i, j, k; const float *rowA = (const float *) srcRowA; const float *rowB = (const float *) srcRowB; float *dst = (float *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F; } } else if (datatype == DTYPE_HALF_FLOAT && comps == 4) { uint i, j, k, comp; const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA; const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB; half_float(*dst)[4] = (half_float(*)[4]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 4; comp++) { float aj, ak, bj, bk; aj = util_half_to_float(rowA[j][comp]); ak = util_half_to_float(rowA[k][comp]); bj = util_half_to_float(rowB[j][comp]); bk = util_half_to_float(rowB[k][comp]); dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == DTYPE_HALF_FLOAT && comps == 3) { uint i, j, k, comp; const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA; const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB; half_float(*dst)[3] = (half_float(*)[3]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 3; comp++) { float aj, ak, bj, bk; aj = util_half_to_float(rowA[j][comp]); ak = util_half_to_float(rowA[k][comp]); bj = util_half_to_float(rowB[j][comp]); bk = util_half_to_float(rowB[k][comp]); dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == DTYPE_HALF_FLOAT && comps == 2) { uint i, j, k, comp; const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA; const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB; half_float(*dst)[2] = (half_float(*)[2]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 2; comp++) { float aj, ak, bj, bk; aj = util_half_to_float(rowA[j][comp]); ak = util_half_to_float(rowA[k][comp]); bj = util_half_to_float(rowB[j][comp]); bk = util_half_to_float(rowB[k][comp]); dst[i][comp] = util_float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == DTYPE_HALF_FLOAT && comps == 1) { uint i, j, k; const half_float *rowA = (const half_float *) srcRowA; const half_float *rowB = (const half_float *) srcRowB; half_float *dst = (half_float *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { float aj, ak, bj, bk; aj = util_half_to_float(rowA[j]); ak = util_half_to_float(rowA[k]); bj = util_half_to_float(rowB[j]); bk = util_half_to_float(rowB[k]); dst[i] = util_float_to_half((aj + ak + bj + bk) * 0.25F); } } else if (datatype == DTYPE_UINT && comps == 1) { uint i, j, k; const uint *rowA = (const uint *) srcRowA; const uint *rowB = (const uint *) srcRowB; uint *dst = (uint *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4; } } else if (datatype == DTYPE_USHORT_5_6_5 && comps == 3) { uint i, j, k; const ushort *rowA = (const ushort *) srcRowA; const ushort *rowB = (const ushort *) srcRowB; ushort *dst = (ushort *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x1f; const int rowAr1 = rowA[k] & 0x1f; const int rowBr0 = rowB[j] & 0x1f; const int rowBr1 = rowB[k] & 0x1f; const int rowAg0 = (rowA[j] >> 5) & 0x3f; const int rowAg1 = (rowA[k] >> 5) & 0x3f; const int rowBg0 = (rowB[j] >> 5) & 0x3f; const int rowBg1 = (rowB[k] >> 5) & 0x3f; const int rowAb0 = (rowA[j] >> 11) & 0x1f; const int rowAb1 = (rowA[k] >> 11) & 0x1f; const int rowBb0 = (rowB[j] >> 11) & 0x1f; const int rowBb1 = (rowB[k] >> 11) & 0x1f; const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 11) | (green << 5) | red; } } else if (datatype == DTYPE_USHORT_4_4_4_4 && comps == 4) { uint i, j, k; const ushort *rowA = (const ushort *) srcRowA; const ushort *rowB = (const ushort *) srcRowB; ushort *dst = (ushort *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0xf; const int rowAr1 = rowA[k] & 0xf; const int rowBr0 = rowB[j] & 0xf; const int rowBr1 = rowB[k] & 0xf; const int rowAg0 = (rowA[j] >> 4) & 0xf; const int rowAg1 = (rowA[k] >> 4) & 0xf; const int rowBg0 = (rowB[j] >> 4) & 0xf; const int rowBg1 = (rowB[k] >> 4) & 0xf; const int rowAb0 = (rowA[j] >> 8) & 0xf; const int rowAb1 = (rowA[k] >> 8) & 0xf; const int rowBb0 = (rowB[j] >> 8) & 0xf; const int rowBb1 = (rowB[k] >> 8) & 0xf; const int rowAa0 = (rowA[j] >> 12) & 0xf; const int rowAa1 = (rowA[k] >> 12) & 0xf; const int rowBa0 = (rowB[j] >> 12) & 0xf; const int rowBa1 = (rowB[k] >> 12) & 0xf; const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red; } } else if (datatype == DTYPE_USHORT_1_5_5_5_REV && comps == 4) { uint i, j, k; const ushort *rowA = (const ushort *) srcRowA; const ushort *rowB = (const ushort *) srcRowB; ushort *dst = (ushort *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x1f; const int rowAr1 = rowA[k] & 0x1f; const int rowBr0 = rowB[j] & 0x1f; const int rowBr1 = rowB[k] & 0x1f; const int rowAg0 = (rowA[j] >> 5) & 0x1f; const int rowAg1 = (rowA[k] >> 5) & 0x1f; const int rowBg0 = (rowB[j] >> 5) & 0x1f; const int rowBg1 = (rowB[k] >> 5) & 0x1f; const int rowAb0 = (rowA[j] >> 10) & 0x1f; const int rowAb1 = (rowA[k] >> 10) & 0x1f; const int rowBb0 = (rowB[j] >> 10) & 0x1f; const int rowBb1 = (rowB[k] >> 10) & 0x1f; const int rowAa0 = (rowA[j] >> 15) & 0x1; const int rowAa1 = (rowA[k] >> 15) & 0x1; const int rowBa0 = (rowB[j] >> 15) & 0x1; const int rowBa1 = (rowB[k] >> 15) & 0x1; const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red; } } else if (datatype == DTYPE_UBYTE_3_3_2 && comps == 3) { uint i, j, k; const ubyte *rowA = (const ubyte *) srcRowA; const ubyte *rowB = (const ubyte *) srcRowB; ubyte *dst = (ubyte *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x3; const int rowAr1 = rowA[k] & 0x3; const int rowBr0 = rowB[j] & 0x3; const int rowBr1 = rowB[k] & 0x3; const int rowAg0 = (rowA[j] >> 2) & 0x7; const int rowAg1 = (rowA[k] >> 2) & 0x7; const int rowBg0 = (rowB[j] >> 2) & 0x7; const int rowBg1 = (rowB[k] >> 2) & 0x7; const int rowAb0 = (rowA[j] >> 5) & 0x7; const int rowAb1 = (rowA[k] >> 5) & 0x7; const int rowBb0 = (rowB[j] >> 5) & 0x7; const int rowBb1 = (rowB[k] >> 5) & 0x7; const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 5) | (green << 2) | red; } } else { debug_printf("bad format in do_row()"); } } /** * Average together four rows of a source image to produce a single new * row in the dest image. It's legal for the two source rows to point * to the same data. The source width must be equal to either the * dest width or two times the dest width. * * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT, * \c GL_FLOAT, etc. * \param comps number of components per pixel (1..4) * \param srcWidth Width of a row in the source data * \param srcRowA Pointer to one of the rows of source data * \param srcRowB Pointer to one of the rows of source data * \param srcRowC Pointer to one of the rows of source data * \param srcRowD Pointer to one of the rows of source data * \param dstWidth Width of a row in the destination data * \param srcRowA Pointer to the row of destination data */ static void do_row_3D(enum dtype datatype, uint comps, int srcWidth, const void *srcRowA, const void *srcRowB, const void *srcRowC, const void *srcRowD, int dstWidth, void *dstRow) { const uint k0 = (srcWidth == dstWidth) ? 0 : 1; const uint colStride = (srcWidth == dstWidth) ? 1 : 2; uint i, j, k; assert(comps >= 1); assert(comps <= 4); if ((datatype == DTYPE_UBYTE) && (comps == 4)) { DECLARE_ROW_POINTERS(ubyte, 4); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); FILTER_3D(3); } } else if ((datatype == DTYPE_UBYTE) && (comps == 3)) { DECLARE_ROW_POINTERS(ubyte, 3); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); } } else if ((datatype == DTYPE_UBYTE) && (comps == 2)) { DECLARE_ROW_POINTERS(ubyte, 2); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); } } else if ((datatype == DTYPE_UBYTE) && (comps == 1)) { DECLARE_ROW_POINTERS(ubyte, 1); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); } } else if ((datatype == DTYPE_USHORT) && (comps == 4)) { DECLARE_ROW_POINTERS(ushort, 4); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); FILTER_3D(3); } } else if ((datatype == DTYPE_USHORT) && (comps == 3)) { DECLARE_ROW_POINTERS(ushort, 3); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); FILTER_3D(2); } } else if ((datatype == DTYPE_USHORT) && (comps == 2)) { DECLARE_ROW_POINTERS(ushort, 2); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); FILTER_3D(1); } } else if ((datatype == DTYPE_USHORT) && (comps == 1)) { DECLARE_ROW_POINTERS(ushort, 1); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_3D(0); } } else if ((datatype == DTYPE_FLOAT) && (comps == 4)) { DECLARE_ROW_POINTERS(float, 4); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); FILTER_F_3D(1); FILTER_F_3D(2); FILTER_F_3D(3); } } else if ((datatype == DTYPE_FLOAT) && (comps == 3)) { DECLARE_ROW_POINTERS(float, 3); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); FILTER_F_3D(1); FILTER_F_3D(2); } } else if ((datatype == DTYPE_FLOAT) && (comps == 2)) { DECLARE_ROW_POINTERS(float, 2); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); FILTER_F_3D(1); } } else if ((datatype == DTYPE_FLOAT) && (comps == 1)) { DECLARE_ROW_POINTERS(float, 1); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_F_3D(0); } } else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 4)) { DECLARE_ROW_POINTERS(half_float, 4); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_HF_3D(0); FILTER_HF_3D(1); FILTER_HF_3D(2); FILTER_HF_3D(3); } } else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 3)) { DECLARE_ROW_POINTERS(half_float, 4); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_HF_3D(0); FILTER_HF_3D(1); FILTER_HF_3D(2); } } else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 2)) { DECLARE_ROW_POINTERS(half_float, 4); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_HF_3D(0); FILTER_HF_3D(1); } } else if ((datatype == DTYPE_HALF_FLOAT) && (comps == 1)) { DECLARE_ROW_POINTERS(half_float, 4); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { FILTER_HF_3D(0); } } else if ((datatype == DTYPE_UINT) && (comps == 1)) { const uint *rowA = (const uint *) srcRowA; const uint *rowB = (const uint *) srcRowB; const uint *rowC = (const uint *) srcRowC; const uint *rowD = (const uint *) srcRowD; float *dst = (float *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k]) + ((uint64_t) rowB[j] + (uint64_t) rowB[k]) + ((uint64_t) rowC[j] + (uint64_t) rowC[k]) + ((uint64_t) rowD[j] + (uint64_t) rowD[k])); dst[i] = (float)((double) tmp * 0.125); } } else if ((datatype == DTYPE_USHORT_5_6_5) && (comps == 3)) { DECLARE_ROW_POINTERS0(ushort); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x1f; const int rowAr1 = rowA[k] & 0x1f; const int rowBr0 = rowB[j] & 0x1f; const int rowBr1 = rowB[k] & 0x1f; const int rowCr0 = rowC[j] & 0x1f; const int rowCr1 = rowC[k] & 0x1f; const int rowDr0 = rowD[j] & 0x1f; const int rowDr1 = rowD[k] & 0x1f; const int rowAg0 = (rowA[j] >> 5) & 0x3f; const int rowAg1 = (rowA[k] >> 5) & 0x3f; const int rowBg0 = (rowB[j] >> 5) & 0x3f; const int rowBg1 = (rowB[k] >> 5) & 0x3f; const int rowCg0 = (rowC[j] >> 5) & 0x3f; const int rowCg1 = (rowC[k] >> 5) & 0x3f; const int rowDg0 = (rowD[j] >> 5) & 0x3f; const int rowDg1 = (rowD[k] >> 5) & 0x3f; const int rowAb0 = (rowA[j] >> 11) & 0x1f; const int rowAb1 = (rowA[k] >> 11) & 0x1f; const int rowBb0 = (rowB[j] >> 11) & 0x1f; const int rowBb1 = (rowB[k] >> 11) & 0x1f; const int rowCb0 = (rowC[j] >> 11) & 0x1f; const int rowCb1 = (rowC[k] >> 11) & 0x1f; const int rowDb0 = (rowD[j] >> 11) & 0x1f; const int rowDb1 = (rowD[k] >> 11) & 0x1f; const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); dst[i] = (b << 11) | (g << 5) | r; } } else if ((datatype == DTYPE_USHORT_4_4_4_4) && (comps == 4)) { DECLARE_ROW_POINTERS0(ushort); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0xf; const int rowAr1 = rowA[k] & 0xf; const int rowBr0 = rowB[j] & 0xf; const int rowBr1 = rowB[k] & 0xf; const int rowCr0 = rowC[j] & 0xf; const int rowCr1 = rowC[k] & 0xf; const int rowDr0 = rowD[j] & 0xf; const int rowDr1 = rowD[k] & 0xf; const int rowAg0 = (rowA[j] >> 4) & 0xf; const int rowAg1 = (rowA[k] >> 4) & 0xf; const int rowBg0 = (rowB[j] >> 4) & 0xf; const int rowBg1 = (rowB[k] >> 4) & 0xf; const int rowCg0 = (rowC[j] >> 4) & 0xf; const int rowCg1 = (rowC[k] >> 4) & 0xf; const int rowDg0 = (rowD[j] >> 4) & 0xf; const int rowDg1 = (rowD[k] >> 4) & 0xf; const int rowAb0 = (rowA[j] >> 8) & 0xf; const int rowAb1 = (rowA[k] >> 8) & 0xf; const int rowBb0 = (rowB[j] >> 8) & 0xf; const int rowBb1 = (rowB[k] >> 8) & 0xf; const int rowCb0 = (rowC[j] >> 8) & 0xf; const int rowCb1 = (rowC[k] >> 8) & 0xf; const int rowDb0 = (rowD[j] >> 8) & 0xf; const int rowDb1 = (rowD[k] >> 8) & 0xf; const int rowAa0 = (rowA[j] >> 12) & 0xf; const int rowAa1 = (rowA[k] >> 12) & 0xf; const int rowBa0 = (rowB[j] >> 12) & 0xf; const int rowBa1 = (rowB[k] >> 12) & 0xf; const int rowCa0 = (rowC[j] >> 12) & 0xf; const int rowCa1 = (rowC[k] >> 12) & 0xf; const int rowDa0 = (rowD[j] >> 12) & 0xf; const int rowDa1 = (rowD[k] >> 12) & 0xf; const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, rowCa0, rowCa1, rowDa0, rowDa1); dst[i] = (a << 12) | (b << 8) | (g << 4) | r; } } else if ((datatype == DTYPE_USHORT_1_5_5_5_REV) && (comps == 4)) { DECLARE_ROW_POINTERS0(ushort); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x1f; const int rowAr1 = rowA[k] & 0x1f; const int rowBr0 = rowB[j] & 0x1f; const int rowBr1 = rowB[k] & 0x1f; const int rowCr0 = rowC[j] & 0x1f; const int rowCr1 = rowC[k] & 0x1f; const int rowDr0 = rowD[j] & 0x1f; const int rowDr1 = rowD[k] & 0x1f; const int rowAg0 = (rowA[j] >> 5) & 0x1f; const int rowAg1 = (rowA[k] >> 5) & 0x1f; const int rowBg0 = (rowB[j] >> 5) & 0x1f; const int rowBg1 = (rowB[k] >> 5) & 0x1f; const int rowCg0 = (rowC[j] >> 5) & 0x1f; const int rowCg1 = (rowC[k] >> 5) & 0x1f; const int rowDg0 = (rowD[j] >> 5) & 0x1f; const int rowDg1 = (rowD[k] >> 5) & 0x1f; const int rowAb0 = (rowA[j] >> 10) & 0x1f; const int rowAb1 = (rowA[k] >> 10) & 0x1f; const int rowBb0 = (rowB[j] >> 10) & 0x1f; const int rowBb1 = (rowB[k] >> 10) & 0x1f; const int rowCb0 = (rowC[j] >> 10) & 0x1f; const int rowCb1 = (rowC[k] >> 10) & 0x1f; const int rowDb0 = (rowD[j] >> 10) & 0x1f; const int rowDb1 = (rowD[k] >> 10) & 0x1f; const int rowAa0 = (rowA[j] >> 15) & 0x1; const int rowAa1 = (rowA[k] >> 15) & 0x1; const int rowBa0 = (rowB[j] >> 15) & 0x1; const int rowBa1 = (rowB[k] >> 15) & 0x1; const int rowCa0 = (rowC[j] >> 15) & 0x1; const int rowCa1 = (rowC[k] >> 15) & 0x1; const int rowDa0 = (rowD[j] >> 15) & 0x1; const int rowDa1 = (rowD[k] >> 15) & 0x1; const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); const int a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1, rowCa0, rowCa1, rowDa0, rowDa1); dst[i] = (a << 15) | (b << 10) | (g << 5) | r; } } else if ((datatype == DTYPE_UBYTE_3_3_2) && (comps == 3)) { DECLARE_ROW_POINTERS0(ushort); for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x3; const int rowAr1 = rowA[k] & 0x3; const int rowBr0 = rowB[j] & 0x3; const int rowBr1 = rowB[k] & 0x3; const int rowCr0 = rowC[j] & 0x3; const int rowCr1 = rowC[k] & 0x3; const int rowDr0 = rowD[j] & 0x3; const int rowDr1 = rowD[k] & 0x3; const int rowAg0 = (rowA[j] >> 2) & 0x7; const int rowAg1 = (rowA[k] >> 2) & 0x7; const int rowBg0 = (rowB[j] >> 2) & 0x7; const int rowBg1 = (rowB[k] >> 2) & 0x7; const int rowCg0 = (rowC[j] >> 2) & 0x7; const int rowCg1 = (rowC[k] >> 2) & 0x7; const int rowDg0 = (rowD[j] >> 2) & 0x7; const int rowDg1 = (rowD[k] >> 2) & 0x7; const int rowAb0 = (rowA[j] >> 5) & 0x7; const int rowAb1 = (rowA[k] >> 5) & 0x7; const int rowBb0 = (rowB[j] >> 5) & 0x7; const int rowBb1 = (rowB[k] >> 5) & 0x7; const int rowCb0 = (rowC[j] >> 5) & 0x7; const int rowCb1 = (rowC[k] >> 5) & 0x7; const int rowDb0 = (rowD[j] >> 5) & 0x7; const int rowDb1 = (rowD[k] >> 5) & 0x7; const int r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1, rowCr0, rowCr1, rowDr0, rowDr1); const int g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1, rowCg0, rowCg1, rowDg0, rowDg1); const int b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1, rowCb0, rowCb1, rowDb0, rowDb1); dst[i] = (b << 5) | (g << 2) | r; } } else { debug_printf("bad format in do_row_3D()"); } } static void format_to_type_comps(enum pipe_format pformat, enum dtype *datatype, uint *comps) { /* XXX I think this could be implemented in terms of the pf_*() functions */ switch (pformat) { case PIPE_FORMAT_B8G8R8A8_UNORM: case PIPE_FORMAT_B8G8R8X8_UNORM: case PIPE_FORMAT_A8R8G8B8_UNORM: case PIPE_FORMAT_X8R8G8B8_UNORM: case PIPE_FORMAT_A8B8G8R8_SRGB: case PIPE_FORMAT_X8B8G8R8_SRGB: case PIPE_FORMAT_B8G8R8A8_SRGB: case PIPE_FORMAT_B8G8R8X8_SRGB: case PIPE_FORMAT_A8R8G8B8_SRGB: case PIPE_FORMAT_X8R8G8B8_SRGB: case PIPE_FORMAT_R8G8B8_SRGB: *datatype = DTYPE_UBYTE; *comps = 4; return; case PIPE_FORMAT_B5G5R5X1_UNORM: case PIPE_FORMAT_B5G5R5A1_UNORM: *datatype = DTYPE_USHORT_1_5_5_5_REV; *comps = 4; return; case PIPE_FORMAT_B4G4R4A4_UNORM: *datatype = DTYPE_USHORT_4_4_4_4; *comps = 4; return; case PIPE_FORMAT_B5G6R5_UNORM: *datatype = DTYPE_USHORT_5_6_5; *comps = 3; return; case PIPE_FORMAT_L8_UNORM: case PIPE_FORMAT_L8_SRGB: case PIPE_FORMAT_A8_UNORM: case PIPE_FORMAT_I8_UNORM: *datatype = DTYPE_UBYTE; *comps = 1; return; case PIPE_FORMAT_L8A8_UNORM: case PIPE_FORMAT_L8A8_SRGB: *datatype = DTYPE_UBYTE; *comps = 2; return; default: assert(0); *datatype = DTYPE_UBYTE; *comps = 0; break; } } static void reduce_1d(enum pipe_format pformat, int srcWidth, const ubyte *srcPtr, int dstWidth, ubyte *dstPtr) { enum dtype datatype; uint comps; format_to_type_comps(pformat, &datatype, &comps); /* we just duplicate the input row, kind of hack, saves code */ do_row(datatype, comps, srcWidth, srcPtr, srcPtr, dstWidth, dstPtr); } /** * Strides are in bytes. If zero, it'll be computed as width * bpp. */ static void reduce_2d(enum pipe_format pformat, int srcWidth, int srcHeight, int srcRowStride, const ubyte *srcPtr, int dstWidth, int dstHeight, int dstRowStride, ubyte *dstPtr) { enum dtype datatype; uint comps; const int bpt = util_format_get_blocksize(pformat); const ubyte *srcA, *srcB; ubyte *dst; int row; format_to_type_comps(pformat, &datatype, &comps); if (!srcRowStride) srcRowStride = bpt * srcWidth; if (!dstRowStride) dstRowStride = bpt * dstWidth; /* Compute src and dst pointers */ srcA = srcPtr; if (srcHeight > 1) srcB = srcA + srcRowStride; else srcB = srcA; dst = dstPtr; for (row = 0; row < dstHeight; row++) { do_row(datatype, comps, srcWidth, srcA, srcB, dstWidth, dst); srcA += 2 * srcRowStride; srcB += 2 * srcRowStride; dst += dstRowStride; } } static void reduce_3d(enum pipe_format pformat, int srcWidth, int srcHeight, int srcDepth, int srcRowStride, int srcImageStride, const ubyte *srcPtr, int dstWidth, int dstHeight, int dstDepth, int dstRowStride, int dstImageStride, ubyte *dstPtr) { const int bpt = util_format_get_blocksize(pformat); int img, row; int srcImageOffset, srcRowOffset; enum dtype datatype; uint comps; format_to_type_comps(pformat, &datatype, &comps); /* XXX I think we should rather assert those strides */ if (!srcImageStride) srcImageStride = srcWidth * srcHeight * bpt; if (!dstImageStride) dstImageStride = dstWidth * dstHeight * bpt; if (!srcRowStride) srcRowStride = srcWidth * bpt; if (!dstRowStride) dstRowStride = dstWidth * bpt; /* Offset between adjacent src images to be averaged together */ srcImageOffset = (srcDepth == dstDepth) ? 0 : srcImageStride; /* Offset between adjacent src rows to be averaged together */ srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride; /* * Need to average together up to 8 src pixels for each dest pixel. * Break that down into 3 operations: * 1. take two rows from source image and average them together. * 2. take two rows from next source image and average them together. * 3. take the two averaged rows and average them for the final dst row. */ /* printf("mip3d %d x %d x %d -> %d x %d x %d\n", srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth); */ for (img = 0; img < dstDepth; img++) { /* first source image pointer */ const ubyte *imgSrcA = srcPtr + img * (srcImageStride + srcImageOffset); /* second source image pointer */ const ubyte *imgSrcB = imgSrcA + srcImageOffset; /* address of the dest image */ ubyte *imgDst = dstPtr + img * dstImageStride; /* setup the four source row pointers and the dest row pointer */ const ubyte *srcImgARowA = imgSrcA; const ubyte *srcImgARowB = imgSrcA + srcRowOffset; const ubyte *srcImgBRowA = imgSrcB; const ubyte *srcImgBRowB = imgSrcB + srcRowOffset; ubyte *dstImgRow = imgDst; for (row = 0; row < dstHeight; row++) { do_row_3D(datatype, comps, srcWidth, srcImgARowA, srcImgARowB, srcImgBRowA, srcImgBRowB, dstWidth, dstImgRow); /* advance to next rows */ srcImgARowA += srcRowStride + srcRowOffset; srcImgARowB += srcRowStride + srcRowOffset; srcImgBRowA += srcRowStride + srcRowOffset; srcImgBRowB += srcRowStride + srcRowOffset; dstImgRow += dstImageStride; } } } static void make_1d_mipmap(struct gen_mipmap_state *ctx, struct pipe_resource *pt, uint layer, uint baseLevel, uint lastLevel) { struct pipe_context *pipe = ctx->pipe; uint dstLevel; for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) { const uint srcLevel = dstLevel - 1; struct pipe_transfer *srcTrans, *dstTrans; void *srcMap, *dstMap; srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer, PIPE_TRANSFER_READ, 0, 0, u_minify(pt->width0, srcLevel), u_minify(pt->height0, srcLevel)); dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer, PIPE_TRANSFER_WRITE, 0, 0, u_minify(pt->width0, dstLevel), u_minify(pt->height0, dstLevel)); srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans); dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans); reduce_1d(pt->format, srcTrans->box.width, srcMap, dstTrans->box.width, dstMap); pipe->transfer_unmap(pipe, srcTrans); pipe->transfer_unmap(pipe, dstTrans); pipe->transfer_destroy(pipe, srcTrans); pipe->transfer_destroy(pipe, dstTrans); } } static void make_2d_mipmap(struct gen_mipmap_state *ctx, struct pipe_resource *pt, uint layer, uint baseLevel, uint lastLevel) { struct pipe_context *pipe = ctx->pipe; uint dstLevel; assert(util_format_get_blockwidth(pt->format) == 1); assert(util_format_get_blockheight(pt->format) == 1); for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) { const uint srcLevel = dstLevel - 1; struct pipe_transfer *srcTrans, *dstTrans; ubyte *srcMap, *dstMap; srcTrans = pipe_get_transfer(pipe, pt, srcLevel, layer, PIPE_TRANSFER_READ, 0, 0, u_minify(pt->width0, srcLevel), u_minify(pt->height0, srcLevel)); dstTrans = pipe_get_transfer(pipe, pt, dstLevel, layer, PIPE_TRANSFER_WRITE, 0, 0, u_minify(pt->width0, dstLevel), u_minify(pt->height0, dstLevel)); srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans); dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans); reduce_2d(pt->format, srcTrans->box.width, srcTrans->box.height, srcTrans->stride, srcMap, dstTrans->box.width, dstTrans->box.height, dstTrans->stride, dstMap); pipe->transfer_unmap(pipe, srcTrans); pipe->transfer_unmap(pipe, dstTrans); pipe->transfer_destroy(pipe, srcTrans); pipe->transfer_destroy(pipe, dstTrans); } } /* XXX looks a bit more like it could work now but need to test */ static void make_3d_mipmap(struct gen_mipmap_state *ctx, struct pipe_resource *pt, uint face, uint baseLevel, uint lastLevel) { struct pipe_context *pipe = ctx->pipe; uint dstLevel; struct pipe_box src_box, dst_box; assert(util_format_get_blockwidth(pt->format) == 1); assert(util_format_get_blockheight(pt->format) == 1); src_box.x = src_box.y = src_box.z = 0; dst_box.x = dst_box.y = dst_box.z = 0; for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) { const uint srcLevel = dstLevel - 1; struct pipe_transfer *srcTrans, *dstTrans; ubyte *srcMap, *dstMap; struct pipe_box src_box, dst_box; src_box.width = u_minify(pt->width0, srcLevel); src_box.height = u_minify(pt->height0, srcLevel); src_box.depth = u_minify(pt->depth0, srcLevel); dst_box.width = u_minify(pt->width0, dstLevel); dst_box.height = u_minify(pt->height0, dstLevel); dst_box.depth = u_minify(pt->depth0, dstLevel); srcTrans = pipe->get_transfer(pipe, pt, srcLevel, PIPE_TRANSFER_READ, &src_box); dstTrans = pipe->get_transfer(pipe, pt, dstLevel, PIPE_TRANSFER_WRITE, &dst_box); srcMap = (ubyte *) pipe->transfer_map(pipe, srcTrans); dstMap = (ubyte *) pipe->transfer_map(pipe, dstTrans); reduce_3d(pt->format, srcTrans->box.width, srcTrans->box.height, srcTrans->box.depth, srcTrans->stride, srcTrans->layer_stride, srcMap, dstTrans->box.width, dstTrans->box.height, dstTrans->box.depth, dstTrans->stride, dstTrans->layer_stride, dstMap); pipe->transfer_unmap(pipe, srcTrans); pipe->transfer_unmap(pipe, dstTrans); pipe->transfer_destroy(pipe, srcTrans); pipe->transfer_destroy(pipe, dstTrans); } } static void fallback_gen_mipmap(struct gen_mipmap_state *ctx, struct pipe_resource *pt, uint layer, uint baseLevel, uint lastLevel) { switch (pt->target) { case PIPE_TEXTURE_1D: make_1d_mipmap(ctx, pt, layer, baseLevel, lastLevel); break; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_RECT: case PIPE_TEXTURE_CUBE: make_2d_mipmap(ctx, pt, layer, baseLevel, lastLevel); break; case PIPE_TEXTURE_3D: make_3d_mipmap(ctx, pt, layer, baseLevel, lastLevel); break; default: assert(0); } } /** * Create a mipmap generation context. * The idea is to create one of these and re-use it each time we need to * generate a mipmap. */ struct gen_mipmap_state * util_create_gen_mipmap(struct pipe_context *pipe, struct cso_context *cso) { struct gen_mipmap_state *ctx; uint i; ctx = CALLOC_STRUCT(gen_mipmap_state); if (!ctx) return NULL; ctx->pipe = pipe; ctx->cso = cso; /* disabled blending/masking */ memset(&ctx->blend, 0, sizeof(ctx->blend)); ctx->blend.rt[0].colormask = PIPE_MASK_RGBA; /* no-op depth/stencil/alpha */ memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil)); /* rasterizer */ memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer)); ctx->rasterizer.cull_face = PIPE_FACE_NONE; ctx->rasterizer.gl_rasterization_rules = 1; /* sampler state */ memset(&ctx->sampler, 0, sizeof(ctx->sampler)); ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE; ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE; ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE; ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST; ctx->sampler.normalized_coords = 1; /* vertex elements state */ memset(&ctx->velem[0], 0, sizeof(ctx->velem[0]) * 2); for (i = 0; i < 2; i++) { ctx->velem[i].src_offset = i * 4 * sizeof(float); ctx->velem[i].instance_divisor = 0; ctx->velem[i].vertex_buffer_index = 0; ctx->velem[i].src_format = PIPE_FORMAT_R32G32B32A32_FLOAT; } /* vertex data that doesn't change */ for (i = 0; i < 4; i++) { ctx->vertices[i][0][2] = 0.0f; /* z */ ctx->vertices[i][0][3] = 1.0f; /* w */ ctx->vertices[i][1][3] = 1.0f; /* q */ } /* Note: the actual vertex buffer is allocated as needed below */ return ctx; } /** * Helper function to set the fragment shaders. */ static INLINE void set_fragment_shader(struct gen_mipmap_state *ctx, uint type) { if (!ctx->fs[type]) ctx->fs[type] = util_make_fragment_tex_shader(ctx->pipe, type, TGSI_INTERPOLATE_LINEAR); cso_set_fragment_shader_handle(ctx->cso, ctx->fs[type]); } /** * Helper function to set the vertex shader. */ static INLINE void set_vertex_shader(struct gen_mipmap_state *ctx) { /* vertex shader - still required to provide the linkage between * fragment shader input semantics and vertex_element/buffers. */ if (!ctx->vs) { const uint semantic_names[] = { TGSI_SEMANTIC_POSITION, TGSI_SEMANTIC_GENERIC }; const uint semantic_indexes[] = { 0, 0 }; ctx->vs = util_make_vertex_passthrough_shader(ctx->pipe, 2, semantic_names, semantic_indexes); } cso_set_vertex_shader_handle(ctx->cso, ctx->vs); } /** * Get next "slot" of vertex space in the vertex buffer. * We're allocating one large vertex buffer and using it piece by piece. */ static unsigned get_next_slot(struct gen_mipmap_state *ctx) { const unsigned max_slots = 4096 / sizeof ctx->vertices; if (ctx->vbuf_slot >= max_slots) util_gen_mipmap_flush( ctx ); if (!ctx->vbuf) { ctx->vbuf = pipe_buffer_create(ctx->pipe->screen, PIPE_BIND_VERTEX_BUFFER, PIPE_USAGE_STREAM, max_slots * sizeof ctx->vertices); } return ctx->vbuf_slot++ * sizeof ctx->vertices; } static unsigned set_vertex_data(struct gen_mipmap_state *ctx, enum pipe_texture_target tex_target, uint layer, float r) { unsigned offset; /* vert[0].position */ ctx->vertices[0][0][0] = -1.0f; /*x*/ ctx->vertices[0][0][1] = -1.0f; /*y*/ /* vert[1].position */ ctx->vertices[1][0][0] = 1.0f; ctx->vertices[1][0][1] = -1.0f; /* vert[2].position */ ctx->vertices[2][0][0] = 1.0f; ctx->vertices[2][0][1] = 1.0f; /* vert[3].position */ ctx->vertices[3][0][0] = -1.0f; ctx->vertices[3][0][1] = 1.0f; /* Setup vertex texcoords. This is a little tricky for cube maps. */ if (tex_target == PIPE_TEXTURE_CUBE) { static const float st[4][2] = { {0.0f, 0.0f}, {1.0f, 0.0f}, {1.0f, 1.0f}, {0.0f, 1.0f} }; util_map_texcoords2d_onto_cubemap(layer, &st[0][0], 2, &ctx->vertices[0][1][0], 8); } else if (tex_target == PIPE_TEXTURE_1D_ARRAY) { /* 1D texture array */ ctx->vertices[0][1][0] = 0.0f; /*s*/ ctx->vertices[0][1][1] = r; /*t*/ ctx->vertices[0][1][2] = 0.0f; /*r*/ ctx->vertices[1][1][0] = 1.0f; ctx->vertices[1][1][1] = r; ctx->vertices[1][1][2] = 0.0f; ctx->vertices[2][1][0] = 1.0f; ctx->vertices[2][1][1] = r; ctx->vertices[2][1][2] = 0.0f; ctx->vertices[3][1][0] = 0.0f; ctx->vertices[3][1][1] = r; ctx->vertices[3][1][2] = 0.0f; } else { /* 1D/2D/3D/2D array */ ctx->vertices[0][1][0] = 0.0f; /*s*/ ctx->vertices[0][1][1] = 0.0f; /*t*/ ctx->vertices[0][1][2] = r; /*r*/ ctx->vertices[1][1][0] = 1.0f; ctx->vertices[1][1][1] = 0.0f; ctx->vertices[1][1][2] = r; ctx->vertices[2][1][0] = 1.0f; ctx->vertices[2][1][1] = 1.0f; ctx->vertices[2][1][2] = r; ctx->vertices[3][1][0] = 0.0f; ctx->vertices[3][1][1] = 1.0f; ctx->vertices[3][1][2] = r; } offset = get_next_slot( ctx ); pipe_buffer_write_nooverlap(ctx->pipe, ctx->vbuf, offset, sizeof(ctx->vertices), ctx->vertices); return offset; } /** * Destroy a mipmap generation context */ void util_destroy_gen_mipmap(struct gen_mipmap_state *ctx) { struct pipe_context *pipe = ctx->pipe; unsigned i; for (i = 0; i < Elements(ctx->fs); i++) if (ctx->fs[i]) pipe->delete_fs_state(pipe, ctx->fs[i]); if (ctx->vs) pipe->delete_vs_state(pipe, ctx->vs); pipe_resource_reference(&ctx->vbuf, NULL); FREE(ctx); } /* Release vertex buffer at end of frame to avoid synchronous * rendering. */ void util_gen_mipmap_flush( struct gen_mipmap_state *ctx ) { pipe_resource_reference(&ctx->vbuf, NULL); ctx->vbuf_slot = 0; } /** * Generate mipmap images. It's assumed all needed texture memory is * already allocated. * * \param psv the sampler view to the texture to generate mipmap levels for * \param face which cube face to generate mipmaps for (0 for non-cube maps) * \param baseLevel the first mipmap level to use as a src * \param lastLevel the last mipmap level to generate * \param filter the minification filter used to generate mipmap levels with * \param filter one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST */ void util_gen_mipmap(struct gen_mipmap_state *ctx, struct pipe_sampler_view *psv, uint face, uint baseLevel, uint lastLevel, uint filter) { struct pipe_context *pipe = ctx->pipe; struct pipe_screen *screen = pipe->screen; struct pipe_framebuffer_state fb; struct pipe_resource *pt = psv->texture; uint dstLevel; uint offset; uint type; /* The texture object should have room for the levels which we're * about to generate. */ assert(lastLevel <= pt->last_level); /* If this fails, why are we here? */ assert(lastLevel > baseLevel); assert(filter == PIPE_TEX_FILTER_LINEAR || filter == PIPE_TEX_FILTER_NEAREST); switch (pt->target) { case PIPE_TEXTURE_1D: type = TGSI_TEXTURE_1D; break; case PIPE_TEXTURE_2D: type = TGSI_TEXTURE_2D; break; case PIPE_TEXTURE_3D: type = TGSI_TEXTURE_3D; break; case PIPE_TEXTURE_CUBE: type = TGSI_TEXTURE_CUBE; break; case PIPE_TEXTURE_1D_ARRAY: type = TGSI_TEXTURE_1D_ARRAY; break; case PIPE_TEXTURE_2D_ARRAY: type = TGSI_TEXTURE_2D_ARRAY; break; default: assert(0); type = TGSI_TEXTURE_2D; } /* check if we can render in the texture's format */ if (!screen->is_format_supported(screen, psv->format, pt->target, pt->nr_samples, PIPE_BIND_RENDER_TARGET)) { fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel); return; } /* save state (restored below) */ cso_save_blend(ctx->cso); cso_save_depth_stencil_alpha(ctx->cso); cso_save_rasterizer(ctx->cso); cso_save_samplers(ctx->cso); cso_save_fragment_sampler_views(ctx->cso); cso_save_framebuffer(ctx->cso); cso_save_fragment_shader(ctx->cso); cso_save_vertex_shader(ctx->cso); cso_save_viewport(ctx->cso); cso_save_clip(ctx->cso); cso_save_vertex_elements(ctx->cso); /* bind our state */ cso_set_blend(ctx->cso, &ctx->blend); cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil); cso_set_rasterizer(ctx->cso, &ctx->rasterizer); cso_set_clip(ctx->cso, &ctx->clip); cso_set_vertex_elements(ctx->cso, 2, ctx->velem); set_fragment_shader(ctx, type); set_vertex_shader(ctx); /* init framebuffer state */ memset(&fb, 0, sizeof(fb)); fb.nr_cbufs = 1; /* set min/mag to same filter for faster sw speed */ ctx->sampler.mag_img_filter = filter; ctx->sampler.min_img_filter = filter; /* * XXX for small mipmap levels, it may be faster to use the software * fallback path... */ for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) { const uint srcLevel = dstLevel - 1; struct pipe_viewport_state vp; unsigned nr_layers, layer, i; float rcoord = 0.0f; if (pt->target == PIPE_TEXTURE_3D) nr_layers = u_minify(pt->depth0, dstLevel); else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY) nr_layers = pt->array_size; else nr_layers = 1; for (i = 0; i < nr_layers; i++) { struct pipe_surface *surf, surf_templ; if (pt->target == PIPE_TEXTURE_3D) { /* in theory with geom shaders and driver with full layer support could do that in one go. */ layer = i; /* XXX hmm really? */ rcoord = (float)layer / (float)nr_layers + 1.0f / (float)(nr_layers * 2); } else if (pt->target == PIPE_TEXTURE_2D_ARRAY || pt->target == PIPE_TEXTURE_1D_ARRAY) { layer = i; rcoord = (float)layer; } else layer = face; memset(&surf_templ, 0, sizeof(surf_templ)); u_surface_default_template(&surf_templ, pt, PIPE_BIND_RENDER_TARGET); surf_templ.u.tex.level = dstLevel; surf_templ.u.tex.first_layer = layer; surf_templ.u.tex.last_layer = layer; surf = pipe->create_surface(pipe, pt, &surf_templ); /* * Setup framebuffer / dest surface */ fb.cbufs[0] = surf; fb.width = u_minify(pt->width0, dstLevel); fb.height = u_minify(pt->height0, dstLevel); cso_set_framebuffer(ctx->cso, &fb); /* viewport */ vp.scale[0] = 0.5f * fb.width; vp.scale[1] = 0.5f * fb.height; vp.scale[2] = 1.0f; vp.scale[3] = 1.0f; vp.translate[0] = 0.5f * fb.width; vp.translate[1] = 0.5f * fb.height; vp.translate[2] = 0.0f; vp.translate[3] = 0.0f; cso_set_viewport(ctx->cso, &vp); /* * Setup sampler state * Note: we should only have to set the min/max LOD clamps to ensure * we grab texels from the right mipmap level. But some hardware * has trouble with min clamping so we also set the lod_bias to * try to work around that. */ ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel; ctx->sampler.lod_bias = (float) srcLevel; cso_single_sampler(ctx->cso, 0, &ctx->sampler); cso_single_sampler_done(ctx->cso); cso_set_fragment_sampler_views(ctx->cso, 1, &psv); /* quad coords in clip coords */ offset = set_vertex_data(ctx, pt->target, face, rcoord); util_draw_vertex_buffer(ctx->pipe, ctx->cso, ctx->vbuf, offset, PIPE_PRIM_TRIANGLE_FAN, 4, /* verts */ 2); /* attribs/vert */ /* need to signal that the texture has changed _after_ rendering to it */ pipe_surface_reference( &surf, NULL ); } } /* restore state we changed */ cso_restore_blend(ctx->cso); cso_restore_depth_stencil_alpha(ctx->cso); cso_restore_rasterizer(ctx->cso); cso_restore_samplers(ctx->cso); cso_restore_fragment_sampler_views(ctx->cso); cso_restore_framebuffer(ctx->cso); cso_restore_fragment_shader(ctx->cso); cso_restore_vertex_shader(ctx->cso); cso_restore_viewport(ctx->cso); cso_restore_clip(ctx->cso); cso_restore_vertex_elements(ctx->cso); }