/************************************************************************** * * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Mipmap generation utility * * @author Brian Paul */ #include "pipe/p_context.h" #include "pipe/p_debug.h" #include "pipe/p_defines.h" #include "pipe/p_inlines.h" #include "pipe/p_winsys.h" #include "pipe/p_shader_tokens.h" #include "util/u_memory.h" #include "util/u_draw_quad.h" #include "util/u_gen_mipmap.h" #include "util/u_simple_shaders.h" #include "tgsi/tgsi_build.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_parse.h" #include "cso_cache/cso_context.h" struct gen_mipmap_state { struct pipe_context *pipe; struct cso_context *cso; struct pipe_blend_state blend; struct pipe_depth_stencil_alpha_state depthstencil; struct pipe_rasterizer_state rasterizer; struct pipe_sampler_state sampler; struct pipe_viewport_state viewport; struct pipe_shader_state vert_shader; struct pipe_shader_state frag_shader; void *vs; void *fs; struct pipe_buffer *vbuf; /**< quad vertices */ float vertices[4][2][4]; /**< vertex/texcoords for quad */ }; enum dtype { UBYTE, UBYTE_3_3_2, USHORT, USHORT_4_4_4_4, USHORT_5_6_5, USHORT_1_5_5_5_REV, UINT, FLOAT, HALF_FLOAT }; typedef ushort half_float; #if 0 extern half_float float_to_half(float f); extern float half_to_float(half_float h); #endif /** * Average together two rows of a source image to produce a single new * row in the dest image. It's legal for the two source rows to point * to the same data. The source width must be equal to either the * dest width or two times the dest width. * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc. * \param comps number of components per pixel (1..4) */ static void do_row(enum dtype datatype, uint comps, int srcWidth, const void *srcRowA, const void *srcRowB, int dstWidth, void *dstRow) { const uint k0 = (srcWidth == dstWidth) ? 0 : 1; const uint colStride = (srcWidth == dstWidth) ? 1 : 2; assert(comps >= 1); assert(comps <= 4); /* This assertion is no longer valid with non-power-of-2 textures assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth); */ if (datatype == UBYTE && comps == 4) { uint i, j, k; const ubyte(*rowA)[4] = (const ubyte(*)[4]) srcRowA; const ubyte(*rowB)[4] = (const ubyte(*)[4]) srcRowB; ubyte(*dst)[4] = (ubyte(*)[4]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == UBYTE && comps == 3) { uint i, j, k; const ubyte(*rowA)[3] = (const ubyte(*)[3]) srcRowA; const ubyte(*rowB)[3] = (const ubyte(*)[3]) srcRowB; ubyte(*dst)[3] = (ubyte(*)[3]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == UBYTE && comps == 2) { uint i, j, k; const ubyte(*rowA)[2] = (const ubyte(*)[2]) srcRowA; const ubyte(*rowB)[2] = (const ubyte(*)[2]) srcRowB; ubyte(*dst)[2] = (ubyte(*)[2]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2; } } else if (datatype == UBYTE && comps == 1) { uint i, j, k; const ubyte *rowA = (const ubyte *) srcRowA; const ubyte *rowB = (const ubyte *) srcRowB; ubyte *dst = (ubyte *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2; } } else if (datatype == USHORT && comps == 4) { uint i, j, k; const ushort(*rowA)[4] = (const ushort(*)[4]) srcRowA; const ushort(*rowB)[4] = (const ushort(*)[4]) srcRowB; ushort(*dst)[4] = (ushort(*)[4]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4; } } else if (datatype == USHORT && comps == 3) { uint i, j, k; const ushort(*rowA)[3] = (const ushort(*)[3]) srcRowA; const ushort(*rowB)[3] = (const ushort(*)[3]) srcRowB; ushort(*dst)[3] = (ushort(*)[3]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4; } } else if (datatype == USHORT && comps == 2) { uint i, j, k; const ushort(*rowA)[2] = (const ushort(*)[2]) srcRowA; const ushort(*rowB)[2] = (const ushort(*)[2]) srcRowB; ushort(*dst)[2] = (ushort(*)[2]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4; } } else if (datatype == USHORT && comps == 1) { uint i, j, k; const ushort *rowA = (const ushort *) srcRowA; const ushort *rowB = (const ushort *) srcRowB; ushort *dst = (ushort *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4; } } else if (datatype == FLOAT && comps == 4) { uint i, j, k; const float(*rowA)[4] = (const float(*)[4]) srcRowA; const float(*rowB)[4] = (const float(*)[4]) srcRowB; float(*dst)[4] = (float(*)[4]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) * 0.25F; } } else if (datatype == FLOAT && comps == 3) { uint i, j, k; const float(*rowA)[3] = (const float(*)[3]) srcRowA; const float(*rowB)[3] = (const float(*)[3]) srcRowB; float(*dst)[3] = (float(*)[3]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) * 0.25F; } } else if (datatype == FLOAT && comps == 2) { uint i, j, k; const float(*rowA)[2] = (const float(*)[2]) srcRowA; const float(*rowB)[2] = (const float(*)[2]) srcRowB; float(*dst)[2] = (float(*)[2]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) * 0.25F; dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) * 0.25F; } } else if (datatype == FLOAT && comps == 1) { uint i, j, k; const float *rowA = (const float *) srcRowA; const float *rowB = (const float *) srcRowB; float *dst = (float *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F; } } #if 0 else if (datatype == HALF_FLOAT && comps == 4) { uint i, j, k, comp; const half_float(*rowA)[4] = (const half_float(*)[4]) srcRowA; const half_float(*rowB)[4] = (const half_float(*)[4]) srcRowB; half_float(*dst)[4] = (half_float(*)[4]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 4; comp++) { float aj, ak, bj, bk; aj = half_to_float(rowA[j][comp]); ak = half_to_float(rowA[k][comp]); bj = half_to_float(rowB[j][comp]); bk = half_to_float(rowB[k][comp]); dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == HALF_FLOAT && comps == 3) { uint i, j, k, comp; const half_float(*rowA)[3] = (const half_float(*)[3]) srcRowA; const half_float(*rowB)[3] = (const half_float(*)[3]) srcRowB; half_float(*dst)[3] = (half_float(*)[3]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 3; comp++) { float aj, ak, bj, bk; aj = half_to_float(rowA[j][comp]); ak = half_to_float(rowA[k][comp]); bj = half_to_float(rowB[j][comp]); bk = half_to_float(rowB[k][comp]); dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == HALF_FLOAT && comps == 2) { uint i, j, k, comp; const half_float(*rowA)[2] = (const half_float(*)[2]) srcRowA; const half_float(*rowB)[2] = (const half_float(*)[2]) srcRowB; half_float(*dst)[2] = (half_float(*)[2]) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { for (comp = 0; comp < 2; comp++) { float aj, ak, bj, bk; aj = half_to_float(rowA[j][comp]); ak = half_to_float(rowA[k][comp]); bj = half_to_float(rowB[j][comp]); bk = half_to_float(rowB[k][comp]); dst[i][comp] = float_to_half((aj + ak + bj + bk) * 0.25F); } } } else if (datatype == HALF_FLOAT && comps == 1) { uint i, j, k; const half_float *rowA = (const half_float *) srcRowA; const half_float *rowB = (const half_float *) srcRowB; half_float *dst = (half_float *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { float aj, ak, bj, bk; aj = half_to_float(rowA[j]); ak = half_to_float(rowA[k]); bj = half_to_float(rowB[j]); bk = half_to_float(rowB[k]); dst[i] = float_to_half((aj + ak + bj + bk) * 0.25F); } } #endif else if (datatype == UINT && comps == 1) { uint i, j, k; const uint *rowA = (const uint *) srcRowA; const uint *rowB = (const uint *) srcRowB; uint *dst = (uint *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4; } } else if (datatype == USHORT_5_6_5 && comps == 3) { uint i, j, k; const ushort *rowA = (const ushort *) srcRowA; const ushort *rowB = (const ushort *) srcRowB; ushort *dst = (ushort *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x1f; const int rowAr1 = rowA[k] & 0x1f; const int rowBr0 = rowB[j] & 0x1f; const int rowBr1 = rowB[k] & 0x1f; const int rowAg0 = (rowA[j] >> 5) & 0x3f; const int rowAg1 = (rowA[k] >> 5) & 0x3f; const int rowBg0 = (rowB[j] >> 5) & 0x3f; const int rowBg1 = (rowB[k] >> 5) & 0x3f; const int rowAb0 = (rowA[j] >> 11) & 0x1f; const int rowAb1 = (rowA[k] >> 11) & 0x1f; const int rowBb0 = (rowB[j] >> 11) & 0x1f; const int rowBb1 = (rowB[k] >> 11) & 0x1f; const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 11) | (green << 5) | red; } } else if (datatype == USHORT_4_4_4_4 && comps == 4) { uint i, j, k; const ushort *rowA = (const ushort *) srcRowA; const ushort *rowB = (const ushort *) srcRowB; ushort *dst = (ushort *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0xf; const int rowAr1 = rowA[k] & 0xf; const int rowBr0 = rowB[j] & 0xf; const int rowBr1 = rowB[k] & 0xf; const int rowAg0 = (rowA[j] >> 4) & 0xf; const int rowAg1 = (rowA[k] >> 4) & 0xf; const int rowBg0 = (rowB[j] >> 4) & 0xf; const int rowBg1 = (rowB[k] >> 4) & 0xf; const int rowAb0 = (rowA[j] >> 8) & 0xf; const int rowAb1 = (rowA[k] >> 8) & 0xf; const int rowBb0 = (rowB[j] >> 8) & 0xf; const int rowBb1 = (rowB[k] >> 8) & 0xf; const int rowAa0 = (rowA[j] >> 12) & 0xf; const int rowAa1 = (rowA[k] >> 12) & 0xf; const int rowBa0 = (rowB[j] >> 12) & 0xf; const int rowBa1 = (rowB[k] >> 12) & 0xf; const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red; } } else if (datatype == USHORT_1_5_5_5_REV && comps == 4) { uint i, j, k; const ushort *rowA = (const ushort *) srcRowA; const ushort *rowB = (const ushort *) srcRowB; ushort *dst = (ushort *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x1f; const int rowAr1 = rowA[k] & 0x1f; const int rowBr0 = rowB[j] & 0x1f; const int rowBr1 = rowB[k] & 0xf; const int rowAg0 = (rowA[j] >> 5) & 0x1f; const int rowAg1 = (rowA[k] >> 5) & 0x1f; const int rowBg0 = (rowB[j] >> 5) & 0x1f; const int rowBg1 = (rowB[k] >> 5) & 0x1f; const int rowAb0 = (rowA[j] >> 10) & 0x1f; const int rowAb1 = (rowA[k] >> 10) & 0x1f; const int rowBb0 = (rowB[j] >> 10) & 0x1f; const int rowBb1 = (rowB[k] >> 10) & 0x1f; const int rowAa0 = (rowA[j] >> 15) & 0x1; const int rowAa1 = (rowA[k] >> 15) & 0x1; const int rowBa0 = (rowB[j] >> 15) & 0x1; const int rowBa1 = (rowB[k] >> 15) & 0x1; const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; const int alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2; dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red; } } else if (datatype == UBYTE_3_3_2 && comps == 3) { uint i, j, k; const ubyte *rowA = (const ubyte *) srcRowA; const ubyte *rowB = (const ubyte *) srcRowB; ubyte *dst = (ubyte *) dstRow; for (i = j = 0, k = k0; i < (uint) dstWidth; i++, j += colStride, k += colStride) { const int rowAr0 = rowA[j] & 0x3; const int rowAr1 = rowA[k] & 0x3; const int rowBr0 = rowB[j] & 0x3; const int rowBr1 = rowB[k] & 0x3; const int rowAg0 = (rowA[j] >> 2) & 0x7; const int rowAg1 = (rowA[k] >> 2) & 0x7; const int rowBg0 = (rowB[j] >> 2) & 0x7; const int rowBg1 = (rowB[k] >> 2) & 0x7; const int rowAb0 = (rowA[j] >> 5) & 0x7; const int rowAb1 = (rowA[k] >> 5) & 0x7; const int rowBb0 = (rowB[j] >> 5) & 0x7; const int rowBb1 = (rowB[k] >> 5) & 0x7; const int red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2; const int green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2; const int blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2; dst[i] = (blue << 5) | (green << 2) | red; } } else { debug_printf("bad format in do_row()"); } } static void format_to_type_comps(enum pipe_format pformat, enum dtype *datatype, uint *comps) { switch (pformat) { case PIPE_FORMAT_A8R8G8B8_UNORM: case PIPE_FORMAT_X8R8G8B8_UNORM: case PIPE_FORMAT_B8G8R8A8_UNORM: case PIPE_FORMAT_B8G8R8X8_UNORM: *datatype = UBYTE; *comps = 4; return; case PIPE_FORMAT_A1R5G5B5_UNORM: *datatype = USHORT_1_5_5_5_REV; *comps = 4; return; case PIPE_FORMAT_A4R4G4B4_UNORM: *datatype = USHORT_4_4_4_4; *comps = 4; return; case PIPE_FORMAT_R5G6B5_UNORM: *datatype = USHORT_5_6_5; *comps = 3; return; case PIPE_FORMAT_L8_UNORM: case PIPE_FORMAT_A8_UNORM: case PIPE_FORMAT_I8_UNORM: *datatype = UBYTE; *comps = 1; return; case PIPE_FORMAT_A8L8_UNORM: *datatype = UBYTE; *comps = 2; return; default: assert(0); *datatype = UBYTE; *comps = 0; break; } } static void reduce_1d(enum pipe_format pformat, int srcWidth, const ubyte *srcPtr, int dstWidth, ubyte *dstPtr) { enum dtype datatype; uint comps; format_to_type_comps(pformat, &datatype, &comps); /* we just duplicate the input row, kind of hack, saves code */ do_row(datatype, comps, srcWidth, srcPtr, srcPtr, dstWidth, dstPtr); } /** * Strides are in bytes. If zero, it'll be computed as width * bpp. */ static void reduce_2d(enum pipe_format pformat, int srcWidth, int srcHeight, int srcRowStride, const ubyte *srcPtr, int dstWidth, int dstHeight, int dstRowStride, ubyte *dstPtr) { enum dtype datatype; uint comps; const int bpt = pf_get_size(pformat); const ubyte *srcA, *srcB; ubyte *dst; int row; format_to_type_comps(pformat, &datatype, &comps); if (!srcRowStride) srcRowStride = bpt * srcWidth; if (!dstRowStride) dstRowStride = bpt * dstWidth; /* Compute src and dst pointers */ srcA = srcPtr; if (srcHeight > 1) srcB = srcA + srcRowStride; else srcB = srcA; dst = dstPtr; for (row = 0; row < dstHeight; row++) { do_row(datatype, comps, srcWidth, srcA, srcB, dstWidth, dst); srcA += 2 * srcRowStride; srcB += 2 * srcRowStride; dst += dstRowStride; } } static void make_1d_mipmap(struct gen_mipmap_state *ctx, struct pipe_texture *pt, uint face, uint baseLevel, uint lastLevel) { struct pipe_context *pipe = ctx->pipe; struct pipe_screen *screen = pipe->screen; const uint zslice = 0; uint dstLevel; for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) { const uint srcLevel = dstLevel - 1; struct pipe_surface *srcSurf, *dstSurf; void *srcMap, *dstMap; srcSurf = screen->get_tex_surface(screen, pt, face, srcLevel, zslice, PIPE_BUFFER_USAGE_CPU_READ); dstSurf = screen->get_tex_surface(screen, pt, face, dstLevel, zslice, PIPE_BUFFER_USAGE_CPU_WRITE); srcMap = ((ubyte *) pipe_buffer_map(screen, srcSurf->buffer, PIPE_BUFFER_USAGE_CPU_READ) + srcSurf->offset); dstMap = ((ubyte *) pipe_buffer_map(screen, dstSurf->buffer, PIPE_BUFFER_USAGE_CPU_WRITE) + dstSurf->offset); reduce_1d(pt->format, srcSurf->width, srcMap, dstSurf->width, dstMap); pipe_buffer_unmap(screen, srcSurf->buffer); pipe_buffer_unmap(screen, dstSurf->buffer); pipe_surface_reference(&srcSurf, NULL); pipe_surface_reference(&dstSurf, NULL); } } static void make_2d_mipmap(struct gen_mipmap_state *ctx, struct pipe_texture *pt, uint face, uint baseLevel, uint lastLevel) { struct pipe_context *pipe = ctx->pipe; struct pipe_screen *screen = pipe->screen; const uint zslice = 0; uint dstLevel; assert(pt->block.width == 1); assert(pt->block.height == 1); for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) { const uint srcLevel = dstLevel - 1; struct pipe_surface *srcSurf, *dstSurf; ubyte *srcMap, *dstMap; srcSurf = screen->get_tex_surface(screen, pt, face, srcLevel, zslice, PIPE_BUFFER_USAGE_CPU_READ); dstSurf = screen->get_tex_surface(screen, pt, face, dstLevel, zslice, PIPE_BUFFER_USAGE_CPU_WRITE); srcMap = ((ubyte *) pipe_buffer_map(screen, srcSurf->buffer, PIPE_BUFFER_USAGE_CPU_READ) + srcSurf->offset); dstMap = ((ubyte *) pipe_buffer_map(screen, dstSurf->buffer, PIPE_BUFFER_USAGE_CPU_WRITE) + dstSurf->offset); reduce_2d(pt->format, srcSurf->width, srcSurf->height, srcSurf->stride, srcMap, dstSurf->width, dstSurf->height, dstSurf->stride, dstMap); pipe_buffer_unmap(screen, srcSurf->buffer); pipe_buffer_unmap(screen, dstSurf->buffer); pipe_surface_reference(&srcSurf, NULL); pipe_surface_reference(&dstSurf, NULL); } } static void make_3d_mipmap(struct gen_mipmap_state *ctx, struct pipe_texture *pt, uint face, uint baseLevel, uint lastLevel) { } static void fallback_gen_mipmap(struct gen_mipmap_state *ctx, struct pipe_texture *pt, uint face, uint baseLevel, uint lastLevel) { switch (pt->target) { case PIPE_TEXTURE_1D: make_1d_mipmap(ctx, pt, face, baseLevel, lastLevel); break; case PIPE_TEXTURE_2D: case PIPE_TEXTURE_CUBE: make_2d_mipmap(ctx, pt, face, baseLevel, lastLevel); break; case PIPE_TEXTURE_3D: make_3d_mipmap(ctx, pt, face, baseLevel, lastLevel); break; default: assert(0); } } /** * Create a mipmap generation context. * The idea is to create one of these and re-use it each time we need to * generate a mipmap. */ struct gen_mipmap_state * util_create_gen_mipmap(struct pipe_context *pipe, struct cso_context *cso) { struct gen_mipmap_state *ctx; uint i; ctx = CALLOC_STRUCT(gen_mipmap_state); if (!ctx) return NULL; ctx->pipe = pipe; ctx->cso = cso; /* disabled blending/masking */ memset(&ctx->blend, 0, sizeof(ctx->blend)); ctx->blend.rgb_src_factor = PIPE_BLENDFACTOR_ONE; ctx->blend.alpha_src_factor = PIPE_BLENDFACTOR_ONE; ctx->blend.rgb_dst_factor = PIPE_BLENDFACTOR_ZERO; ctx->blend.alpha_dst_factor = PIPE_BLENDFACTOR_ZERO; ctx->blend.colormask = PIPE_MASK_RGBA; /* no-op depth/stencil/alpha */ memset(&ctx->depthstencil, 0, sizeof(ctx->depthstencil)); /* rasterizer */ memset(&ctx->rasterizer, 0, sizeof(ctx->rasterizer)); ctx->rasterizer.front_winding = PIPE_WINDING_CW; ctx->rasterizer.cull_mode = PIPE_WINDING_NONE; ctx->rasterizer.bypass_clipping = 1; /*ctx->rasterizer.bypass_vs = 1;*/ ctx->rasterizer.gl_rasterization_rules = 1; /* sampler state */ memset(&ctx->sampler, 0, sizeof(ctx->sampler)); ctx->sampler.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE; ctx->sampler.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE; ctx->sampler.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE; ctx->sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NEAREST; ctx->sampler.normalized_coords = 1; /* viewport state (identity, verts are in wincoords) */ ctx->viewport.scale[0] = 1.0; ctx->viewport.scale[1] = 1.0; ctx->viewport.scale[2] = 1.0; ctx->viewport.scale[3] = 1.0; ctx->viewport.translate[0] = 0.0; ctx->viewport.translate[1] = 0.0; ctx->viewport.translate[2] = 0.0; ctx->viewport.translate[3] = 0.0; /* vertex shader */ { const uint semantic_names[] = { TGSI_SEMANTIC_POSITION, TGSI_SEMANTIC_GENERIC }; const uint semantic_indexes[] = { 0, 0 }; ctx->vs = util_make_vertex_passthrough_shader(pipe, 2, semantic_names, semantic_indexes, &ctx->vert_shader); } /* fragment shader */ ctx->fs = util_make_fragment_tex_shader(pipe, &ctx->frag_shader); ctx->vbuf = pipe_buffer_create(pipe->screen, 32, PIPE_BUFFER_USAGE_VERTEX, sizeof(ctx->vertices)); if (!ctx->vbuf) { FREE(ctx); return NULL; } /* vertex data that doesn't change */ for (i = 0; i < 4; i++) { ctx->vertices[i][0][2] = 0.0f; /* z */ ctx->vertices[i][0][3] = 1.0f; /* w */ ctx->vertices[i][1][2] = 0.0f; /* r */ ctx->vertices[i][1][3] = 1.0f; /* q */ } return ctx; } static void set_vertex_data(struct gen_mipmap_state *ctx, float width, float height) { void *buf; ctx->vertices[0][0][0] = 0.0f; /*x*/ ctx->vertices[0][0][1] = 0.0f; /*y*/ ctx->vertices[0][1][0] = 0.0f; /*s*/ ctx->vertices[0][1][1] = 0.0f; /*t*/ ctx->vertices[1][0][0] = width; ctx->vertices[1][0][1] = 0.0f; ctx->vertices[1][1][0] = 1.0f; ctx->vertices[1][1][1] = 0.0f; ctx->vertices[2][0][0] = width; ctx->vertices[2][0][1] = height; ctx->vertices[2][1][0] = 1.0f; ctx->vertices[2][1][1] = 1.0f; ctx->vertices[3][0][0] = 0.0f; ctx->vertices[3][0][1] = height; ctx->vertices[3][1][0] = 0.0f; ctx->vertices[3][1][1] = 1.0f; buf = pipe_buffer_map(ctx->pipe->screen, ctx->vbuf, PIPE_BUFFER_USAGE_CPU_WRITE); memcpy(buf, ctx->vertices, sizeof(ctx->vertices)); pipe_buffer_unmap(ctx->pipe->screen, ctx->vbuf); } /** * Destroy a mipmap generation context */ void util_destroy_gen_mipmap(struct gen_mipmap_state *ctx) { struct pipe_context *pipe = ctx->pipe; pipe->delete_vs_state(pipe, ctx->vs); pipe->delete_fs_state(pipe, ctx->fs); FREE((void*) ctx->vert_shader.tokens); FREE((void*) ctx->frag_shader.tokens); pipe_buffer_reference(pipe->screen, &ctx->vbuf, NULL); FREE(ctx); } /** * Generate mipmap images. It's assumed all needed texture memory is * already allocated. * * \param pt the texture to generate mipmap levels for * \param face which cube face to generate mipmaps for (0 for non-cube maps) * \param baseLevel the first mipmap level to use as a src * \param lastLevel the last mipmap level to generate * \param filter the minification filter used to generate mipmap levels with * \param filter one of PIPE_TEX_FILTER_LINEAR, PIPE_TEX_FILTER_NEAREST */ void util_gen_mipmap(struct gen_mipmap_state *ctx, struct pipe_texture *pt, uint face, uint baseLevel, uint lastLevel, uint filter) { struct pipe_context *pipe = ctx->pipe; struct pipe_screen *screen = pipe->screen; struct pipe_framebuffer_state fb; uint dstLevel; uint zslice = 0; /* check if we can render in the texture's format */ if (!screen->is_format_supported(screen, pt->format, PIPE_TEXTURE_2D, PIPE_TEXTURE_USAGE_RENDER_TARGET, 0)) { fallback_gen_mipmap(ctx, pt, face, baseLevel, lastLevel); return; } /* save state (restored below) */ cso_save_blend(ctx->cso); cso_save_depth_stencil_alpha(ctx->cso); cso_save_rasterizer(ctx->cso); cso_save_samplers(ctx->cso); cso_save_sampler_textures(ctx->cso); cso_save_framebuffer(ctx->cso); cso_save_fragment_shader(ctx->cso); cso_save_vertex_shader(ctx->cso); cso_save_viewport(ctx->cso); /* bind our state */ cso_set_blend(ctx->cso, &ctx->blend); cso_set_depth_stencil_alpha(ctx->cso, &ctx->depthstencil); cso_set_rasterizer(ctx->cso, &ctx->rasterizer); cso_set_viewport(ctx->cso, &ctx->viewport); cso_set_fragment_shader_handle(ctx->cso, ctx->fs); cso_set_vertex_shader_handle(ctx->cso, ctx->vs); /* init framebuffer state */ memset(&fb, 0, sizeof(fb)); fb.num_cbufs = 1; /* set min/mag to same filter for faster sw speed */ ctx->sampler.mag_img_filter = filter; ctx->sampler.min_img_filter = filter; /* * XXX for small mipmap levels, it may be faster to use the software * fallback path... */ for (dstLevel = baseLevel + 1; dstLevel <= lastLevel; dstLevel++) { const uint srcLevel = dstLevel - 1; struct pipe_surface *surf = screen->get_tex_surface(screen, pt, face, dstLevel, zslice, PIPE_BUFFER_USAGE_GPU_WRITE); /* * Setup framebuffer / dest surface */ fb.cbufs[0] = surf; fb.width = pt->width[dstLevel]; fb.height = pt->height[dstLevel]; cso_set_framebuffer(ctx->cso, &fb); /* * Setup sampler state * Note: we should only have to set the min/max LOD clamps to ensure * we grab texels from the right mipmap level. But some hardware * has trouble with min clamping so we also set the lod_bias to * try to work around that. */ ctx->sampler.min_lod = ctx->sampler.max_lod = (float) srcLevel; ctx->sampler.lod_bias = (float) srcLevel; cso_single_sampler(ctx->cso, 0, &ctx->sampler); cso_single_sampler_done(ctx->cso); cso_set_sampler_textures(ctx->cso, 1, &pt); /* quad coords in window coords (bypassing clipping, viewport mapping) */ set_vertex_data(ctx, (float) pt->width[dstLevel], (float) pt->height[dstLevel]); util_draw_vertex_buffer(ctx->pipe, ctx->vbuf, PIPE_PRIM_TRIANGLE_FAN, 4, /* verts */ 2); /* attribs/vert */ pipe->flush(pipe, PIPE_FLUSH_RENDER_CACHE, NULL); /* need to signal that the texture has changed _after_ rendering to it */ pipe_surface_reference( &surf, NULL ); } /* restore state we changed */ cso_restore_blend(ctx->cso); cso_restore_depth_stencil_alpha(ctx->cso); cso_restore_rasterizer(ctx->cso); cso_restore_samplers(ctx->cso); cso_restore_sampler_textures(ctx->cso); cso_restore_framebuffer(ctx->cso); cso_restore_fragment_shader(ctx->cso); cso_restore_vertex_shader(ctx->cso); cso_restore_viewport(ctx->cso); }