/************************************************************************** * * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * Generate SPU per-fragment code (actually per-quad code). * \author Brian Paul */ #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "rtasm/rtasm_ppc_spe.h" #include "cell_context.h" #include "cell_gen_fragment.h" /** Do extra optimizations? */ #define OPTIMIZATIONS 1 /** * Generate SPE code to perform Z/depth testing. * * \param dsa Gallium depth/stencil/alpha state to gen code for * \param f SPE function to append instruction onto. * \param mask_reg register containing quad/pixel "alive" mask (in/out) * \param ifragZ_reg register containing integer fragment Z values (in) * \param ifbZ_reg register containing integer frame buffer Z values (in/out) * \param zmask_reg register containing result of Z test/comparison (out) */ static void gen_depth_test(const struct pipe_depth_stencil_alpha_state *dsa, struct spe_function *f, int mask_reg, int ifragZ_reg, int ifbZ_reg, int zmask_reg) { /* NOTE: we use clgt below, not cgt, because we want to compare _unsigned_ * quantities. This only makes a difference for 32-bit Z values though. */ ASSERT(dsa->depth.enabled); switch (dsa->depth.func) { case PIPE_FUNC_EQUAL: /* zmask = (ifragZ == ref) */ spe_ceq(f, zmask_reg, ifragZ_reg, ifbZ_reg); /* mask = (mask & zmask) */ spe_and(f, mask_reg, mask_reg, zmask_reg); break; case PIPE_FUNC_NOTEQUAL: /* zmask = (ifragZ == ref) */ spe_ceq(f, zmask_reg, ifragZ_reg, ifbZ_reg); /* mask = (mask & ~zmask) */ spe_andc(f, mask_reg, mask_reg, zmask_reg); break; case PIPE_FUNC_GREATER: /* zmask = (ifragZ > ref) */ spe_clgt(f, zmask_reg, ifragZ_reg, ifbZ_reg); /* mask = (mask & zmask) */ spe_and(f, mask_reg, mask_reg, zmask_reg); break; case PIPE_FUNC_LESS: /* zmask = (ref > ifragZ) */ spe_clgt(f, zmask_reg, ifbZ_reg, ifragZ_reg); /* mask = (mask & zmask) */ spe_and(f, mask_reg, mask_reg, zmask_reg); break; case PIPE_FUNC_LEQUAL: /* zmask = (ifragZ > ref) */ spe_clgt(f, zmask_reg, ifragZ_reg, ifbZ_reg); /* mask = (mask & ~zmask) */ spe_andc(f, mask_reg, mask_reg, zmask_reg); break; case PIPE_FUNC_GEQUAL: /* zmask = (ref > ifragZ) */ spe_clgt(f, zmask_reg, ifbZ_reg, ifragZ_reg); /* mask = (mask & ~zmask) */ spe_andc(f, mask_reg, mask_reg, zmask_reg); break; case PIPE_FUNC_NEVER: spe_il(f, mask_reg, 0); /* mask = {0,0,0,0} */ spe_move(f, zmask_reg, mask_reg); /* zmask = mask */ break; case PIPE_FUNC_ALWAYS: /* mask unchanged */ spe_il(f, zmask_reg, ~0); /* zmask = {~0,~0,~0,~0} */ break; default: ASSERT(0); break; } if (dsa->depth.writemask) { /* * If (ztest passed) { * framebufferZ = fragmentZ; * } * OR, * framebufferZ = (ztest_passed ? fragmentZ : framebufferZ; */ spe_selb(f, ifbZ_reg, ifbZ_reg, ifragZ_reg, mask_reg); } } /** * Generate SPE code to perform alpha testing. * * \param dsa Gallium depth/stencil/alpha state to gen code for * \param f SPE function to append instruction onto. * \param mask_reg register containing quad/pixel "alive" mask (in/out) * \param fragA_reg register containing four fragment alpha values (in) */ static void gen_alpha_test(const struct pipe_depth_stencil_alpha_state *dsa, struct spe_function *f, int mask_reg, int fragA_reg) { int ref_reg = spe_allocate_available_register(f); int amask_reg = spe_allocate_available_register(f); ASSERT(dsa->alpha.enabled); if ((dsa->alpha.func != PIPE_FUNC_NEVER) && (dsa->alpha.func != PIPE_FUNC_ALWAYS)) { /* load/splat the alpha reference float value */ spe_load_float(f, ref_reg, dsa->alpha.ref); } /* emit code to do the alpha comparison, updating 'mask' */ switch (dsa->alpha.func) { case PIPE_FUNC_EQUAL: /* amask = (fragA == ref) */ spe_fceq(f, amask_reg, fragA_reg, ref_reg); /* mask = (mask & amask) */ spe_and(f, mask_reg, mask_reg, amask_reg); break; case PIPE_FUNC_NOTEQUAL: /* amask = (fragA == ref) */ spe_fceq(f, amask_reg, fragA_reg, ref_reg); /* mask = (mask & ~amask) */ spe_andc(f, mask_reg, mask_reg, amask_reg); break; case PIPE_FUNC_GREATER: /* amask = (fragA > ref) */ spe_fcgt(f, amask_reg, fragA_reg, ref_reg); /* mask = (mask & amask) */ spe_and(f, mask_reg, mask_reg, amask_reg); break; case PIPE_FUNC_LESS: /* amask = (ref > fragA) */ spe_fcgt(f, amask_reg, ref_reg, fragA_reg); /* mask = (mask & amask) */ spe_and(f, mask_reg, mask_reg, amask_reg); break; case PIPE_FUNC_LEQUAL: /* amask = (fragA > ref) */ spe_fcgt(f, amask_reg, fragA_reg, ref_reg); /* mask = (mask & ~amask) */ spe_andc(f, mask_reg, mask_reg, amask_reg); break; case PIPE_FUNC_GEQUAL: /* amask = (ref > fragA) */ spe_fcgt(f, amask_reg, ref_reg, fragA_reg); /* mask = (mask & ~amask) */ spe_andc(f, mask_reg, mask_reg, amask_reg); break; case PIPE_FUNC_NEVER: spe_il(f, mask_reg, 0); /* mask = [0,0,0,0] */ break; case PIPE_FUNC_ALWAYS: /* no-op, mask unchanged */ break; default: ASSERT(0); break; } #if OPTIMIZATIONS /* if mask == {0,0,0,0} we're all done, return */ { /* re-use amask reg here */ int tmp_reg = amask_reg; /* tmp[0] = (mask[0] | mask[1] | mask[2] | mask[3]) */ spe_orx(f, tmp_reg, mask_reg); /* if tmp[0] == 0 then return from function call */ spe_biz(f, tmp_reg, SPE_REG_RA, 0, 0); } #endif spe_release_register(f, ref_reg); spe_release_register(f, amask_reg); } /* This pair of functions is used inline to allocate and deallocate * optional constant registers. Once a constant is discovered to be * needed, we will likely need it again, so we don't want to deallocate * it and have to allocate and load it again unnecessarily. */ static inline void setup_const_register(struct spe_function *f, boolean *is_already_set, unsigned int *r, float value) { if (*is_already_set) return; *r = spe_allocate_available_register(f); spe_load_float(f, *r, value); *is_already_set = true; } static inline void release_const_register(struct spe_function *f, boolean *is_already_set, unsigned int r) { if (!*is_already_set) return; spe_release_register(f, r); *is_already_set = false; } /** * Generate SPE code to implement the given blend mode for a quad of pixels. * \param f SPE function to append instruction onto. * \param fragR_reg register with fragment red values (float) (in/out) * \param fragG_reg register with fragment green values (float) (in/out) * \param fragB_reg register with fragment blue values (float) (in/out) * \param fragA_reg register with fragment alpha values (float) (in/out) * \param fbRGBA_reg register with packed framebuffer colors (integer) (in) */ static void gen_blend(const struct pipe_blend_state *blend, const struct pipe_blend_color *blend_color, struct spe_function *f, enum pipe_format color_format, int fragR_reg, int fragG_reg, int fragB_reg, int fragA_reg, int fbRGBA_reg) { int term1R_reg = spe_allocate_available_register(f); int term1G_reg = spe_allocate_available_register(f); int term1B_reg = spe_allocate_available_register(f); int term1A_reg = spe_allocate_available_register(f); int term2R_reg = spe_allocate_available_register(f); int term2G_reg = spe_allocate_available_register(f); int term2B_reg = spe_allocate_available_register(f); int term2A_reg = spe_allocate_available_register(f); int fbR_reg = spe_allocate_available_register(f); int fbG_reg = spe_allocate_available_register(f); int fbB_reg = spe_allocate_available_register(f); int fbA_reg = spe_allocate_available_register(f); int tmp_reg = spe_allocate_available_register(f); /* Optional constant registers we might or might not end up using; * if we do use them, make sure we only allocate them once by * keeping a flag on each one. */ boolean one_reg_set = false; unsigned int one_reg; boolean constR_reg_set = false, constG_reg_set = false, constB_reg_set = false, constA_reg_set = false; unsigned int constR_reg, constG_reg, constB_reg, constA_reg; ASSERT(blend->blend_enable); /* Unpack/convert framebuffer colors from four 32-bit packed colors * (fbRGBA) to four float RGBA vectors (fbR, fbG, fbB, fbA). * Each 8-bit color component is expanded into a float in [0.0, 1.0]. */ { int mask_reg = spe_allocate_available_register(f); /* mask = {0x000000ff, 0x000000ff, 0x000000ff, 0x000000ff} */ spe_load_int(f, mask_reg, 0xff); /* XXX there may be more clever ways to implement the following code */ switch (color_format) { case PIPE_FORMAT_A8R8G8B8_UNORM: /* fbB = fbB & mask */ spe_and(f, fbB_reg, fbRGBA_reg, mask_reg); /* mask = mask << 8 */ spe_roti(f, mask_reg, mask_reg, 8); /* fbG = fbRGBA & mask */ spe_and(f, fbG_reg, fbRGBA_reg, mask_reg); /* fbG = fbG >> 8 */ spe_roti(f, fbG_reg, fbG_reg, -8); /* mask = mask << 8 */ spe_roti(f, mask_reg, mask_reg, 8); /* fbR = fbRGBA & mask */ spe_and(f, fbR_reg, fbRGBA_reg, mask_reg); /* fbR = fbR >> 16 */ spe_roti(f, fbR_reg, fbR_reg, -16); /* mask = mask << 8 */ spe_roti(f, mask_reg, mask_reg, 8); /* fbA = fbRGBA & mask */ spe_and(f, fbA_reg, fbRGBA_reg, mask_reg); /* fbA = fbA >> 24 */ spe_roti(f, fbA_reg, fbA_reg, -24); break; case PIPE_FORMAT_B8G8R8A8_UNORM: /* fbA = fbA & mask */ spe_and(f, fbA_reg, fbRGBA_reg, mask_reg); /* mask = mask << 8 */ spe_roti(f, mask_reg, mask_reg, 8); /* fbR = fbRGBA & mask */ spe_and(f, fbR_reg, fbRGBA_reg, mask_reg); /* fbR = fbR >> 8 */ spe_roti(f, fbR_reg, fbR_reg, -8); /* mask = mask << 8 */ spe_roti(f, mask_reg, mask_reg, 8); /* fbG = fbRGBA & mask */ spe_and(f, fbG_reg, fbRGBA_reg, mask_reg); /* fbG = fbG >> 16 */ spe_roti(f, fbG_reg, fbG_reg, -16); /* mask = mask << 8 */ spe_roti(f, mask_reg, mask_reg, 8); /* fbB = fbRGBA & mask */ spe_and(f, fbB_reg, fbRGBA_reg, mask_reg); /* fbB = fbB >> 24 */ spe_roti(f, fbB_reg, fbB_reg, -24); break; default: ASSERT(0); } /* convert int[4] in [0,255] to float[4] in [0.0, 1.0] */ spe_cuflt(f, fbR_reg, fbR_reg, 8); spe_cuflt(f, fbG_reg, fbG_reg, 8); spe_cuflt(f, fbB_reg, fbB_reg, 8); spe_cuflt(f, fbA_reg, fbA_reg, 8); spe_release_register(f, mask_reg); } /* * Compute Src RGB terms. We're actually looking for the value * of (the appropriate RGB factors) * (the incoming source RGB color), * because in some cases (like PIPE_BLENDFACTOR_ONE and * PIPE_BLENDFACTOR_ZERO) we can avoid doing unnecessary math. */ switch (blend->rgb_src_factor) { case PIPE_BLENDFACTOR_ONE: /* factors = (1,1,1), so term = (R,G,B) */ spe_move(f, term1R_reg, fragR_reg); spe_move(f, term1G_reg, fragG_reg); spe_move(f, term1B_reg, fragB_reg); break; case PIPE_BLENDFACTOR_ZERO: /* factors = (0,0,0), so term = (0,0,0) */ spe_load_float(f, term1R_reg, 0.0f); spe_load_float(f, term1G_reg, 0.0f); spe_load_float(f, term1B_reg, 0.0f); break; case PIPE_BLENDFACTOR_SRC_COLOR: /* factors = (R,G,B), so term = (R*R, G*G, B*B) */ spe_fm(f, term1R_reg, fragR_reg, fragR_reg); spe_fm(f, term1G_reg, fragG_reg, fragG_reg); spe_fm(f, term1B_reg, fragB_reg, fragB_reg); break; case PIPE_BLENDFACTOR_SRC_ALPHA: /* factors = (A,A,A), so term = (R*A, G*A, B*A) */ spe_fm(f, term1R_reg, fragR_reg, fragA_reg); spe_fm(f, term1G_reg, fragG_reg, fragA_reg); spe_fm(f, term1B_reg, fragB_reg, fragA_reg); break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: /* factors = (1-R,1-G,1-B), so term = (R*(1-R), G*(1-G), B*(1-B)) * or in other words term = (R-R*R, G-G*G, B-B*B) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1R_reg, fragR_reg, fragR_reg, fragR_reg); spe_fnms(f, term1G_reg, fragG_reg, fragG_reg, fragG_reg); spe_fnms(f, term1B_reg, fragB_reg, fragB_reg, fragB_reg); break; case PIPE_BLENDFACTOR_DST_COLOR: /* factors = (Rfb,Gfb,Bfb), so term = (R*Rfb, G*Gfb, B*Bfb) */ spe_fm(f, term1R_reg, fragR_reg, fbR_reg); spe_fm(f, term1G_reg, fragG_reg, fbG_reg); spe_fm(f, term1B_reg, fragB_reg, fbB_reg); break; case PIPE_BLENDFACTOR_INV_DST_COLOR: /* factors = (1-Rfb,1-Gfb,1-Bfb), so term = (R*(1-Rfb),G*(1-Gfb),B*(1-Bfb)) * or term = (R-R*Rfb, G-G*Gfb, B-B*Bfb) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1R_reg, fragR_reg, fbR_reg, fragR_reg); spe_fnms(f, term1G_reg, fragG_reg, fbG_reg, fragG_reg); spe_fnms(f, term1B_reg, fragB_reg, fbB_reg, fragB_reg); break; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* factors = (1-A,1-A,1-A), so term = (R*(1-A),G*(1-A),B*(1-A)) * or term = (R-R*A,G-G*A,B-B*A) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1R_reg, fragR_reg, fragA_reg, fragR_reg); spe_fnms(f, term1G_reg, fragG_reg, fragA_reg, fragG_reg); spe_fnms(f, term1B_reg, fragB_reg, fragA_reg, fragB_reg); break; case PIPE_BLENDFACTOR_DST_ALPHA: /* factors = (Afb, Afb, Afb), so term = (R*Afb, G*Afb, B*Afb) */ spe_fm(f, term1R_reg, fragR_reg, fbA_reg); spe_fm(f, term1G_reg, fragG_reg, fbA_reg); spe_fm(f, term1B_reg, fragB_reg, fbA_reg); break; case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* factors = (1-Afb, 1-Afb, 1-Afb), so term = (R*(1-Afb),G*(1-Afb),B*(1-Afb)) * or term = (R-R*Afb,G-G*Afb,b-B*Afb) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1R_reg, fragR_reg, fbA_reg, fragR_reg); spe_fnms(f, term1G_reg, fragG_reg, fbA_reg, fragG_reg); spe_fnms(f, term1B_reg, fragB_reg, fbA_reg, fragB_reg); break; case PIPE_BLENDFACTOR_CONST_COLOR: /* We need the optional constant color registers */ setup_const_register(f, &constR_reg_set, &constR_reg, blend_color->color[0]); setup_const_register(f, &constG_reg_set, &constG_reg, blend_color->color[1]); setup_const_register(f, &constB_reg_set, &constB_reg, blend_color->color[2]); /* now, factor = (Rc,Gc,Bc), so term = (R*Rc,G*Gc,B*Bc) */ spe_fm(f, term1R_reg, fragR_reg, constR_reg); spe_fm(f, term1G_reg, fragG_reg, constG_reg); spe_fm(f, term1B_reg, fragB_reg, constB_reg); break; case PIPE_BLENDFACTOR_CONST_ALPHA: /* we'll need the optional constant alpha register */ setup_const_register(f, &constA_reg_set, &constA_reg, blend_color->color[3]); /* factor = (Ac,Ac,Ac), so term = (R*Ac,G*Ac,B*Ac) */ spe_fm(f, term1R_reg, fragR_reg, constA_reg); spe_fm(f, term1G_reg, fragG_reg, constA_reg); spe_fm(f, term1B_reg, fragB_reg, constA_reg); break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: /* We need the optional constant color registers */ setup_const_register(f, &constR_reg_set, &constR_reg, blend_color->color[0]); setup_const_register(f, &constG_reg_set, &constG_reg, blend_color->color[1]); setup_const_register(f, &constB_reg_set, &constB_reg, blend_color->color[2]); /* factor = (1-Rc,1-Gc,1-Bc), so term = (R*(1-Rc),G*(1-Gc),B*(1-Bc)) * or term = (R-R*Rc, G-G*Gc, B-B*Bc) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1R_reg, fragR_reg, constR_reg, fragR_reg); spe_fnms(f, term1G_reg, fragG_reg, constG_reg, fragG_reg); spe_fnms(f, term1B_reg, fragB_reg, constB_reg, fragB_reg); break; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* We need the optional constant color registers */ setup_const_register(f, &constR_reg_set, &constR_reg, blend_color->color[0]); setup_const_register(f, &constG_reg_set, &constG_reg, blend_color->color[1]); setup_const_register(f, &constB_reg_set, &constB_reg, blend_color->color[2]); /* factor = (1-Ac,1-Ac,1-Ac), so term = (R*(1-Ac),G*(1-Ac),B*(1-Ac)) * or term = (R-R*Ac,G-G*Ac,B-B*Ac) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1R_reg, fragR_reg, constA_reg, fragR_reg); spe_fnms(f, term1G_reg, fragG_reg, constA_reg, fragG_reg); spe_fnms(f, term1B_reg, fragB_reg, constA_reg, fragB_reg); break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* We'll need the optional {1,1,1,1} register */ setup_const_register(f, &one_reg_set, &one_reg, 1.0f); /* factor = (min(A,1-Afb),min(A,1-Afb),min(A,1-Afb)), so * term = (R*min(A,1-Afb), G*min(A,1-Afb), B*min(A,1-Afb)) * We could expand the term (as a*min(b,c) == min(a*b,a*c) * as long as a is positive), but then we'd have to do three * spe_float_min() functions instead of one, so this is simpler. */ /* tmp = 1 - Afb */ spe_fs(f, tmp_reg, one_reg, fbA_reg); /* tmp = min(A,tmp) */ spe_float_min(f, tmp_reg, fragA_reg, tmp_reg); /* term = R*tmp */ spe_fm(f, term1R_reg, fragR_reg, tmp_reg); spe_fm(f, term1G_reg, fragG_reg, tmp_reg); spe_fm(f, term1B_reg, fragB_reg, tmp_reg); break; /* These are special D3D cases involving a second color output * from the fragment shader. I'm not sure we can support them * yet... XXX */ case PIPE_BLENDFACTOR_SRC1_COLOR: case PIPE_BLENDFACTOR_SRC1_ALPHA: case PIPE_BLENDFACTOR_INV_SRC1_COLOR: case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: default: ASSERT(0); } /* * Compute Src Alpha term. Like the above, we're looking for * the full term A*factor, not just the factor itself, because * in many cases we can avoid doing unnecessary multiplies. */ switch (blend->alpha_src_factor) { case PIPE_BLENDFACTOR_ZERO: /* factor = 0, so term = 0 */ spe_load_float(f, term1A_reg, 0.0f); break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* fall through */ case PIPE_BLENDFACTOR_ONE: /* factor = 1, so term = A */ spe_move(f, term1A_reg, fragA_reg); break; case PIPE_BLENDFACTOR_SRC_COLOR: /* factor = A, so term = A*A */ spe_fm(f, term1A_reg, fragA_reg, fragA_reg); break; case PIPE_BLENDFACTOR_SRC_ALPHA: spe_fm(f, term1A_reg, fragA_reg, fragA_reg); break; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_INV_SRC_COLOR: /* factor = 1-A, so term = A*(1-A) = A-A*A */ /* fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1A_reg, fragA_reg, fragA_reg, fragA_reg); break; case PIPE_BLENDFACTOR_DST_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_DST_COLOR: /* factor = Afb, so term = A*Afb */ spe_fm(f, term1A_reg, fragA_reg, fbA_reg); break; case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_INV_DST_COLOR: /* factor = 1-Afb, so term = A*(1-Afb) = A - A*Afb */ /* fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1A_reg, fragA_reg, fbA_reg, fragA_reg); break; case PIPE_BLENDFACTOR_CONST_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_CONST_COLOR: /* We need the optional constA_reg register */ setup_const_register(f, &constA_reg_set, &constA_reg, blend_color->color[3]); /* factor = Ac, so term = A*Ac */ spe_fm(f, term1A_reg, fragA_reg, constA_reg); break; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_INV_CONST_COLOR: /* We need the optional constA_reg register */ setup_const_register(f, &constA_reg_set, &constA_reg, blend_color->color[3]); /* factor = 1-Ac, so term = A*(1-Ac) = A-A*Ac */ /* fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term1A_reg, fragA_reg, constA_reg, fragA_reg); break; /* These are special D3D cases involving a second color output * from the fragment shader. I'm not sure we can support them * yet... XXX */ case PIPE_BLENDFACTOR_SRC1_COLOR: case PIPE_BLENDFACTOR_SRC1_ALPHA: case PIPE_BLENDFACTOR_INV_SRC1_COLOR: case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: default: ASSERT(0); } /* * Compute Dest RGB term. Like the above, we're looking for * the full term (Rfb,Gfb,Bfb)*(factor), not just the factor itself, because * in many cases we can avoid doing unnecessary multiplies. */ switch (blend->rgb_dst_factor) { case PIPE_BLENDFACTOR_ONE: /* factors = (1,1,1), so term = (Rfb,Gfb,Bfb) */ spe_move(f, term2R_reg, fbR_reg); spe_move(f, term2G_reg, fbG_reg); spe_move(f, term2B_reg, fbB_reg); break; case PIPE_BLENDFACTOR_ZERO: /* factor s= (0,0,0), so term = (0,0,0) */ spe_load_float(f, term2R_reg, 0.0f); spe_load_float(f, term2G_reg, 0.0f); spe_load_float(f, term2B_reg, 0.0f); break; case PIPE_BLENDFACTOR_SRC_COLOR: /* factors = (R,G,B), so term = (R*Rfb, G*Gfb, B*Bfb) */ spe_fm(f, term2R_reg, fbR_reg, fragR_reg); spe_fm(f, term2G_reg, fbG_reg, fragG_reg); spe_fm(f, term2B_reg, fbB_reg, fragB_reg); break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: /* factors = (1-R,1-G,1-B), so term = (Rfb*(1-R), Gfb*(1-G), Bfb*(1-B)) * or in other words term = (Rfb-Rfb*R, Gfb-Gfb*G, Bfb-Bfb*B) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2R_reg, fragR_reg, fbR_reg, fbR_reg); spe_fnms(f, term2G_reg, fragG_reg, fbG_reg, fbG_reg); spe_fnms(f, term2B_reg, fragB_reg, fbB_reg, fbB_reg); break; case PIPE_BLENDFACTOR_SRC_ALPHA: /* factors = (A,A,A), so term = (Rfb*A, Gfb*A, Bfb*A) */ spe_fm(f, term2R_reg, fbR_reg, fragA_reg); spe_fm(f, term2G_reg, fbG_reg, fragA_reg); spe_fm(f, term2B_reg, fbB_reg, fragA_reg); break; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* factors = (1-A,1-A,1-A) so term = (Rfb-Rfb*A,Gfb-Gfb*A,Bfb-Bfb*A) */ /* fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2R_reg, fbR_reg, fragA_reg, fbR_reg); spe_fnms(f, term2G_reg, fbG_reg, fragA_reg, fbG_reg); spe_fnms(f, term2B_reg, fbB_reg, fragA_reg, fbB_reg); break; case PIPE_BLENDFACTOR_DST_COLOR: /* factors = (Rfb,Gfb,Bfb), so term = (Rfb*Rfb, Gfb*Gfb, Bfb*Bfb) */ spe_fm(f, term2R_reg, fbR_reg, fbR_reg); spe_fm(f, term2G_reg, fbG_reg, fbG_reg); spe_fm(f, term2B_reg, fbB_reg, fbB_reg); break; case PIPE_BLENDFACTOR_INV_DST_COLOR: /* factors = (1-Rfb,1-Gfb,1-Bfb), so term = (Rfb*(1-Rfb),Gfb*(1-Gfb),Bfb*(1-Bfb)) * or term = (Rfb-Rfb*Rfb, Gfb-Gfb*Gfb, Bfb-Bfb*Bfb) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2R_reg, fbR_reg, fbR_reg, fbR_reg); spe_fnms(f, term2G_reg, fbG_reg, fbG_reg, fbG_reg); spe_fnms(f, term2B_reg, fbB_reg, fbB_reg, fbB_reg); break; case PIPE_BLENDFACTOR_DST_ALPHA: /* factors = (Afb, Afb, Afb), so term = (Rfb*Afb, Gfb*Afb, Bfb*Afb) */ spe_fm(f, term2R_reg, fbR_reg, fbA_reg); spe_fm(f, term2G_reg, fbG_reg, fbA_reg); spe_fm(f, term2B_reg, fbB_reg, fbA_reg); break; case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* factors = (1-Afb, 1-Afb, 1-Afb), so term = (Rfb*(1-Afb),Gfb*(1-Afb),Bfb*(1-Afb)) * or term = (Rfb-Rfb*Afb,Gfb-Gfb*Afb,Bfb-Bfb*Afb) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2R_reg, fbR_reg, fbA_reg, fbR_reg); spe_fnms(f, term2G_reg, fbG_reg, fbA_reg, fbG_reg); spe_fnms(f, term2B_reg, fbB_reg, fbA_reg, fbB_reg); break; case PIPE_BLENDFACTOR_CONST_COLOR: /* We need the optional constant color registers */ setup_const_register(f, &constR_reg_set, &constR_reg, blend_color->color[0]); setup_const_register(f, &constG_reg_set, &constG_reg, blend_color->color[1]); setup_const_register(f, &constB_reg_set, &constB_reg, blend_color->color[2]); /* now, factor = (Rc,Gc,Bc), so term = (Rfb*Rc,Gfb*Gc,Bfb*Bc) */ spe_fm(f, term2R_reg, fbR_reg, constR_reg); spe_fm(f, term2G_reg, fbG_reg, constG_reg); spe_fm(f, term2B_reg, fbB_reg, constB_reg); break; case PIPE_BLENDFACTOR_CONST_ALPHA: /* we'll need the optional constant alpha register */ setup_const_register(f, &constA_reg_set, &constA_reg, blend_color->color[3]); /* factor = (Ac,Ac,Ac), so term = (Rfb*Ac,Gfb*Ac,Bfb*Ac) */ spe_fm(f, term2R_reg, fbR_reg, constA_reg); spe_fm(f, term2G_reg, fbG_reg, constA_reg); spe_fm(f, term2B_reg, fbB_reg, constA_reg); break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: /* We need the optional constant color registers */ setup_const_register(f, &constR_reg_set, &constR_reg, blend_color->color[0]); setup_const_register(f, &constG_reg_set, &constG_reg, blend_color->color[1]); setup_const_register(f, &constB_reg_set, &constB_reg, blend_color->color[2]); /* factor = (1-Rc,1-Gc,1-Bc), so term = (Rfb*(1-Rc),Gfb*(1-Gc),Bfb*(1-Bc)) * or term = (Rfb-Rfb*Rc, Gfb-Gfb*Gc, Bfb-Bfb*Bc) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2R_reg, fbR_reg, constR_reg, fbR_reg); spe_fnms(f, term2G_reg, fbG_reg, constG_reg, fbG_reg); spe_fnms(f, term2B_reg, fbB_reg, constB_reg, fbB_reg); break; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* We need the optional constant color registers */ setup_const_register(f, &constR_reg_set, &constR_reg, blend_color->color[0]); setup_const_register(f, &constG_reg_set, &constG_reg, blend_color->color[1]); setup_const_register(f, &constB_reg_set, &constB_reg, blend_color->color[2]); /* factor = (1-Ac,1-Ac,1-Ac), so term = (Rfb*(1-Ac),Gfb*(1-Ac),Bfb*(1-Ac)) * or term = (Rfb-Rfb*Ac,Gfb-Gfb*Ac,Bfb-Bfb*Ac) * fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2R_reg, fbR_reg, constA_reg, fbR_reg); spe_fnms(f, term2G_reg, fbG_reg, constA_reg, fbG_reg); spe_fnms(f, term2B_reg, fbB_reg, constA_reg, fbB_reg); break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* not supported for dest RGB */ ASSERT(0); break; /* These are special D3D cases involving a second color output * from the fragment shader. I'm not sure we can support them * yet... XXX */ case PIPE_BLENDFACTOR_SRC1_COLOR: case PIPE_BLENDFACTOR_SRC1_ALPHA: case PIPE_BLENDFACTOR_INV_SRC1_COLOR: case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: default: ASSERT(0); } /* * Compute Dest Alpha term. Like the above, we're looking for * the full term Afb*factor, not just the factor itself, because * in many cases we can avoid doing unnecessary multiplies. */ switch (blend->alpha_dst_factor) { case PIPE_BLENDFACTOR_ONE: /* factor = 1, so term = Afb */ spe_move(f, term2A_reg, fbA_reg); break; case PIPE_BLENDFACTOR_ZERO: /* factor = 0, so term = 0 */ spe_load_float(f, term2A_reg, 0.0f); break; case PIPE_BLENDFACTOR_SRC_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_SRC_COLOR: /* factor = A, so term = Afb*A */ spe_fm(f, term2A_reg, fbA_reg, fragA_reg); break; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_INV_SRC_COLOR: /* factor = 1-A, so term = Afb*(1-A) = Afb-Afb*A */ /* fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2A_reg, fbA_reg, fragA_reg, fbA_reg); break; case PIPE_BLENDFACTOR_DST_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_DST_COLOR: /* factor = Afb, so term = Afb*Afb */ spe_fm(f, term2A_reg, fbA_reg, fbA_reg); break; case PIPE_BLENDFACTOR_INV_DST_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_INV_DST_COLOR: /* factor = 1-Afb, so term = Afb*(1-Afb) = Afb - Afb*Afb */ /* fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2A_reg, fbA_reg, fbA_reg, fbA_reg); break; case PIPE_BLENDFACTOR_CONST_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_CONST_COLOR: /* We need the optional constA_reg register */ setup_const_register(f, &constA_reg_set, &constA_reg, blend_color->color[3]); /* factor = Ac, so term = Afb*Ac */ spe_fm(f, term2A_reg, fbA_reg, constA_reg); break; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: /* fall through */ case PIPE_BLENDFACTOR_INV_CONST_COLOR: /* We need the optional constA_reg register */ setup_const_register(f, &constA_reg_set, &constA_reg, blend_color->color[3]); /* factor = 1-Ac, so term = Afb*(1-Ac) = Afb-Afb*Ac */ /* fnms(a,b,c,d) computes a = d - b*c */ spe_fnms(f, term2A_reg, fbA_reg, constA_reg, fbA_reg); break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: /* not supported for dest alpha */ ASSERT(0); break; /* These are special D3D cases involving a second color output * from the fragment shader. I'm not sure we can support them * yet... XXX */ case PIPE_BLENDFACTOR_SRC1_COLOR: case PIPE_BLENDFACTOR_SRC1_ALPHA: case PIPE_BLENDFACTOR_INV_SRC1_COLOR: case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: default: ASSERT(0); } /* * Combine Src/Dest RGB terms as per the blend equation. */ switch (blend->rgb_func) { case PIPE_BLEND_ADD: spe_fa(f, fragR_reg, term1R_reg, term2R_reg); spe_fa(f, fragG_reg, term1G_reg, term2G_reg); spe_fa(f, fragB_reg, term1B_reg, term2B_reg); break; case PIPE_BLEND_SUBTRACT: spe_fs(f, fragR_reg, term1R_reg, term2R_reg); spe_fs(f, fragG_reg, term1G_reg, term2G_reg); spe_fs(f, fragB_reg, term1B_reg, term2B_reg); break; case PIPE_BLEND_REVERSE_SUBTRACT: spe_fs(f, fragR_reg, term2R_reg, term1R_reg); spe_fs(f, fragG_reg, term2G_reg, term1G_reg); spe_fs(f, fragB_reg, term2B_reg, term1B_reg); break; case PIPE_BLEND_MIN: spe_float_min(f, fragR_reg, term1R_reg, term2R_reg); spe_float_min(f, fragG_reg, term1G_reg, term2G_reg); spe_float_min(f, fragB_reg, term1B_reg, term2B_reg); break; case PIPE_BLEND_MAX: spe_float_max(f, fragR_reg, term1R_reg, term2R_reg); spe_float_max(f, fragG_reg, term1G_reg, term2G_reg); spe_float_max(f, fragB_reg, term1B_reg, term2B_reg); break; default: ASSERT(0); } /* * Combine Src/Dest A term */ switch (blend->alpha_func) { case PIPE_BLEND_ADD: spe_fa(f, fragA_reg, term1A_reg, term2A_reg); break; case PIPE_BLEND_SUBTRACT: spe_fs(f, fragA_reg, term1A_reg, term2A_reg); break; case PIPE_BLEND_REVERSE_SUBTRACT: spe_fs(f, fragA_reg, term2A_reg, term1A_reg); break; case PIPE_BLEND_MIN: spe_float_min(f, fragA_reg, term1A_reg, term2A_reg); break; case PIPE_BLEND_MAX: spe_float_max(f, fragA_reg, term1A_reg, term2A_reg); break; default: ASSERT(0); } spe_release_register(f, term1R_reg); spe_release_register(f, term1G_reg); spe_release_register(f, term1B_reg); spe_release_register(f, term1A_reg); spe_release_register(f, term2R_reg); spe_release_register(f, term2G_reg); spe_release_register(f, term2B_reg); spe_release_register(f, term2A_reg); spe_release_register(f, fbR_reg); spe_release_register(f, fbG_reg); spe_release_register(f, fbB_reg); spe_release_register(f, fbA_reg); spe_release_register(f, tmp_reg); /* Free any optional registers that actually got used */ release_const_register(f, &one_reg_set, one_reg); release_const_register(f, &constR_reg_set, constR_reg); release_const_register(f, &constG_reg_set, constG_reg); release_const_register(f, &constB_reg_set, constB_reg); release_const_register(f, &constA_reg_set, constA_reg); } static void gen_logicop(const struct pipe_blend_state *blend, struct spe_function *f, int fragRGBA_reg, int fbRGBA_reg) { /* We've got four 32-bit RGBA packed pixels in each of * fragRGBA_reg and fbRGBA_reg, not sets of floating-point * reds, greens, blues, and alphas. * */ ASSERT(blend->logicop_enable); switch(blend->logicop_func) { case PIPE_LOGICOP_CLEAR: /* 0 */ spe_zero(f, fragRGBA_reg); break; case PIPE_LOGICOP_NOR: /* ~(s | d) */ spe_nor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_AND_INVERTED: /* ~s & d */ /* andc R, A, B computes R = A & ~B */ spe_andc(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg); break; case PIPE_LOGICOP_COPY_INVERTED: /* ~s */ spe_complement(f, fragRGBA_reg, fragRGBA_reg); break; case PIPE_LOGICOP_AND_REVERSE: /* s & ~d */ /* andc R, A, B computes R = A & ~B */ spe_andc(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_INVERT: /* ~d */ /* Note that (A nor A) == ~(A|A) == ~A */ spe_nor(f, fragRGBA_reg, fbRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_XOR: /* s ^ d */ spe_xor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_NAND: /* ~(s & d) */ spe_nand(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_AND: /* s & d */ spe_and(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_EQUIV: /* ~(s ^ d) */ spe_xor(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg); spe_complement(f, fragRGBA_reg, fragRGBA_reg); break; case PIPE_LOGICOP_NOOP: /* d */ spe_move(f, fragRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_OR_INVERTED: /* ~s | d */ /* orc R, A, B computes R = A | ~B */ spe_orc(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg); break; case PIPE_LOGICOP_COPY: /* s */ break; case PIPE_LOGICOP_OR_REVERSE: /* s | ~d */ /* orc R, A, B computes R = A | ~B */ spe_orc(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_OR: /* s | d */ spe_or(f, fragRGBA_reg, fragRGBA_reg, fbRGBA_reg); break; case PIPE_LOGICOP_SET: /* 1 */ spe_load_int(f, fragRGBA_reg, 0xffffffff); break; default: ASSERT(0); } } /** * Generate code to pack a quad of float colors into four 32-bit integers. * * \param f SPE function to append instruction onto. * \param color_format the dest color packing format * \param r_reg register containing four red values (in/clobbered) * \param g_reg register containing four green values (in/clobbered) * \param b_reg register containing four blue values (in/clobbered) * \param a_reg register containing four alpha values (in/clobbered) * \param rgba_reg register to store the packed RGBA colors (out) */ static void gen_pack_colors(struct spe_function *f, enum pipe_format color_format, int r_reg, int g_reg, int b_reg, int a_reg, int rgba_reg) { int rg_reg = spe_allocate_available_register(f); int ba_reg = spe_allocate_available_register(f); /* Convert float[4] in [0.0,1.0] to int[4] in [0,~0], with clamping */ spe_cfltu(f, r_reg, r_reg, 32); spe_cfltu(f, g_reg, g_reg, 32); spe_cfltu(f, b_reg, b_reg, 32); spe_cfltu(f, a_reg, a_reg, 32); /* Shift the most significant bytes to the least significant positions. * I.e.: reg = reg >> 24 */ spe_rotmi(f, r_reg, r_reg, -24); spe_rotmi(f, g_reg, g_reg, -24); spe_rotmi(f, b_reg, b_reg, -24); spe_rotmi(f, a_reg, a_reg, -24); /* Shift the color bytes according to the surface format */ if (color_format == PIPE_FORMAT_A8R8G8B8_UNORM) { spe_roti(f, g_reg, g_reg, 8); /* green <<= 8 */ spe_roti(f, r_reg, r_reg, 16); /* red <<= 16 */ spe_roti(f, a_reg, a_reg, 24); /* alpha <<= 24 */ } else if (color_format == PIPE_FORMAT_B8G8R8A8_UNORM) { spe_roti(f, r_reg, r_reg, 8); /* red <<= 8 */ spe_roti(f, g_reg, g_reg, 16); /* green <<= 16 */ spe_roti(f, b_reg, b_reg, 24); /* blue <<= 24 */ } else { ASSERT(0); } /* Merge red, green, blue, alpha registers to make packed RGBA colors. * Eg: after shifting according to color_format we might have: * R = {0x00ff0000, 0x00110000, 0x00220000, 0x00330000} * G = {0x0000ff00, 0x00004400, 0x00005500, 0x00006600} * B = {0x000000ff, 0x00000077, 0x00000088, 0x00000099} * A = {0xff000000, 0xaa000000, 0xbb000000, 0xcc000000} * OR-ing all those together gives us four packed colors: * RGBA = {0xffffffff, 0xaa114477, 0xbb225588, 0xcc336699} */ spe_or(f, rg_reg, r_reg, g_reg); spe_or(f, ba_reg, a_reg, b_reg); spe_or(f, rgba_reg, rg_reg, ba_reg); spe_release_register(f, rg_reg); spe_release_register(f, ba_reg); } static void gen_colormask(struct spe_function *f, uint colormask, enum pipe_format color_format, int fragRGBA_reg, int fbRGBA_reg) { /* We've got four 32-bit RGBA packed pixels in each of * fragRGBA_reg and fbRGBA_reg, not sets of floating-point * reds, greens, blues, and alphas. Further, the pixels * are packed according to the given color format, not * necessarily RGBA... */ unsigned int r_mask; unsigned int g_mask; unsigned int b_mask; unsigned int a_mask; /* Calculate exactly where the bits for any particular color * end up, so we can mask them correctly. */ switch(color_format) { case PIPE_FORMAT_A8R8G8B8_UNORM: /* ARGB */ a_mask = 0xff000000; r_mask = 0x00ff0000; g_mask = 0x0000ff00; b_mask = 0x000000ff; break; case PIPE_FORMAT_B8G8R8A8_UNORM: /* BGRA */ b_mask = 0xff000000; g_mask = 0x00ff0000; r_mask = 0x0000ff00; a_mask = 0x000000ff; break; default: ASSERT(0); } /* For each R, G, B, and A component we're supposed to mask out, * clear its bits. Then our mask operation later will work * as expected. */ if (!(colormask & PIPE_MASK_R)) { r_mask = 0; } if (!(colormask & PIPE_MASK_G)) { g_mask = 0; } if (!(colormask & PIPE_MASK_B)) { b_mask = 0; } if (!(colormask & PIPE_MASK_A)) { a_mask = 0; } /* Get a temporary register to hold the mask that will be applied to the fragment */ int colormask_reg = spe_allocate_available_register(f); /* The actual mask we're going to use is an OR of the remaining R, G, B, and A * masks. Load the result value into our temporary register. */ spe_load_uint(f, colormask_reg, r_mask | g_mask | b_mask | a_mask); /* Use the mask register to select between the fragment color * values and the frame buffer color values. Wherever the * mask has a 0 bit, the current frame buffer color should override * the fragment color. Wherever the mask has a 1 bit, the * fragment color should persevere. The Select Bits (selb rt, rA, rB, rM) * instruction will select bits from its first operand rA wherever the * the mask bits rM are 0, and from its second operand rB wherever the * mask bits rM are 1. That means that the frame buffer color is the * first operand, and the fragment color the second. */ spe_selb(f, fragRGBA_reg, fbRGBA_reg, fragRGBA_reg, colormask_reg); /* Release the temporary register and we're done */ spe_release_register(f, colormask_reg); } /** * Generate SPE code to implement the fragment operations (alpha test, * depth test, stencil test, blending, colormask, and final * framebuffer write) as specified by the current context state. * * Logically, this code will be called after running the fragment * shader. But under some circumstances we could run some of this * code before the fragment shader to cull fragments/quads that are * totally occluded/discarded. * * XXX we only support PIPE_FORMAT_Z24S8_UNORM z/stencil buffer right now. * * See the spu_default_fragment_ops() function to see how the per-fragment * operations would be done with ordinary C code. * The code we generate here though has no branches, is SIMD, etc and * should be much faster. * * \param cell the rendering context (in) * \param f the generated function (out) */ void cell_gen_fragment_function(struct cell_context *cell, struct spe_function *f) { const struct pipe_depth_stencil_alpha_state *dsa = cell->depth_stencil; const struct pipe_blend_state *blend = cell->blend; const struct pipe_blend_color *blend_color = &cell->blend_color; const enum pipe_format color_format = cell->framebuffer.cbufs[0]->format; /* For SPE function calls: reg $3 = first param, $4 = second param, etc. */ const int x_reg = 3; /* uint */ const int y_reg = 4; /* uint */ const int color_tile_reg = 5; /* tile_t * */ const int depth_tile_reg = 6; /* tile_t * */ const int fragZ_reg = 7; /* vector float */ const int fragR_reg = 8; /* vector float */ const int fragG_reg = 9; /* vector float */ const int fragB_reg = 10; /* vector float */ const int fragA_reg = 11; /* vector float */ const int mask_reg = 12; /* vector uint */ /* offset of quad from start of tile * XXX assuming 4-byte pixels for color AND Z/stencil!!!! */ int quad_offset_reg; int fbRGBA_reg; /**< framebuffer's RGBA colors for quad */ int fbZS_reg; /**< framebuffer's combined z/stencil values for quad */ spe_init_func(f, SPU_MAX_FRAGMENT_OPS_INSTS * SPE_INST_SIZE); if (cell->debug_flags & CELL_DEBUG_ASM) { spe_print_code(f, true); spe_indent(f, 8); spe_comment(f, -4, "Begin per-fragment ops"); } spe_allocate_register(f, x_reg); spe_allocate_register(f, y_reg); spe_allocate_register(f, color_tile_reg); spe_allocate_register(f, depth_tile_reg); spe_allocate_register(f, fragZ_reg); spe_allocate_register(f, fragR_reg); spe_allocate_register(f, fragG_reg); spe_allocate_register(f, fragB_reg); spe_allocate_register(f, fragA_reg); spe_allocate_register(f, mask_reg); quad_offset_reg = spe_allocate_available_register(f); fbRGBA_reg = spe_allocate_available_register(f); fbZS_reg = spe_allocate_available_register(f); /* compute offset of quad from start of tile, in bytes */ { int x2_reg = spe_allocate_available_register(f); int y2_reg = spe_allocate_available_register(f); ASSERT(TILE_SIZE == 32); spe_rotmi(f, y2_reg, y_reg, -1); /* y2 = y / 2 */ spe_rotmi(f, x2_reg, x_reg, -1); /* x2 = x / 2 */ spe_shli(f, y2_reg, y2_reg, 4); /* y2 *= 16 */ spe_a(f, quad_offset_reg, y2_reg, x2_reg); /* offset = y2 + x2 */ spe_shli(f, quad_offset_reg, quad_offset_reg, 4); /* offset *= 16 */ spe_release_register(f, x2_reg); spe_release_register(f, y2_reg); } if (dsa->alpha.enabled) { gen_alpha_test(dsa, f, mask_reg, fragA_reg); } if (dsa->depth.enabled || dsa->stencil[0].enabled) { const enum pipe_format zs_format = cell->framebuffer.zsbuf->format; boolean write_depth_stencil; int fbZ_reg = spe_allocate_available_register(f); /* Z values */ int fbS_reg = spe_allocate_available_register(f); /* Stencil values */ /* fetch quad of depth/stencil values from tile at (x,y) */ /* Load: fbZS_reg = memory[depth_tile_reg + offset_reg] */ spe_lqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg); if (dsa->depth.enabled) { /* Extract Z bits from fbZS_reg into fbZ_reg */ if (zs_format == PIPE_FORMAT_S8Z24_UNORM || zs_format == PIPE_FORMAT_X8Z24_UNORM) { int mask_reg = spe_allocate_available_register(f); spe_fsmbi(f, mask_reg, 0x7777); /* mask[0,1,2,3] = 0x00ffffff */ spe_and(f, fbZ_reg, fbZS_reg, mask_reg); /* fbZ = fbZS & mask */ spe_release_register(f, mask_reg); /* OK, fbZ_reg has four 24-bit Z values now */ } else if (zs_format == PIPE_FORMAT_Z24S8_UNORM || zs_format == PIPE_FORMAT_Z24X8_UNORM) { spe_rotmi(f, fbZ_reg, fbZS_reg, -8); /* fbZ = fbZS >> 8 */ /* OK, fbZ_reg has four 24-bit Z values now */ } else if (zs_format == PIPE_FORMAT_Z32_UNORM) { spe_move(f, fbZ_reg, fbZS_reg); /* OK, fbZ_reg has four 32-bit Z values now */ } else if (zs_format == PIPE_FORMAT_Z16_UNORM) { spe_move(f, fbZ_reg, fbZS_reg); /* OK, fbZ_reg has four 16-bit Z values now */ } else { ASSERT(0); /* invalid format */ } /* Convert fragZ values from float[4] to 16, 24 or 32-bit uint[4] */ if (zs_format == PIPE_FORMAT_S8Z24_UNORM || zs_format == PIPE_FORMAT_X8Z24_UNORM || zs_format == PIPE_FORMAT_Z24S8_UNORM || zs_format == PIPE_FORMAT_Z24X8_UNORM) { /* scale/convert fragZ from float in [0,1] to uint in [0, ~0] */ spe_cfltu(f, fragZ_reg, fragZ_reg, 32); /* fragZ = fragZ >> 8 */ spe_rotmi(f, fragZ_reg, fragZ_reg, -8); } else if (zs_format == PIPE_FORMAT_Z32_UNORM) { /* scale/convert fragZ from float in [0,1] to uint in [0, ~0] */ spe_cfltu(f, fragZ_reg, fragZ_reg, 32); } else if (zs_format == PIPE_FORMAT_Z16_UNORM) { /* scale/convert fragZ from float in [0,1] to uint in [0, ~0] */ spe_cfltu(f, fragZ_reg, fragZ_reg, 32); /* fragZ = fragZ >> 16 */ spe_rotmi(f, fragZ_reg, fragZ_reg, -16); } } else { /* no Z test, but set Z to zero so we don't OR-in garbage below */ spe_load_uint(f, fbZ_reg, 0); /* XXX set to zero for now */ } if (dsa->stencil[0].enabled) { /* Extract Stencil bit sfrom fbZS_reg into fbS_reg */ if (zs_format == PIPE_FORMAT_S8Z24_UNORM || zs_format == PIPE_FORMAT_X8Z24_UNORM) { /* XXX extract with a shift */ ASSERT(0); } else if (zs_format == PIPE_FORMAT_Z24S8_UNORM || zs_format == PIPE_FORMAT_Z24X8_UNORM) { /* XXX extract with a mask */ ASSERT(0); } } else { /* no stencil test, but set to zero so we don't OR-in garbage below */ spe_load_uint(f, fbS_reg, 0); /* XXX set to zero for now */ } if (dsa->stencil[0].enabled) { /* XXX this may involve depth testing too */ // gen_stencil_test(dsa, f, ... ); ASSERT(0); } else if (dsa->depth.enabled) { int zmask_reg = spe_allocate_available_register(f); gen_depth_test(dsa, f, mask_reg, fragZ_reg, fbZ_reg, zmask_reg); spe_release_register(f, zmask_reg); } /* do we need to write Z and/or Stencil back into framebuffer? */ write_depth_stencil = (dsa->depth.writemask | dsa->stencil[0].write_mask | dsa->stencil[1].write_mask); if (write_depth_stencil) { /* Merge latest Z and Stencil values into fbZS_reg. * fbZ_reg has four Z vals in bits [23..0] or bits [15..0]. * fbS_reg has four 8-bit Z values in bits [7..0]. */ if (zs_format == PIPE_FORMAT_S8Z24_UNORM || zs_format == PIPE_FORMAT_X8Z24_UNORM) { spe_shli(f, fbS_reg, fbS_reg, 24); /* fbS = fbS << 24 */ spe_or(f, fbZS_reg, fbS_reg, fbZ_reg); /* fbZS = fbS | fbZ */ } else if (zs_format == PIPE_FORMAT_Z24S8_UNORM || zs_format == PIPE_FORMAT_Z24X8_UNORM) { spe_shli(f, fbZ_reg, fbZ_reg, 8); /* fbZ = fbZ << 8 */ spe_or(f, fbZS_reg, fbS_reg, fbZ_reg); /* fbZS = fbS | fbZ */ } else if (zs_format == PIPE_FORMAT_Z32_UNORM) { spe_move(f, fbZS_reg, fbZ_reg); /* fbZS = fbZ */ } else if (zs_format == PIPE_FORMAT_Z16_UNORM) { spe_move(f, fbZS_reg, fbZ_reg); /* fbZS = fbZ */ } else if (zs_format == PIPE_FORMAT_S8_UNORM) { ASSERT(0); /* XXX to do */ } else { ASSERT(0); /* bad zs_format */ } /* Store: memory[depth_tile_reg + quad_offset_reg] = fbZS */ spe_stqx(f, fbZS_reg, depth_tile_reg, quad_offset_reg); } spe_release_register(f, fbZ_reg); spe_release_register(f, fbS_reg); } /* Get framebuffer quad/colors. We'll need these for blending, * color masking, and to obey the quad/pixel mask. * Load: fbRGBA_reg = memory[color_tile + quad_offset] * Note: if mask={~0,~0,~0,~0} and we're not blending or colormasking * we could skip this load. */ spe_lqx(f, fbRGBA_reg, color_tile_reg, quad_offset_reg); if (blend->blend_enable) { gen_blend(blend, blend_color, f, color_format, fragR_reg, fragG_reg, fragB_reg, fragA_reg, fbRGBA_reg); } /* * Write fragment colors to framebuffer/tile. * This involves converting the fragment colors from float[4] to the * tile's specific format and obeying the quad/pixel mask. */ { int rgba_reg = spe_allocate_available_register(f); /* Pack four float colors as four 32-bit int colors */ gen_pack_colors(f, color_format, fragR_reg, fragG_reg, fragB_reg, fragA_reg, rgba_reg); if (blend->logicop_enable) { gen_logicop(blend, f, rgba_reg, fbRGBA_reg); } if (blend->colormask != PIPE_MASK_RGBA) { gen_colormask(f, blend->colormask, color_format, rgba_reg, fbRGBA_reg); } /* Mix fragment colors with framebuffer colors using the quad/pixel mask: * if (mask[i]) * rgba[i] = rgba[i]; * else * rgba[i] = framebuffer[i]; */ spe_selb(f, rgba_reg, fbRGBA_reg, rgba_reg, mask_reg); /* Store updated quad in tile: * memory[color_tile + quad_offset] = rgba_reg; */ spe_stqx(f, rgba_reg, color_tile_reg, quad_offset_reg); spe_release_register(f, rgba_reg); } //printf("gen_fragment_ops nr instructions: %u\n", f->num_inst); spe_bi(f, SPE_REG_RA, 0, 0); /* return from function call */ spe_release_register(f, fbRGBA_reg); spe_release_register(f, fbZS_reg); spe_release_register(f, quad_offset_reg); if (cell->debug_flags & CELL_DEBUG_ASM) { spe_comment(f, -4, "End per-fragment ops"); } }