/* Copyright (C) Intel Corp. 2006. All Rights Reserved. Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to develop this 3D driver. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice (including the next paragraph) shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. **********************************************************************/ /* * Authors: * Keith Whitwell */ #include "util/u_math.h" #include "tgsi/tgsi_info.h" #include "brw_context.h" #include "brw_wm.h" #include "brw_debug.h" #include "brw_disasm.h" /* Not quite sure how correct this is - need to understand horiz * vs. vertical strides a little better. */ static INLINE struct brw_reg sechalf( struct brw_reg reg ) { if (reg.vstride) reg.nr++; return reg; } /* Payload R0: * * R0.0 -- pixel mask, one bit for each of 4 pixels in 4 quads, * corresponding to each of the 16 execution channels. * R0.1..8 -- ? * R1.0 -- triangle vertex 0.X * R1.1 -- triangle vertex 0.Y * R1.2 -- quad 0 x,y coords (2 packed uwords) * R1.3 -- quad 1 x,y coords (2 packed uwords) * R1.4 -- quad 2 x,y coords (2 packed uwords) * R1.5 -- quad 3 x,y coords (2 packed uwords) * R1.6 -- ? * R1.7 -- ? * R1.8 -- ? */ static void emit_pixel_xy(struct brw_compile *p, const struct brw_reg *dst, GLuint mask) { struct brw_reg r1 = brw_vec1_grf(1, 0); struct brw_reg r1_uw = retype(r1, BRW_REGISTER_TYPE_UW); brw_set_compression_control(p, BRW_COMPRESSION_NONE); /* Calculate pixel centers by adding 1 or 0 to each of the * micro-tile coordinates passed in r1. */ if (mask & BRW_WRITEMASK_X) { brw_ADD(p, vec16(retype(dst[0], BRW_REGISTER_TYPE_UW)), stride(suboffset(r1_uw, 4), 2, 4, 0), brw_imm_v(0x10101010)); } if (mask & BRW_WRITEMASK_Y) { brw_ADD(p, vec16(retype(dst[1], BRW_REGISTER_TYPE_UW)), stride(suboffset(r1_uw,5), 2, 4, 0), brw_imm_v(0x11001100)); } brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); } static void emit_delta_xy(struct brw_compile *p, const struct brw_reg *dst, GLuint mask, const struct brw_reg *arg0) { struct brw_reg r1 = brw_vec1_grf(1, 0); /* Calc delta X,Y by subtracting origin in r1 from the pixel * centers. */ if (mask & BRW_WRITEMASK_X) { brw_ADD(p, dst[0], retype(arg0[0], BRW_REGISTER_TYPE_UW), negate(r1)); } if (mask & BRW_WRITEMASK_Y) { brw_ADD(p, dst[1], retype(arg0[1], BRW_REGISTER_TYPE_UW), negate(suboffset(r1,1))); } } static void emit_wpos_xy(struct brw_wm_compile *c, const struct brw_reg *dst, GLuint mask, const struct brw_reg *arg0) { struct brw_compile *p = &c->func; if (mask & BRW_WRITEMASK_X) { /* X' = X */ brw_MOV(p, dst[0], retype(arg0[0], BRW_REGISTER_TYPE_W)); } /* XXX: is this needed any more, or is this a NOOP? */ if (mask & BRW_WRITEMASK_Y) { #if 0 /* Y' = height - 1 - Y */ brw_ADD(p, dst[1], negate(retype(arg0[1], BRW_REGISTER_TYPE_W)), brw_imm_d(c->key.drawable_height - 1)); #else brw_MOV(p, dst[0], retype(arg0[0], BRW_REGISTER_TYPE_W)); #endif } } static void emit_pixel_w( struct brw_compile *p, const struct brw_reg *dst, GLuint mask, const struct brw_reg *arg0, const struct brw_reg *deltas) { /* Don't need this if all you are doing is interpolating color, for * instance. */ if (mask & BRW_WRITEMASK_W) { struct brw_reg interp3 = brw_vec1_grf(arg0[0].nr+1, 4); /* Calc 1/w - just linterp wpos[3] optimized by putting the * result straight into a message reg. */ brw_LINE(p, brw_null_reg(), interp3, deltas[0]); brw_MAC(p, brw_message_reg(2), suboffset(interp3, 1), deltas[1]); /* Calc w */ brw_math_16( p, dst[3], BRW_MATH_FUNCTION_INV, BRW_MATH_SATURATE_NONE, 2, brw_null_reg(), BRW_MATH_PRECISION_FULL); } } static void emit_linterp( struct brw_compile *p, const struct brw_reg *dst, GLuint mask, const struct brw_reg *arg0, const struct brw_reg *deltas ) { struct brw_reg interp[4]; GLuint nr = arg0[0].nr; GLuint i; interp[0] = brw_vec1_grf(nr, 0); interp[1] = brw_vec1_grf(nr, 4); interp[2] = brw_vec1_grf(nr+1, 0); interp[3] = brw_vec1_grf(nr+1, 4); for (i = 0; i < 4; i++) { if (mask & (1<func; GLuint msgLength, responseLength; GLuint i, nr; GLuint emit; GLuint msg_type; GLboolean shadow = FALSE; /* How many input regs are there? */ switch (inst->target) { case TGSI_TEXTURE_1D: emit = BRW_WRITEMASK_X; nr = 1; break; case TGSI_TEXTURE_SHADOW1D: emit = BRW_WRITEMASK_XW; nr = 4; shadow = TRUE; break; case TGSI_TEXTURE_2D: emit = BRW_WRITEMASK_XY; nr = 2; break; case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: emit = BRW_WRITEMASK_XYW; nr = 4; shadow = TRUE; break; case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: emit = BRW_WRITEMASK_XYZ; nr = 3; break; default: /* unexpected target */ abort(); } msgLength = 1; for (i = 0; i < nr; i++) { static const GLuint swz[4] = {0,1,2,2}; if (emit & (1<brw->gen == 5) { if (shadow) msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5; else msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5; } else { if (shadow) msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_COMPARE; else msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE; } brw_SAMPLE(p, retype(vec16(dst[0]), BRW_REGISTER_TYPE_UW), 1, retype(c->payload.depth[0].hw_reg, BRW_REGISTER_TYPE_UW), BTI_TEXTURE(inst->tex_unit), sampler, /* sampler index */ inst->writemask, msg_type, responseLength, msgLength, 0, 1, BRW_SAMPLER_SIMD_MODE_SIMD16); } static void emit_txb( struct brw_wm_compile *c, const struct brw_wm_instruction *inst, struct brw_reg *dst, GLuint dst_flags, struct brw_reg *coord, GLuint sampler ) { struct brw_compile *p = &c->func; GLuint msgLength; GLuint msg_type; /* Shadow ignored for txb. */ switch (inst->target) { case TGSI_TEXTURE_1D: case TGSI_TEXTURE_SHADOW1D: brw_MOV(p, brw_message_reg(2), coord[0]); brw_MOV(p, brw_message_reg(4), brw_imm_f(0)); brw_MOV(p, brw_message_reg(6), brw_imm_f(0)); break; case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: brw_MOV(p, brw_message_reg(2), coord[0]); brw_MOV(p, brw_message_reg(4), coord[1]); brw_MOV(p, brw_message_reg(6), brw_imm_f(0)); break; case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: brw_MOV(p, brw_message_reg(2), coord[0]); brw_MOV(p, brw_message_reg(4), coord[1]); brw_MOV(p, brw_message_reg(6), coord[2]); break; default: /* unexpected target */ abort(); } brw_MOV(p, brw_message_reg(8), coord[3]); msgLength = 9; if (p->brw->gen == 5) msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5; else msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS; brw_SAMPLE(p, retype(vec16(dst[0]), BRW_REGISTER_TYPE_UW), 1, retype(c->payload.depth[0].hw_reg, BRW_REGISTER_TYPE_UW), BTI_TEXTURE(inst->tex_unit), sampler, /* sampler index */ inst->writemask, msg_type, 8, /* responseLength */ msgLength, 0, 1, BRW_SAMPLER_SIMD_MODE_SIMD16); } static void emit_lit( struct brw_compile *p, const struct brw_reg *dst, GLuint mask, const struct brw_reg *arg0 ) { assert((mask & BRW_WRITEMASK_XW) == 0); if (mask & BRW_WRITEMASK_Y) { brw_set_saturate(p, (mask & SATURATE) ? 1 : 0); brw_MOV(p, dst[1], arg0[0]); brw_set_saturate(p, 0); } if (mask & BRW_WRITEMASK_Z) { emit_math2(p, BRW_MATH_FUNCTION_POW, &dst[2], BRW_WRITEMASK_X | (mask & SATURATE), &arg0[1], &arg0[3]); } /* Ordinarily you'd use an iff statement to skip or shortcircuit * some of the POW calculations above, but 16-wide iff statements * seem to lock c1 hardware, so this is a nasty workaround: */ brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_LE, arg0[0], brw_imm_f(0)); { if (mask & BRW_WRITEMASK_Y) brw_MOV(p, dst[1], brw_imm_f(0)); if (mask & BRW_WRITEMASK_Z) brw_MOV(p, dst[2], brw_imm_f(0)); } brw_set_predicate_control(p, BRW_PREDICATE_NONE); } /* Kill pixel - set execution mask to zero for those pixels which * fail. */ static void emit_kil( struct brw_wm_compile *c, struct brw_reg *arg0) { struct brw_compile *p = &c->func; struct brw_reg r0uw = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW); GLuint i; /* XXX - usually won't need 4 compares! */ for (i = 0; i < 4; i++) { brw_push_insn_state(p); brw_CMP(p, brw_null_reg(), BRW_CONDITIONAL_GE, arg0[i], brw_imm_f(0)); brw_set_predicate_control_flag_value(p, 0xff); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_AND(p, r0uw, brw_flag_reg(), r0uw); brw_pop_insn_state(p); } } /* KILLP kills the pixels that are currently executing, not based on a test * of the arguments. */ static void emit_killp( struct brw_wm_compile *c ) { struct brw_compile *p = &c->func; struct brw_reg r0uw = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW); brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); brw_NOT(p, c->emit_mask_reg, brw_mask_reg(1)); /* IMASK */ brw_AND(p, r0uw, c->emit_mask_reg, r0uw); brw_pop_insn_state(p); } static void fire_fb_write( struct brw_wm_compile *c, GLuint base_reg, GLuint nr, GLuint target, GLuint eot ) { struct brw_compile *p = &c->func; /* Pass through control information: */ /* mov (8) m1.0<1>:ud r1.0<8;8,1>:ud { Align1 NoMask } */ { brw_push_insn_state(p); brw_set_mask_control(p, BRW_MASK_DISABLE); /* ? */ brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_MOV(p, brw_message_reg(base_reg + 1), brw_vec8_grf(1, 0)); brw_pop_insn_state(p); } /* Send framebuffer write message: */ /* send (16) null.0<1>:uw m0 r0.0<8;8,1>:uw 0x85a04000:ud { Align1 EOT } */ brw_fb_WRITE(p, retype(vec16(brw_null_reg()), BRW_REGISTER_TYPE_UW), base_reg, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW), target, nr, 0, eot); } static void emit_aa( struct brw_wm_compile *c, struct brw_reg *arg1, GLuint reg ) { struct brw_compile *p = &c->func; GLuint comp = c->key.aa_dest_stencil_reg / 2; GLuint off = c->key.aa_dest_stencil_reg % 2; struct brw_reg aa = offset(arg1[comp], off); brw_push_insn_state(p); brw_set_compression_control(p, BRW_COMPRESSION_NONE); /* ?? */ brw_MOV(p, brw_message_reg(reg), aa); brw_pop_insn_state(p); } /* Post-fragment-program processing. Send the results to the * framebuffer. * \param arg0 the fragment color * \param arg1 the pass-through depth value * \param arg2 the shader-computed depth value */ static void emit_fb_write( struct brw_wm_compile *c, struct brw_reg *arg0, struct brw_reg *arg1, struct brw_reg *arg2, GLuint target, GLuint eot) { struct brw_compile *p = &c->func; GLuint nr = 2; GLuint channel; /* Reserve a space for AA - may not be needed: */ if (c->key.aa_dest_stencil_reg) nr += 1; /* I don't really understand how this achieves the color interleave * (ie RGBARGBA) in the result: [Do the saturation here] */ { brw_push_insn_state(p); for (channel = 0; channel < 4; channel++) { /* mov (8) m2.0<1>:ud r28.0<8;8,1>:ud { Align1 } */ /* mov (8) m6.0<1>:ud r29.0<8;8,1>:ud { Align1 SecHalf } */ brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_MOV(p, brw_message_reg(nr + channel), arg0[channel]); brw_set_compression_control(p, BRW_COMPRESSION_2NDHALF); brw_MOV(p, brw_message_reg(nr + channel + 4), sechalf(arg0[channel])); } /* skip over the regs populated above: */ nr += 8; brw_pop_insn_state(p); } if (c->key.source_depth_to_render_target) { if (c->key.computes_depth) brw_MOV(p, brw_message_reg(nr), arg2[2]); else brw_MOV(p, brw_message_reg(nr), arg1[1]); /* ? */ nr += 2; } if (c->key.dest_depth_reg) { GLuint comp = c->key.dest_depth_reg / 2; GLuint off = c->key.dest_depth_reg % 2; if (off != 0) { brw_push_insn_state(p); brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_MOV(p, brw_message_reg(nr), offset(arg1[comp],1)); /* 2nd half? */ brw_MOV(p, brw_message_reg(nr+1), arg1[comp+1]); brw_pop_insn_state(p); } else { brw_MOV(p, brw_message_reg(nr), arg1[comp]); } nr += 2; } if (!c->key.runtime_check_aads_emit) { if (c->key.aa_dest_stencil_reg) emit_aa(c, arg1, 2); fire_fb_write(c, 0, nr, target, eot); } else { struct brw_reg v1_null_ud = vec1(retype(brw_null_reg(), BRW_REGISTER_TYPE_UD)); struct brw_reg ip = brw_ip_reg(); struct brw_instruction *jmp; brw_set_compression_control(p, BRW_COMPRESSION_NONE); brw_set_conditionalmod(p, BRW_CONDITIONAL_Z); brw_AND(p, v1_null_ud, get_element_ud(brw_vec8_grf(1,0), 6), brw_imm_ud(1<<26)); jmp = brw_JMPI(p, ip, ip, brw_imm_d(0)); { emit_aa(c, arg1, 2); fire_fb_write(c, 0, nr, target, eot); /* note - thread killed in subroutine */ } brw_land_fwd_jump(p, jmp); /* ELSE: Shuffle up one register to fill in the hole left for AA: */ fire_fb_write(c, 1, nr-1, target, eot); } } /** * Move a GPR to scratch memory. */ static void emit_spill( struct brw_wm_compile *c, struct brw_reg reg, GLuint slot ) { struct brw_compile *p = &c->func; /* mov (16) m2.0<1>:ud r2.0<8;8,1>:ud { Align1 Compr } */ brw_MOV(p, brw_message_reg(2), reg); /* mov (1) r0.2<1>:d 0x00000080:d { Align1 NoMask } send (16) null.0<1>:uw m1 r0.0<8;8,1>:uw 0x053003ff:ud { Align1 } */ brw_dp_WRITE_16(p, retype(vec16(brw_vec8_grf(0, 0)), BRW_REGISTER_TYPE_UW), slot); } /** * Load a GPR from scratch memory. */ static void emit_unspill( struct brw_wm_compile *c, struct brw_reg reg, GLuint slot ) { struct brw_compile *p = &c->func; /* Slot 0 is the undef value. */ if (slot == 0) { brw_MOV(p, reg, brw_imm_f(0)); return; } /* mov (1) r0.2<1>:d 0x000000c0:d { Align1 NoMask } send (16) r110.0<1>:uw m1 r0.0<8;8,1>:uw 0x041243ff:ud { Align1 } */ brw_dp_READ_16(p, retype(vec16(reg), BRW_REGISTER_TYPE_UW), slot); } /** * Retrieve up to 4 GEN4 register pairs for the given wm reg: * Args with unspill_reg != 0 will be loaded from scratch memory. */ static void get_argument_regs( struct brw_wm_compile *c, struct brw_wm_ref *arg[], struct brw_reg *regs ) { GLuint i; for (i = 0; i < 4; i++) { if (arg[i]) { if (arg[i]->unspill_reg) emit_unspill(c, brw_vec8_grf(arg[i]->unspill_reg, 0), arg[i]->value->spill_slot); regs[i] = arg[i]->hw_reg; } else { regs[i] = brw_null_reg(); } } } /** * For values that have a spill_slot!=0, write those regs to scratch memory. */ static void spill_values( struct brw_wm_compile *c, struct brw_wm_value *values, GLuint nr ) { GLuint i; for (i = 0; i < nr; i++) if (values[i].spill_slot) emit_spill(c, values[i].hw_reg, values[i].spill_slot); } /* Emit the fragment program instructions here. */ void brw_wm_emit( struct brw_wm_compile *c ) { struct brw_compile *p = &c->func; GLuint insn; brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED); /* Check if any of the payload regs need to be spilled: */ spill_values(c, c->payload.depth, 4); spill_values(c, c->creg, c->nr_creg); spill_values(c, c->payload.input_interp, PIPE_MAX_SHADER_INPUTS); for (insn = 0; insn < c->nr_insns; insn++) { struct brw_wm_instruction *inst = &c->instruction[insn]; struct brw_reg args[3][4], dst[4]; GLuint i, dst_flags; /* Get argument regs: */ for (i = 0; i < 3; i++) get_argument_regs(c, inst->src[i], args[i]); /* Get dest regs: */ for (i = 0; i < 4; i++) if (inst->dst[i]) dst[i] = inst->dst[i]->hw_reg; else dst[i] = brw_null_reg(); /* Flags */ dst_flags = inst->writemask; if (inst->saturate) dst_flags |= SATURATE; switch (inst->opcode) { /* Generated instructions for calculating triangle interpolants: */ case WM_PIXELXY: emit_pixel_xy(p, dst, dst_flags); break; case WM_DELTAXY: emit_delta_xy(p, dst, dst_flags, args[0]); break; case WM_WPOSXY: emit_wpos_xy(c, dst, dst_flags, args[0]); break; case WM_PIXELW: emit_pixel_w(p, dst, dst_flags, args[0], args[1]); break; case WM_LINTERP: emit_linterp(p, dst, dst_flags, args[0], args[1]); break; case WM_PINTERP: emit_pinterp(p, dst, dst_flags, args[0], args[1], args[2]); break; case WM_CINTERP: emit_cinterp(p, dst, dst_flags, args[0]); break; case WM_FB_WRITE: emit_fb_write(c, args[0], args[1], args[2], inst->target, inst->eot); break; case WM_FRONTFACING: emit_frontfacing(p, dst, dst_flags); break; /* Straightforward arithmetic: */ case TGSI_OPCODE_ADD: emit_alu2(p, brw_ADD, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_FRC: emit_alu1(p, brw_FRC, dst, dst_flags, args[0]); break; case TGSI_OPCODE_FLR: emit_alu1(p, brw_RNDD, dst, dst_flags, args[0]); break; case TGSI_OPCODE_DDX: emit_ddxy(p, dst, dst_flags, GL_TRUE, args[0]); break; case TGSI_OPCODE_DDY: emit_ddxy(p, dst, dst_flags, GL_FALSE, args[0]); break; case TGSI_OPCODE_DP3: emit_dp3(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_DP4: emit_dp4(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_DPH: emit_dph(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_TRUNC: emit_trunc(p, dst, dst_flags, args[0]); break; case TGSI_OPCODE_LRP: emit_lrp(p, dst, dst_flags, args[0], args[1], args[2]); break; case TGSI_OPCODE_MAD: emit_mad(p, dst, dst_flags, args[0], args[1], args[2]); break; case TGSI_OPCODE_MOV: emit_alu1(p, brw_MOV, dst, dst_flags, args[0]); break; case TGSI_OPCODE_MUL: emit_alu2(p, brw_MUL, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_XPD: emit_xpd(p, dst, dst_flags, args[0], args[1]); break; /* Higher math functions: */ case TGSI_OPCODE_RCP: emit_math1(p, BRW_MATH_FUNCTION_INV, dst, dst_flags, args[0]); break; case TGSI_OPCODE_RSQ: emit_math1(p, BRW_MATH_FUNCTION_RSQ, dst, dst_flags, args[0]); break; case TGSI_OPCODE_SIN: emit_math1(p, BRW_MATH_FUNCTION_SIN, dst, dst_flags, args[0]); break; case TGSI_OPCODE_COS: emit_math1(p, BRW_MATH_FUNCTION_COS, dst, dst_flags, args[0]); break; case TGSI_OPCODE_EX2: emit_math1(p, BRW_MATH_FUNCTION_EXP, dst, dst_flags, args[0]); break; case TGSI_OPCODE_LG2: emit_math1(p, BRW_MATH_FUNCTION_LOG, dst, dst_flags, args[0]); break; case TGSI_OPCODE_SCS: /* There is an scs math function, but it would need some * fixup for 16-element execution. */ if (dst_flags & BRW_WRITEMASK_X) emit_math1(p, BRW_MATH_FUNCTION_COS, dst, (dst_flags&SATURATE)|BRW_WRITEMASK_X, args[0]); if (dst_flags & BRW_WRITEMASK_Y) emit_math1(p, BRW_MATH_FUNCTION_SIN, dst+1, (dst_flags&SATURATE)|BRW_WRITEMASK_X, args[0]); break; case TGSI_OPCODE_POW: emit_math2(p, BRW_MATH_FUNCTION_POW, dst, dst_flags, args[0], args[1]); break; /* Comparisons: */ case TGSI_OPCODE_CMP: emit_cmp(p, dst, dst_flags, args[0], args[1], args[2]); break; case TGSI_OPCODE_MAX: emit_max(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_MIN: emit_min(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_SLT: emit_slt(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_SLE: emit_sle(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_SGT: emit_sgt(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_SGE: emit_sge(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_SEQ: emit_seq(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_SNE: emit_sne(p, dst, dst_flags, args[0], args[1]); break; case TGSI_OPCODE_LIT: emit_lit(p, dst, dst_flags, args[0]); break; /* Texturing operations: */ case TGSI_OPCODE_TEX: emit_tex(c, inst, dst, dst_flags, args[0], inst->sampler); break; case TGSI_OPCODE_TXB: emit_txb(c, inst, dst, dst_flags, args[0], inst->sampler); break; case TGSI_OPCODE_KIL: emit_kil(c, args[0]); break; case TGSI_OPCODE_KILP: emit_killp(c); break; default: debug_printf("Unsupported opcode %i (%s) in fragment shader\n", inst->opcode, tgsi_get_opcode_info(inst->opcode)->mnemonic); } for (i = 0; i < 4; i++) if (inst->dst[i] && inst->dst[i]->spill_slot) emit_spill(c, inst->dst[i]->hw_reg, inst->dst[i]->spill_slot); } if (BRW_DEBUG & DEBUG_WM) { debug_printf("wm-native:\n"); brw_disasm(stderr, p->store, p->nr_insn, p->brw->gen); } }