/* -*- c-basic-offset: 4 -*- */ /* * Copyright © 2007 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ /** @file intel_decode.c * This file contains code to print out batchbuffer contents in a * human-readable format. * * The current version only supports i915 packets, and only pretty-prints a * subset of them. The intention is for it to make just a best attempt to * decode, but never crash in the process. */ #include #include #include #include #include "util/u_memory.h" #include "util/u_string.h" #include "intel_decode.h" #include "brw_reg.h" /*#include "intel_chipset.h"*/ #define IS_9XX(x) 1 /* XXX */ #define BUFFER_FAIL(_count, _len, _name) do { \ fprintf(out, "Buffer size too small in %s (%d < %d)\n", \ (_name), (_count), (_len)); \ (*failures)++; \ return count; \ } while (0) static FILE *out; static uint32_t saved_s2 = 0, saved_s4 = 0; static char saved_s2_set = 0, saved_s4_set = 0; static float int_as_float(uint32_t intval) { union intfloat { uint32_t i; float f; } uval; uval.i = intval; return uval.f; } static void instr_out(const uint32_t *data, uint32_t hw_offset, unsigned int index, char *fmt, ...) { va_list va; fprintf(out, "0x%08x: 0x%08x:%s ", hw_offset + index * 4, data[index], index == 0 ? "" : " "); va_start(va, fmt); vfprintf(out, fmt, va); va_end(va); } static int decode_mi(const uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode; struct { uint32_t opcode; int len_mask; int min_len; int max_len; char *name; } opcodes_mi[] = { { 0x08, 0, 1, 1, "MI_ARB_ON_OFF" }, { 0x0a, 0, 1, 1, "MI_BATCH_BUFFER_END" }, { 0x30, 0x3f, 3, 3, "MI_BATCH_BUFFER" }, { 0x31, 0x3f, 2, 2, "MI_BATCH_BUFFER_START" }, { 0x14, 0x3f, 3, 3, "MI_DISPLAY_BUFFER_INFO" }, { 0x04, 0, 1, 1, "MI_FLUSH" }, { 0x22, 0x1f, 3, 3, "MI_LOAD_REGISTER_IMM" }, { 0x13, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_EXCL" }, { 0x12, 0x3f, 2, 2, "MI_LOAD_SCAN_LINES_INCL" }, { 0x00, 0, 1, 1, "MI_NOOP" }, { 0x11, 0x3f, 2, 2, "MI_OVERLAY_FLIP" }, { 0x07, 0, 1, 1, "MI_REPORT_HEAD" }, { 0x18, 0x3f, 2, 2, "MI_SET_CONTEXT" }, { 0x20, 0x3f, 3, 4, "MI_STORE_DATA_IMM" }, { 0x21, 0x3f, 3, 4, "MI_STORE_DATA_INDEX" }, { 0x24, 0x3f, 3, 3, "MI_STORE_REGISTER_MEM" }, { 0x02, 0, 1, 1, "MI_USER_INTERRUPT" }, { 0x03, 0, 1, 1, "MI_WAIT_FOR_EVENT" }, }; switch ((data[0] & 0x1f800000) >> 23) { case 0x0a: instr_out(data, hw_offset, 0, "MI_BATCH_BUFFER_END\n"); return -1; } for (opcode = 0; opcode < Elements(opcodes_mi); opcode++) { if ((data[0] & 0x1f800000) >> 23 == opcodes_mi[opcode].opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcodes_mi[opcode].name); if (opcodes_mi[opcode].max_len > 1) { len = (data[0] & opcodes_mi[opcode].len_mask) + 2; if (len < opcodes_mi[opcode].min_len || len > opcodes_mi[opcode].max_len) { fprintf(out, "Bad length (%d) in %s, [%d, %d]\n", len, opcodes_mi[opcode].name, opcodes_mi[opcode].min_len, opcodes_mi[opcode].max_len); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_mi[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "MI UNKNOWN\n"); (*failures)++; return 1; } static int decode_2d(const uint32_t *data, int count, uint32_t hw_offset, int *failures) { unsigned int opcode, len; char *format = NULL; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_2d[] = { { 0x40, 5, 5, "COLOR_BLT" }, { 0x43, 6, 6, "SRC_COPY_BLT" }, { 0x01, 8, 8, "XY_SETUP_BLT" }, { 0x11, 9, 9, "XY_SETUP_MONO_PATTERN_SL_BLT" }, { 0x03, 3, 3, "XY_SETUP_CLIP_BLT" }, { 0x24, 2, 2, "XY_PIXEL_BLT" }, { 0x25, 3, 3, "XY_SCANLINES_BLT" }, { 0x26, 4, 4, "Y_TEXT_BLT" }, { 0x31, 5, 134, "XY_TEXT_IMMEDIATE_BLT" }, { 0x50, 6, 6, "XY_COLOR_BLT" }, { 0x51, 6, 6, "XY_PAT_BLT" }, { 0x76, 8, 8, "XY_PAT_CHROMA_BLT" }, { 0x72, 7, 135, "XY_PAT_BLT_IMMEDIATE" }, { 0x77, 9, 137, "XY_PAT_CHROMA_BLT_IMMEDIATE" }, { 0x52, 9, 9, "XY_MONO_PAT_BLT" }, { 0x59, 7, 7, "XY_MONO_PAT_FIXED_BLT" }, { 0x53, 8, 8, "XY_SRC_COPY_BLT" }, { 0x54, 8, 8, "XY_MONO_SRC_COPY_BLT" }, { 0x71, 9, 137, "XY_MONO_SRC_COPY_IMMEDIATE_BLT" }, { 0x55, 9, 9, "XY_FULL_BLT" }, { 0x55, 9, 137, "XY_FULL_IMMEDIATE_PATTERN_BLT" }, { 0x56, 9, 9, "XY_FULL_MONO_SRC_BLT" }, { 0x75, 10, 138, "XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT" }, { 0x57, 12, 12, "XY_FULL_MONO_PATTERN_BLT" }, { 0x58, 12, 12, "XY_FULL_MONO_PATTERN_MONO_SRC_BLT" }, }; switch ((data[0] & 0x1fc00000) >> 22) { case 0x50: instr_out(data, hw_offset, 0, "XY_COLOR_BLT (rgb %sabled, alpha %sabled, dst tile %d)\n", (data[0] & (1 << 20)) ? "en" : "dis", (data[0] & (1 << 21)) ? "en" : "dis", (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; if (len != 6) fprintf(out, "Bad count in XY_COLOR_BLT\n"); if (count < 6) BUFFER_FAIL(count, len, "XY_COLOR_BLT"); switch ((data[1] >> 24) & 0x3) { case 0: format="8"; break; case 1: format="565"; break; case 2: format="1555"; break; case 3: format="8888"; break; } instr_out(data, hw_offset, 1, "format %s, pitch %d, " "clipping %sabled\n", format, (short)(data[1] & 0xffff), data[1] & (1 << 30) ? "en" : "dis"); instr_out(data, hw_offset, 2, "(%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(data, hw_offset, 3, "(%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(data, hw_offset, 4, "offset 0x%08x\n", data[4]); instr_out(data, hw_offset, 5, "color\n"); return len; case 0x53: instr_out(data, hw_offset, 0, "XY_SRC_COPY_BLT (rgb %sabled, alpha %sabled, " "src tile %d, dst tile %d)\n", (data[0] & (1 << 20)) ? "en" : "dis", (data[0] & (1 << 21)) ? "en" : "dis", (data[0] >> 15) & 1, (data[0] >> 11) & 1); len = (data[0] & 0x000000ff) + 2; if (len != 8) fprintf(out, "Bad count in XY_SRC_COPY_BLT\n"); if (count < 8) BUFFER_FAIL(count, len, "XY_SRC_COPY_BLT"); switch ((data[1] >> 24) & 0x3) { case 0: format="8"; break; case 1: format="565"; break; case 2: format="1555"; break; case 3: format="8888"; break; } instr_out(data, hw_offset, 1, "format %s, dst pitch %d, " "clipping %sabled\n", format, (short)(data[1] & 0xffff), data[1] & (1 << 30) ? "en" : "dis"); instr_out(data, hw_offset, 2, "dst (%d,%d)\n", data[2] & 0xffff, data[2] >> 16); instr_out(data, hw_offset, 3, "dst (%d,%d)\n", data[3] & 0xffff, data[3] >> 16); instr_out(data, hw_offset, 4, "dst offset 0x%08x\n", data[4]); instr_out(data, hw_offset, 5, "src (%d,%d)\n", data[5] & 0xffff, data[5] >> 16); instr_out(data, hw_offset, 6, "src pitch %d\n", (short)(data[6] & 0xffff)); instr_out(data, hw_offset, 7, "src offset 0x%08x\n", data[7]); return len; } for (opcode = 0; opcode < Elements(opcodes_2d); opcode++) { if ((data[0] & 0x1fc00000) >> 22 == opcodes_2d[opcode].opcode) { unsigned int i; len = 1; instr_out(data, hw_offset, 0, "%s\n", opcodes_2d[opcode].name); if (opcodes_2d[opcode].max_len > 1) { len = (data[0] & 0x000000ff) + 2; if (len < opcodes_2d[opcode].min_len || len > opcodes_2d[opcode].max_len) { fprintf(out, "Bad count in %s\n", opcodes_2d[opcode].name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcodes_2d[opcode].name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "2D UNKNOWN\n"); (*failures)++; return 1; } static int decode_3d_1c(const uint32_t *data, int count, uint32_t hw_offset, int *failures) { uint32_t opcode; opcode = (data[0] & 0x00f80000) >> 19; switch (opcode) { case 0x11: instr_out(data, hw_offset, 0, "3DSTATE_DEPTH_SUBRECTANGLE_DISABLE\n"); return 1; case 0x10: instr_out(data, hw_offset, 0, "3DSTATE_SCISSOR_ENABLE\n"); return 1; case 0x01: instr_out(data, hw_offset, 0, "3DSTATE_MAP_COORD_SET_I830\n"); return 1; case 0x0a: instr_out(data, hw_offset, 0, "3DSTATE_MAP_CUBE_I830\n"); return 1; case 0x05: instr_out(data, hw_offset, 0, "3DSTATE_MAP_TEX_STREAM_I830\n"); return 1; } instr_out(data, hw_offset, 0, "3D UNKNOWN: 3d_1c opcode = 0x%x\n", opcode); (*failures)++; return 1; } /** Sets the string dstname to describe the destination of the PS instruction */ static void i915_get_instruction_dst(const uint32_t *data, int i, char *dstname, int do_mask) { uint32_t a0 = data[i]; int dst_nr = (a0 >> 14) & 0xf; char dstmask[8]; char *sat; if (do_mask) { if (((a0 >> 10) & 0xf) == 0xf) { dstmask[0] = 0; } else { int dstmask_index = 0; dstmask[dstmask_index++] = '.'; if (a0 & (1 << 10)) dstmask[dstmask_index++] = 'x'; if (a0 & (1 << 11)) dstmask[dstmask_index++] = 'y'; if (a0 & (1 << 12)) dstmask[dstmask_index++] = 'z'; if (a0 & (1 << 13)) dstmask[dstmask_index++] = 'w'; dstmask[dstmask_index++] = 0; } if (a0 & (1 << 22)) sat = ".sat"; else sat = ""; } else { dstmask[0] = 0; sat = ""; } switch ((a0 >> 19) & 0x7) { case 0: if (dst_nr > 15) fprintf(out, "bad destination reg R%d\n", dst_nr); sprintf(dstname, "R%d%s%s", dst_nr, dstmask, sat); break; case 4: if (dst_nr > 0) fprintf(out, "bad destination reg oC%d\n", dst_nr); sprintf(dstname, "oC%s%s", dstmask, sat); break; case 5: if (dst_nr > 0) fprintf(out, "bad destination reg oD%d\n", dst_nr); sprintf(dstname, "oD%s%s", dstmask, sat); break; case 6: if (dst_nr > 3) fprintf(out, "bad destination reg U%d\n", dst_nr); sprintf(dstname, "U%d%s%s", dst_nr, dstmask, sat); break; default: sprintf(dstname, "RESERVED"); break; } } static char * i915_get_channel_swizzle(uint32_t select) { switch (select & 0x7) { case 0: return (select & 8) ? "-x" : "x"; case 1: return (select & 8) ? "-y" : "y"; case 2: return (select & 8) ? "-z" : "z"; case 3: return (select & 8) ? "-w" : "w"; case 4: return (select & 8) ? "-0" : "0"; case 5: return (select & 8) ? "-1" : "1"; default: return (select & 8) ? "-bad" : "bad"; } } static void i915_get_instruction_src_name(uint32_t src_type, uint32_t src_nr, char *name) { switch (src_type) { case 0: sprintf(name, "R%d", src_nr); if (src_nr > 15) fprintf(out, "bad src reg %s\n", name); break; case 1: if (src_nr < 8) sprintf(name, "T%d", src_nr); else if (src_nr == 8) sprintf(name, "DIFFUSE"); else if (src_nr == 9) sprintf(name, "SPECULAR"); else if (src_nr == 10) sprintf(name, "FOG"); else { fprintf(out, "bad src reg T%d\n", src_nr); sprintf(name, "RESERVED"); } break; case 2: sprintf(name, "C%d", src_nr); if (src_nr > 31) fprintf(out, "bad src reg %s\n", name); break; case 4: sprintf(name, "oC"); if (src_nr > 0) fprintf(out, "bad src reg oC%d\n", src_nr); break; case 5: sprintf(name, "oD"); if (src_nr > 0) fprintf(out, "bad src reg oD%d\n", src_nr); break; case 6: sprintf(name, "U%d", src_nr); if (src_nr > 3) fprintf(out, "bad src reg %s\n", name); break; default: fprintf(out, "bad src reg type %d\n", src_type); sprintf(name, "RESERVED"); break; } } static void i915_get_instruction_src0(const uint32_t *data, int i, char *srcname) { uint32_t a0 = data[i]; uint32_t a1 = data[i + 1]; int src_nr = (a0 >> 2) & 0x1f; char *swizzle_x = i915_get_channel_swizzle((a1 >> 28) & 0xf); char *swizzle_y = i915_get_channel_swizzle((a1 >> 24) & 0xf); char *swizzle_z = i915_get_channel_swizzle((a1 >> 20) & 0xf); char *swizzle_w = i915_get_channel_swizzle((a1 >> 16) & 0xf); char swizzle[100]; i915_get_instruction_src_name((a0 >> 7) & 0x7, src_nr, srcname); util_snprintf(swizzle, sizeof(swizzle), ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z, swizzle_w); if (strcmp(swizzle, ".xyzw") != 0) strcat(srcname, swizzle); } static void i915_get_instruction_src1(const uint32_t *data, int i, char *srcname) { uint32_t a1 = data[i + 1]; uint32_t a2 = data[i + 2]; int src_nr = (a1 >> 8) & 0x1f; char *swizzle_x = i915_get_channel_swizzle((a1 >> 4) & 0xf); char *swizzle_y = i915_get_channel_swizzle((a1 >> 0) & 0xf); char *swizzle_z = i915_get_channel_swizzle((a2 >> 28) & 0xf); char *swizzle_w = i915_get_channel_swizzle((a2 >> 24) & 0xf); char swizzle[100]; i915_get_instruction_src_name((a1 >> 13) & 0x7, src_nr, srcname); util_snprintf(swizzle, sizeof(swizzle), ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z, swizzle_w); if (strcmp(swizzle, ".xyzw") != 0) strcat(srcname, swizzle); } static void i915_get_instruction_src2(const uint32_t *data, int i, char *srcname) { uint32_t a2 = data[i + 2]; int src_nr = (a2 >> 16) & 0x1f; char *swizzle_x = i915_get_channel_swizzle((a2 >> 12) & 0xf); char *swizzle_y = i915_get_channel_swizzle((a2 >> 8) & 0xf); char *swizzle_z = i915_get_channel_swizzle((a2 >> 4) & 0xf); char *swizzle_w = i915_get_channel_swizzle((a2 >> 0) & 0xf); char swizzle[100]; i915_get_instruction_src_name((a2 >> 21) & 0x7, src_nr, srcname); util_snprintf(swizzle, sizeof(swizzle), ".%s%s%s%s", swizzle_x, swizzle_y, swizzle_z, swizzle_w); if (strcmp(swizzle, ".xyzw") != 0) strcat(srcname, swizzle); } static void i915_get_instruction_addr(uint32_t src_type, uint32_t src_nr, char *name) { switch (src_type) { case 0: sprintf(name, "R%d", src_nr); if (src_nr > 15) fprintf(out, "bad src reg %s\n", name); break; case 1: if (src_nr < 8) sprintf(name, "T%d", src_nr); else if (src_nr == 8) sprintf(name, "DIFFUSE"); else if (src_nr == 9) sprintf(name, "SPECULAR"); else if (src_nr == 10) sprintf(name, "FOG"); else { fprintf(out, "bad src reg T%d\n", src_nr); sprintf(name, "RESERVED"); } break; case 4: sprintf(name, "oC"); if (src_nr > 0) fprintf(out, "bad src reg oC%d\n", src_nr); break; case 5: sprintf(name, "oD"); if (src_nr > 0) fprintf(out, "bad src reg oD%d\n", src_nr); break; default: fprintf(out, "bad src reg type %d\n", src_type); sprintf(name, "RESERVED"); break; } } static void i915_decode_alu1(const uint32_t *data, uint32_t hw_offset, int i, char *instr_prefix, char *op_name) { char dst[100], src0[100]; i915_get_instruction_dst(data, i, dst, 1); i915_get_instruction_src0(data, i, src0); instr_out(data, hw_offset, i++, "%s: %s %s, %s\n", instr_prefix, op_name, dst, src0); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); } static void i915_decode_alu2(const uint32_t *data, uint32_t hw_offset, int i, char *instr_prefix, char *op_name) { char dst[100], src0[100], src1[100]; i915_get_instruction_dst(data, i, dst, 1); i915_get_instruction_src0(data, i, src0); i915_get_instruction_src1(data, i, src1); instr_out(data, hw_offset, i++, "%s: %s %s, %s, %s\n", instr_prefix, op_name, dst, src0, src1); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); } static void i915_decode_alu3(const uint32_t *data, uint32_t hw_offset, int i, char *instr_prefix, char *op_name) { char dst[100], src0[100], src1[100], src2[100]; i915_get_instruction_dst(data, i, dst, 1); i915_get_instruction_src0(data, i, src0); i915_get_instruction_src1(data, i, src1); i915_get_instruction_src2(data, i, src2); instr_out(data, hw_offset, i++, "%s: %s %s, %s, %s, %s\n", instr_prefix, op_name, dst, src0, src1, src2); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); } static void i915_decode_tex(const uint32_t *data, uint32_t hw_offset, int i, char *instr_prefix, char *tex_name) { uint32_t t0 = data[i]; uint32_t t1 = data[i + 1]; char dst_name[100]; char addr_name[100]; int sampler_nr; i915_get_instruction_dst(data, i, dst_name, 0); i915_get_instruction_addr((t1 >> 24) & 0x7, (t1 >> 17) & 0xf, addr_name); sampler_nr = t0 & 0xf; instr_out(data, hw_offset, i++, "%s: %s %s, S%d, %s\n", instr_prefix, tex_name, dst_name, sampler_nr, addr_name); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); } static void i915_decode_dcl(const uint32_t *data, uint32_t hw_offset, int i, char *instr_prefix) { uint32_t d0 = data[i]; char *sampletype; int dcl_nr = (d0 >> 14) & 0xf; char *dcl_x = d0 & (1 << 10) ? "x" : ""; char *dcl_y = d0 & (1 << 11) ? "y" : ""; char *dcl_z = d0 & (1 << 12) ? "z" : ""; char *dcl_w = d0 & (1 << 13) ? "w" : ""; char dcl_mask[10]; switch ((d0 >> 19) & 0x3) { case 1: util_snprintf(dcl_mask, sizeof(dcl_mask), ".%s%s%s%s", dcl_x, dcl_y, dcl_z, dcl_w); if (strcmp(dcl_mask, ".") == 0) fprintf(out, "bad (empty) dcl mask\n"); if (dcl_nr > 10) fprintf(out, "bad T%d dcl register number\n", dcl_nr); if (dcl_nr < 8) { if (strcmp(dcl_mask, ".x") != 0 && strcmp(dcl_mask, ".xy") != 0 && strcmp(dcl_mask, ".xz") != 0 && strcmp(dcl_mask, ".w") != 0 && strcmp(dcl_mask, ".xyzw") != 0) { fprintf(out, "bad T%d.%s dcl mask\n", dcl_nr, dcl_mask); } instr_out(data, hw_offset, i++, "%s: DCL T%d%s\n", instr_prefix, dcl_nr, dcl_mask); } else { if (strcmp(dcl_mask, ".xz") == 0) fprintf(out, "errataed bad dcl mask %s\n", dcl_mask); else if (strcmp(dcl_mask, ".xw") == 0) fprintf(out, "errataed bad dcl mask %s\n", dcl_mask); else if (strcmp(dcl_mask, ".xzw") == 0) fprintf(out, "errataed bad dcl mask %s\n", dcl_mask); if (dcl_nr == 8) { instr_out(data, hw_offset, i++, "%s: DCL DIFFUSE%s\n", instr_prefix, dcl_mask); } else if (dcl_nr == 9) { instr_out(data, hw_offset, i++, "%s: DCL SPECULAR%s\n", instr_prefix, dcl_mask); } else if (dcl_nr == 10) { instr_out(data, hw_offset, i++, "%s: DCL FOG%s\n", instr_prefix, dcl_mask); } } instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); break; case 3: switch ((d0 >> 22) & 0x3) { case 0: sampletype = "2D"; break; case 1: sampletype = "CUBE"; break; case 2: sampletype = "3D"; break; default: sampletype = "RESERVED"; break; } if (dcl_nr > 15) fprintf(out, "bad S%d dcl register number\n", dcl_nr); instr_out(data, hw_offset, i++, "%s: DCL S%d %s\n", instr_prefix, dcl_nr, sampletype); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); break; default: instr_out(data, hw_offset, i++, "%s: DCL RESERVED%d\n", instr_prefix, dcl_nr); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); } } static void i915_decode_instruction(const uint32_t *data, uint32_t hw_offset, int i, char *instr_prefix) { switch ((data[i] >> 24) & 0x1f) { case 0x0: instr_out(data, hw_offset, i++, "%s: NOP\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); break; case 0x01: i915_decode_alu2(data, hw_offset, i, instr_prefix, "ADD"); break; case 0x02: i915_decode_alu1(data, hw_offset, i, instr_prefix, "MOV"); break; case 0x03: i915_decode_alu2(data, hw_offset, i, instr_prefix, "MUL"); break; case 0x04: i915_decode_alu3(data, hw_offset, i, instr_prefix, "MAD"); break; case 0x05: i915_decode_alu3(data, hw_offset, i, instr_prefix, "DP2ADD"); break; case 0x06: i915_decode_alu2(data, hw_offset, i, instr_prefix, "DP3"); break; case 0x07: i915_decode_alu2(data, hw_offset, i, instr_prefix, "DP4"); break; case 0x08: i915_decode_alu1(data, hw_offset, i, instr_prefix, "FRC"); break; case 0x09: i915_decode_alu1(data, hw_offset, i, instr_prefix, "RCP"); break; case 0x0a: i915_decode_alu1(data, hw_offset, i, instr_prefix, "RSQ"); break; case 0x0b: i915_decode_alu1(data, hw_offset, i, instr_prefix, "EXP"); break; case 0x0c: i915_decode_alu1(data, hw_offset, i, instr_prefix, "LOG"); break; case 0x0d: i915_decode_alu2(data, hw_offset, i, instr_prefix, "CMP"); break; case 0x0e: i915_decode_alu2(data, hw_offset, i, instr_prefix, "MIN"); break; case 0x0f: i915_decode_alu2(data, hw_offset, i, instr_prefix, "MAX"); break; case 0x10: i915_decode_alu1(data, hw_offset, i, instr_prefix, "FLR"); break; case 0x11: i915_decode_alu1(data, hw_offset, i, instr_prefix, "MOD"); break; case 0x12: i915_decode_alu1(data, hw_offset, i, instr_prefix, "TRC"); break; case 0x13: i915_decode_alu2(data, hw_offset, i, instr_prefix, "SGE"); break; case 0x14: i915_decode_alu2(data, hw_offset, i, instr_prefix, "SLT"); break; case 0x15: i915_decode_tex(data, hw_offset, i, instr_prefix, "TEXLD"); break; case 0x16: i915_decode_tex(data, hw_offset, i, instr_prefix, "TEXLDP"); break; case 0x17: i915_decode_tex(data, hw_offset, i, instr_prefix, "TEXLDB"); break; case 0x19: i915_decode_dcl(data, hw_offset, i, instr_prefix); break; default: instr_out(data, hw_offset, i++, "%s: unknown\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); instr_out(data, hw_offset, i++, "%s\n", instr_prefix); break; } } static int decode_3d_1d(const uint32_t *data, int count, uint32_t hw_offset, uint32_t devid, int *failures) { unsigned int len, i, c, idx, word, map, sampler, instr; char *format; uint32_t opcode; struct { uint32_t opcode; int i830_only; int min_len; int max_len; char *name; } opcodes_3d_1d[] = { { 0x8e, 0, 3, 3, "3DSTATE_BUFFER_INFO" }, { 0x86, 0, 4, 4, "3DSTATE_CHROMA_KEY" }, { 0x9c, 0, 7, 7, "3DSTATE_CLEAR_PARAMETERS" }, { 0x88, 0, 2, 2, "3DSTATE_CONSTANT_BLEND_COLOR" }, { 0x99, 0, 2, 2, "3DSTATE_DEFAULT_DIFFUSE" }, { 0x9a, 0, 2, 2, "3DSTATE_DEFAULT_SPECULAR" }, { 0x98, 0, 2, 2, "3DSTATE_DEFAULT_Z" }, { 0x97, 0, 2, 2, "3DSTATE_DEPTH_OFFSET_SCALE" }, { 0x85, 0, 2, 2, "3DSTATE_DEST_BUFFER_VARIABLES" }, { 0x80, 0, 5, 5, "3DSTATE_DRAWING_RECTANGLE" }, { 0x9d, 0, 65, 65, "3DSTATE_FILTER_COEFFICIENTS_4X4" }, { 0x9e, 0, 4, 4, "3DSTATE_MONO_FILTER" }, { 0x89, 0, 4, 4, "3DSTATE_FOG_MODE" }, { 0x8f, 0, 2, 16, "3DSTATE_MAP_PALLETE_LOAD_32" }, { 0x81, 0, 3, 3, "3DSTATE_SCISSOR_RECTANGLE" }, { 0x83, 0, 2, 2, "3DSTATE_SPAN_STIPPLE" }, { 0x8c, 1, 2, 2, "3DSTATE_MAP_COORD_TRANSFORM_I830" }, { 0x8b, 1, 2, 2, "3DSTATE_MAP_VERTEX_TRANSFORM_I830" }, { 0x8d, 1, 3, 3, "3DSTATE_W_STATE_I830" }, { 0x01, 1, 2, 2, "3DSTATE_COLOR_FACTOR_I830" }, { 0x02, 1, 2, 2, "3DSTATE_MAP_COORD_SETBIND_I830" }, }, *opcode_3d_1d; opcode = (data[0] & 0x00ff0000) >> 16; switch (opcode) { case 0x07: /* This instruction is unusual. A 0 length means just 1 DWORD instead of * 2. The 0 length is specified in one place to be unsupported, but * stated to be required in another, and 0 length LOAD_INDIRECTs appear * to cause no harm at least. */ instr_out(data, hw_offset, 0, "3DSTATE_LOAD_INDIRECT\n"); len = (data[0] & 0x000000ff) + 1; i = 1; if (data[0] & (0x01 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "SIS.0\n"); instr_out(data, hw_offset, i++, "SIS.1\n"); } if (data[0] & (0x02 << 8)) { if (i + 1 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "DIS.0\n"); } if (data[0] & (0x04 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "SSB.0\n"); instr_out(data, hw_offset, i++, "SSB.1\n"); } if (data[0] & (0x08 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "MSB.0\n"); instr_out(data, hw_offset, i++, "MSB.1\n"); } if (data[0] & (0x10 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "PSP.0\n"); instr_out(data, hw_offset, i++, "PSP.1\n"); } if (data[0] & (0x20 << 8)) { if (i + 2 >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_INDIRECT"); instr_out(data, hw_offset, i++, "PSC.0\n"); instr_out(data, hw_offset, i++, "PSC.1\n"); } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_INDIRECT\n"); (*failures)++; return len; } return len; case 0x04: instr_out(data, hw_offset, 0, "3DSTATE_LOAD_STATE_IMMEDIATE_1\n"); len = (data[0] & 0x0000000f) + 2; i = 1; for (word = 0; word <= 8; word++) { if (data[0] & (1 << (4 + word))) { if (i >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_STATE_IMMEDIATE_1"); /* save vertex state for decode */ if (IS_9XX(devid)) { if (word == 2) { saved_s2_set = 1; saved_s2 = data[i]; } if (word == 4) { saved_s4_set = 1; saved_s4 = data[i]; } } instr_out(data, hw_offset, i++, "S%d\n", word); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_STATE_IMMEDIATE_1\n"); (*failures)++; } return len; case 0x03: instr_out(data, hw_offset, 0, "3DSTATE_LOAD_STATE_IMMEDIATE_2\n"); len = (data[0] & 0x0000000f) + 2; i = 1; for (word = 6; word <= 14; word++) { if (data[0] & (1 << word)) { if (i >= count) BUFFER_FAIL(count, len, "3DSTATE_LOAD_STATE_IMMEDIATE_2"); if (word == 6) instr_out(data, hw_offset, i++, "TBCF\n"); else if (word >= 7 && word <= 10) { instr_out(data, hw_offset, i++, "TB%dC\n", word - 7); instr_out(data, hw_offset, i++, "TB%dA\n", word - 7); } else if (word >= 11 && word <= 14) { instr_out(data, hw_offset, i++, "TM%dS0\n", word - 11); instr_out(data, hw_offset, i++, "TM%dS1\n", word - 11); instr_out(data, hw_offset, i++, "TM%dS2\n", word - 11); instr_out(data, hw_offset, i++, "TM%dS3\n", word - 11); instr_out(data, hw_offset, i++, "TM%dS4\n", word - 11); } } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_LOAD_STATE_IMMEDIATE_2\n"); (*failures)++; } return len; case 0x00: instr_out(data, hw_offset, 0, "3DSTATE_MAP_STATE\n"); len = (data[0] & 0x0000003f) + 2; instr_out(data, hw_offset, 1, "mask\n"); i = 2; for (map = 0; map <= 15; map++) { if (data[1] & (1 << map)) { int width, height, pitch, dword; const char *tiling; if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_MAP_STATE"); instr_out(data, hw_offset, i++, "map %d MS2\n", map); dword = data[i]; width = ((dword >> 10) & ((1 << 11) - 1))+1; height = ((dword >> 21) & ((1 << 11) - 1))+1; tiling = "none"; if (dword & (1 << 2)) tiling = "fenced"; else if (dword & (1 << 1)) tiling = dword & (1 << 0) ? "Y" : "X"; instr_out(data, hw_offset, i++, "map %d MS3 [width=%d, height=%d, tiling=%s]\n", map, width, height, tiling); dword = data[i]; pitch = 4*(((dword >> 21) & ((1 << 11) - 1))+1); instr_out(data, hw_offset, i++, "map %d MS4 [pitch=%d]\n", map, pitch); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_MAP_STATE\n"); (*failures)++; return len; } return len; case 0x06: instr_out(data, hw_offset, 0, "3DSTATE_PIXEL_SHADER_CONSTANTS\n"); len = (data[0] & 0x000000ff) + 2; i = 2; for (c = 0; c <= 31; c++) { if (data[1] & (1 << c)) { if (i + 4 >= count) BUFFER_FAIL(count, len, "3DSTATE_PIXEL_SHADER_CONSTANTS"); instr_out(data, hw_offset, i, "C%d.X = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.Y = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.Z = %f\n", c, int_as_float(data[i])); i++; instr_out(data, hw_offset, i, "C%d.W = %f\n", c, int_as_float(data[i])); i++; } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_PIXEL_SHADER_CONSTANTS\n"); (*failures)++; } return len; case 0x05: instr_out(data, hw_offset, 0, "3DSTATE_PIXEL_SHADER_PROGRAM\n"); len = (data[0] & 0x000000ff) + 2; if ((len - 1) % 3 != 0 || len > 370) { fprintf(out, "Bad count in 3DSTATE_PIXEL_SHADER_PROGRAM\n"); (*failures)++; } i = 1; for (instr = 0; instr < (len - 1) / 3; instr++) { char instr_prefix[10]; if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_PIXEL_SHADER_PROGRAM"); util_snprintf(instr_prefix, sizeof(instr_prefix), "PS%03d", instr); i915_decode_instruction(data, hw_offset, i, instr_prefix); i += 3; } return len; case 0x01: if (!IS_9XX(devid)) break; instr_out(data, hw_offset, 0, "3DSTATE_SAMPLER_STATE\n"); instr_out(data, hw_offset, 1, "mask\n"); len = (data[0] & 0x0000003f) + 2; i = 2; for (sampler = 0; sampler <= 15; sampler++) { if (data[1] & (1 << sampler)) { if (i + 3 >= count) BUFFER_FAIL(count, len, "3DSTATE_SAMPLER_STATE"); instr_out(data, hw_offset, i++, "sampler %d SS2\n", sampler); instr_out(data, hw_offset, i++, "sampler %d SS3\n", sampler); instr_out(data, hw_offset, i++, "sampler %d SS4\n", sampler); } } if (len != i) { fprintf(out, "Bad count in 3DSTATE_SAMPLER_STATE\n"); (*failures)++; } return len; case 0x85: len = (data[0] & 0x0000000f) + 2; if (len != 2) fprintf(out, "Bad count in 3DSTATE_DEST_BUFFER_VARIABLES\n"); if (count < 2) BUFFER_FAIL(count, len, "3DSTATE_DEST_BUFFER_VARIABLES"); instr_out(data, hw_offset, 0, "3DSTATE_DEST_BUFFER_VARIABLES\n"); switch ((data[1] >> 8) & 0xf) { case 0x0: format = "g8"; break; case 0x1: format = "x1r5g5b5"; break; case 0x2: format = "r5g6b5"; break; case 0x3: format = "a8r8g8b8"; break; case 0x4: format = "ycrcb_swapy"; break; case 0x5: format = "ycrcb_normal"; break; case 0x6: format = "ycrcb_swapuv"; break; case 0x7: format = "ycrcb_swapuvy"; break; case 0x8: format = "a4r4g4b4"; break; case 0x9: format = "a1r5g5b5"; break; case 0xa: format = "a2r10g10b10"; break; default: format = "BAD"; break; } instr_out(data, hw_offset, 1, "%s format, early Z %sabled\n", format, (data[1] & (1 << 31)) ? "en" : "dis"); return len; case 0x8e: { const char *name, *tiling; len = (data[0] & 0x0000000f) + 2; if (len != 3) fprintf(out, "Bad count in 3DSTATE_BUFFER_INFO\n"); if (count < 3) BUFFER_FAIL(count, len, "3DSTATE_BUFFER_INFO"); switch((data[1] >> 24) & 0x7) { case 0x3: name = "color"; break; case 0x7: name = "depth"; break; default: name = "unknown"; break; } tiling = "none"; if (data[1] & (1 << 23)) tiling = "fenced"; else if (data[1] & (1 << 22)) tiling = data[1] & (1 << 21) ? "Y" : "X"; instr_out(data, hw_offset, 0, "3DSTATE_BUFFER_INFO\n"); instr_out(data, hw_offset, 1, "%s, tiling = %s, pitch=%d\n", name, tiling, data[1]&0xffff); instr_out(data, hw_offset, 2, "address\n"); return len; } } for (idx = 0; idx < Elements(opcodes_3d_1d); idx++) { opcode_3d_1d = &opcodes_3d_1d[idx]; if (opcode_3d_1d->i830_only && IS_9XX(devid)) continue; if (((data[0] & 0x00ff0000) >> 16) == opcode_3d_1d->opcode) { len = 1; instr_out(data, hw_offset, 0, "%s\n", opcode_3d_1d->name); if (opcode_3d_1d->max_len > 1) { len = (data[0] & 0x0000ffff) + 2; if (len < opcode_3d_1d->min_len || len > opcode_3d_1d->max_len) { fprintf(out, "Bad count in %s\n", opcode_3d_1d->name); (*failures)++; } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcode_3d_1d->name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN: 3d_1d opcode = 0x%x\n", opcode); (*failures)++; return 1; } static int decode_3d_primitive(const uint32_t *data, int count, uint32_t hw_offset, int *failures) { char immediate = (data[0] & (1 << 23)) == 0; unsigned int len, i, ret; char *primtype; int original_s2 = saved_s2; int original_s4 = saved_s4; switch ((data[0] >> 18) & 0xf) { case 0x0: primtype = "TRILIST"; break; case 0x1: primtype = "TRISTRIP"; break; case 0x2: primtype = "TRISTRIP_REVERSE"; break; case 0x3: primtype = "TRIFAN"; break; case 0x4: primtype = "POLYGON"; break; case 0x5: primtype = "LINELIST"; break; case 0x6: primtype = "LINESTRIP"; break; case 0x7: primtype = "RECTLIST"; break; case 0x8: primtype = "POINTLIST"; break; case 0x9: primtype = "DIB"; break; case 0xa: primtype = "CLEAR_RECT"; saved_s4 = 3 << 6; saved_s2 = ~0; break; default: primtype = "unknown"; break; } /* XXX: 3DPRIM_DIB not supported */ if (immediate) { len = (data[0] & 0x0003ffff) + 2; instr_out(data, hw_offset, 0, "3DPRIMITIVE inline %s\n", primtype); if (count < len) BUFFER_FAIL(count, len, "3DPRIMITIVE inline"); if (!saved_s2_set || !saved_s4_set) { fprintf(out, "unknown vertex format\n"); for (i = 1; i < len; i++) { instr_out(data, hw_offset, i, " vertex data (%f float)\n", int_as_float(data[i])); } } else { unsigned int vertex = 0; for (i = 1; i < len;) { unsigned int tc; #define VERTEX_OUT(fmt, ...) do { \ if (i < len) \ instr_out(data, hw_offset, i, " V%d."fmt"\n", vertex, __VA_ARGS__); \ else \ fprintf(out, " missing data in V%d\n", vertex); \ i++; \ } while (0) VERTEX_OUT("X = %f", int_as_float(data[i])); VERTEX_OUT("Y = %f", int_as_float(data[i])); switch (saved_s4 >> 6 & 0x7) { case 0x1: VERTEX_OUT("Z = %f", int_as_float(data[i])); break; case 0x2: VERTEX_OUT("Z = %f", int_as_float(data[i])); VERTEX_OUT("W = %f", int_as_float(data[i])); break; case 0x3: break; case 0x4: VERTEX_OUT("W = %f", int_as_float(data[i])); break; default: fprintf(out, "bad S4 position mask\n"); } if (saved_s4 & (1 << 10)) { VERTEX_OUT("color = (A=0x%02x, R=0x%02x, G=0x%02x, " "B=0x%02x)", data[i] >> 24, (data[i] >> 16) & 0xff, (data[i] >> 8) & 0xff, data[i] & 0xff); } if (saved_s4 & (1 << 11)) { VERTEX_OUT("spec = (A=0x%02x, R=0x%02x, G=0x%02x, " "B=0x%02x)", data[i] >> 24, (data[i] >> 16) & 0xff, (data[i] >> 8) & 0xff, data[i] & 0xff); } if (saved_s4 & (1 << 12)) VERTEX_OUT("width = 0x%08x)", data[i]); for (tc = 0; tc <= 7; tc++) { switch ((saved_s2 >> (tc * 4)) & 0xf) { case 0x0: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i])); break; case 0x1: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Z = %f", tc, int_as_float(data[i])); break; case 0x2: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Y = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.Z = %f", tc, int_as_float(data[i])); VERTEX_OUT("T%d.W = %f", tc, int_as_float(data[i])); break; case 0x3: VERTEX_OUT("T%d.X = %f", tc, int_as_float(data[i])); break; case 0x4: VERTEX_OUT("T%d.XY = 0x%08x half-float", tc, data[i]); break; case 0x5: VERTEX_OUT("T%d.XY = 0x%08x half-float", tc, data[i]); VERTEX_OUT("T%d.ZW = 0x%08x half-float", tc, data[i]); break; case 0xf: break; default: fprintf(out, "bad S2.T%d format\n", tc); } } vertex++; } } ret = len; } else { /* indirect vertices */ len = data[0] & 0x0000ffff; /* index count */ if (data[0] & (1 << 17)) { /* random vertex access */ if (count < (len + 1) / 2 + 1) { BUFFER_FAIL(count, (len + 1) / 2 + 1, "3DPRIMITIVE random indirect"); } instr_out(data, hw_offset, 0, "3DPRIMITIVE random indirect %s (%d)\n", primtype, len); if (len == 0) { /* vertex indices continue until 0xffff is found */ for (i = 1; i < count; i++) { if ((data[i] & 0xffff) == 0xffff) { instr_out(data, hw_offset, i, " indices: (terminator)\n"); ret = i; goto out; } else if ((data[i] >> 16) == 0xffff) { instr_out(data, hw_offset, i, " indices: 0x%04x, " "(terminator)\n", data[i] & 0xffff); ret = i; goto out; } else { instr_out(data, hw_offset, i, " indices: 0x%04x, 0x%04x\n", data[i] & 0xffff, data[i] >> 16); } } fprintf(out, "3DPRIMITIVE: no terminator found in index buffer\n"); (*failures)++; ret = count; goto out; } else { /* fixed size vertex index buffer */ for (i = 0; i < len; i += 2) { if (i * 2 == len - 1) { instr_out(data, hw_offset, i, " indices: 0x%04x\n", data[i] & 0xffff); } else { instr_out(data, hw_offset, i, " indices: 0x%04x, 0x%04x\n", data[i] & 0xffff, data[i] >> 16); } } } ret = (len + 1) / 2 + 1; goto out; } else { /* sequential vertex access */ if (count < 2) BUFFER_FAIL(count, 2, "3DPRIMITIVE seq indirect"); instr_out(data, hw_offset, 0, "3DPRIMITIVE sequential indirect %s, %d starting from " "%d\n", primtype, len, data[1] & 0xffff); instr_out(data, hw_offset, 1, " start\n"); ret = 2; goto out; } } out: saved_s2 = original_s2; saved_s4 = original_s4; return ret; } static int decode_3d(const uint32_t *data, int count, uint32_t hw_offset, uint32_t devid, int *failures) { uint32_t opcode; unsigned int idx; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_3d[] = { { 0x06, 1, 1, "3DSTATE_ANTI_ALIASING" }, { 0x08, 1, 1, "3DSTATE_BACKFACE_STENCIL_OPS" }, { 0x09, 1, 1, "3DSTATE_BACKFACE_STENCIL_MASKS" }, { 0x16, 1, 1, "3DSTATE_COORD_SET_BINDINGS" }, { 0x15, 1, 1, "3DSTATE_FOG_COLOR" }, { 0x0b, 1, 1, "3DSTATE_INDEPENDENT_ALPHA_BLEND" }, { 0x0d, 1, 1, "3DSTATE_MODES_4" }, { 0x0c, 1, 1, "3DSTATE_MODES_5" }, { 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" }, }, *opcode_3d; opcode = (data[0] & 0x1f000000) >> 24; switch (opcode) { case 0x1f: return decode_3d_primitive(data, count, hw_offset, failures); case 0x1d: return decode_3d_1d(data, count, hw_offset, devid, failures); case 0x1c: return decode_3d_1c(data, count, hw_offset, failures); } for (idx = 0; idx < Elements(opcodes_3d); idx++) { opcode_3d = &opcodes_3d[idx]; if (opcode == opcode_3d->opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcode_3d->name); if (opcode_3d->max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcode_3d->min_len || len > opcode_3d->max_len) { fprintf(out, "Bad count in %s\n", opcode_3d->name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcode_3d->name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN: 3d opcode = 0x%x\n", opcode); (*failures)++; return 1; } static const char * get_965_surfacetype(unsigned int surfacetype) { switch (surfacetype) { case 0: return "1D"; case 1: return "2D"; case 2: return "3D"; case 3: return "CUBE"; case 4: return "BUFFER"; case 7: return "NULL"; default: return "unknown"; } } static const char * get_965_depthformat(unsigned int depthformat) { switch (depthformat) { case 0: return "s8_z24float"; case 1: return "z32float"; case 2: return "z24s8"; case 5: return "z16"; default: return "unknown"; } } static const char * get_965_element_component(uint32_t data, int component) { uint32_t component_control = (data >> (16 + (3 - component) * 4)) & 0x7; switch (component_control) { case 0: return "nostore"; case 1: switch (component) { case 0: return "X"; case 1: return "Y"; case 2: return "Z"; case 3: return "W"; default: return "fail"; } case 2: return "0.0"; case 3: return "1.0"; case 4: return "0x1"; case 5: return "VID"; default: return "fail"; } } static const char * get_965_prim_type(uint32_t data) { uint32_t primtype = (data >> 10) & 0x1f; switch (primtype) { case 0x01: return "point list"; case 0x02: return "line list"; case 0x03: return "line strip"; case 0x04: return "tri list"; case 0x05: return "tri strip"; case 0x06: return "tri fan"; case 0x07: return "quad list"; case 0x08: return "quad strip"; case 0x09: return "line list adj"; case 0x0a: return "line strip adj"; case 0x0b: return "tri list adj"; case 0x0c: return "tri strip adj"; case 0x0d: return "tri strip reverse"; case 0x0e: return "polygon"; case 0x0f: return "rect list"; case 0x10: return "line loop"; case 0x11: return "point list bf"; case 0x12: return "line strip cont"; case 0x13: return "line strip bf"; case 0x14: return "line strip cont bf"; case 0x15: return "tri fan no stipple"; default: return "fail"; } } static int i965_decode_urb_fence(const uint32_t *data, uint32_t hw_offset, int len, int count, int *failures) { uint32_t vs_fence, clip_fence, gs_fence, sf_fence, vfe_fence, cs_fence; if (len != 3) fprintf(out, "Bad count in URB_FENCE\n"); if (count < 3) BUFFER_FAIL(count, len, "URB_FENCE"); vs_fence = data[1] & 0x3ff; gs_fence = (data[1] >> 10) & 0x3ff; clip_fence = (data[1] >> 20) & 0x3ff; sf_fence = data[2] & 0x3ff; vfe_fence = (data[2] >> 10) & 0x3ff; cs_fence = (data[2] >> 20) & 0x7ff; instr_out(data, hw_offset, 0, "URB_FENCE: %s%s%s%s%s%s\n", (data[0] >> 13) & 1 ? "cs " : "", (data[0] >> 12) & 1 ? "vfe " : "", (data[0] >> 11) & 1 ? "sf " : "", (data[0] >> 10) & 1 ? "clip " : "", (data[0] >> 9) & 1 ? "gs " : "", (data[0] >> 8) & 1 ? "vs " : ""); instr_out(data, hw_offset, 1, "vs fence: %d, clip_fence: %d, gs_fence: %d\n", vs_fence, clip_fence, gs_fence); instr_out(data, hw_offset, 2, "sf fence: %d, vfe_fence: %d, cs_fence: %d\n", sf_fence, vfe_fence, cs_fence); if (gs_fence < vs_fence) fprintf(out, "gs fence < vs fence!\n"); if (clip_fence < gs_fence) fprintf(out, "clip fence < gs fence!\n"); if (sf_fence < clip_fence) fprintf(out, "sf fence < clip fence!\n"); if (cs_fence < sf_fence) fprintf(out, "cs fence < sf fence!\n"); return len; } static void state_base_out(const uint32_t *data, uint32_t hw_offset, unsigned int index, char *name) { if (data[index] & 1) { instr_out(data, hw_offset, index, "%s state base address 0x%08x\n", name, data[index] & ~1); } else { instr_out(data, hw_offset, index, "%s state base not updated\n", name); } } static void state_max_out(const uint32_t *data, uint32_t hw_offset, unsigned int index, char *name) { if (data[index] & 1) { if (data[index] == 1) { instr_out(data, hw_offset, index, "%s state upper bound disabled\n", name); } else { instr_out(data, hw_offset, index, "%s state upper bound 0x%08x\n", name, data[index] & ~1); } } else { instr_out(data, hw_offset, index, "%s state upper bound not updated\n", name); } } static int decode_3d_965(const uint32_t *data, int count, uint32_t hw_offset, uint32_t devid, int *failures) { uint32_t opcode; unsigned int idx, len; int i, sba_len; char *desc1 = NULL; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_3d[] = { { 0x6000, 3, 3, "URB_FENCE" }, { 0x6001, 2, 2, "CS_URB_STATE" }, { 0x6002, 2, 2, "CONSTANT_BUFFER" }, { 0x6101, 6, 6, "STATE_BASE_ADDRESS" }, { 0x6102, 2, 2 , "STATE_SIP" }, { 0x6104, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x680b, 1, 1, "3DSTATE_VF_STATISTICS" }, { 0x6904, 1, 1, "3DSTATE_PIPELINE_SELECT" }, { 0x7800, 7, 7, "3DSTATE_PIPELINED_POINTERS" }, { 0x7801, 6, 6, "3DSTATE_BINDING_TABLE_POINTERS" }, { 0x780b, 1, 1, "3DSTATE_VF_STATISTICS" }, { 0x7808, 5, 257, "3DSTATE_VERTEX_BUFFERS" }, { 0x7809, 3, 256, "3DSTATE_VERTEX_ELEMENTS" }, { 0x780a, 3, 3, "3DSTATE_INDEX_BUFFER" }, { 0x7900, 4, 4, "3DSTATE_DRAWING_RECTANGLE" }, { 0x7901, 5, 5, "3DSTATE_CONSTANT_COLOR" }, { 0x7905, 5, 7, "3DSTATE_DEPTH_BUFFER" }, { 0x7906, 2, 2, "3DSTATE_POLY_STIPPLE_OFFSET" }, { 0x7907, 33, 33, "3DSTATE_POLY_STIPPLE_PATTERN" }, { 0x7908, 3, 3, "3DSTATE_LINE_STIPPLE" }, { 0x7909, 2, 2, "3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP" }, { 0x7909, 2, 2, "3DSTATE_CLEAR_PARAMS" }, { 0x790a, 3, 3, "3DSTATE_AA_LINE_PARAMETERS" }, { 0x790b, 4, 4, "3DSTATE_GS_SVB_INDEX" }, { 0x790d, 3, 3, "3DSTATE_MULTISAMPLE" }, { 0x7b00, 6, 6, "3DPRIMITIVE" }, { 0x7802, 4, 4, "3DSTATE_SAMPLER_STATE_POINTERS" }, { 0x7805, 3, 3, "3DSTATE_URB" }, { 0x780e, 4, 4, "3DSTATE_CC_STATE_POINTERS" }, { 0x7810, 6, 6, "3DSTATE_VS_STATE" }, { 0x7811, 7, 7, "3DSTATE_GS_STATE" }, { 0x7812, 4, 4, "3DSTATE_CLIP_STATE" }, { 0x7813, 20, 20, "3DSTATE_SF_STATE" }, { 0x7814, 9, 9, "3DSTATE_WM_STATE" }, { 0x7812, 4, 4, "3DSTATE_CLIP_STATE" }, { 0x7815, 5, 5, "3DSTATE_CONSTANT_VS_STATE" }, { 0x7816, 5, 5, "3DSTATE_CONSTANT_GS_STATE" }, { 0x7817, 5, 5, "3DSTATE_CONSTANT_PS_STATE" }, { 0x7818, 2, 2, "3DSTATE_SAMPLE_MASK" }, }, *opcode_3d; len = (data[0] & 0x0000ffff) + 2; opcode = (data[0] & 0xffff0000) >> 16; switch (opcode) { case 0x6000: len = (data[0] & 0x000000ff) + 2; return i965_decode_urb_fence(data, hw_offset, len, count, failures); case 0x6001: instr_out(data, hw_offset, 0, "CS_URB_STATE\n"); instr_out(data, hw_offset, 1, "entry_size: %d [%d bytes], n_entries: %d\n", (data[1] >> 4) & 0x1f, (((data[1] >> 4) & 0x1f) + 1) * 64, data[1] & 0x7); return len; case 0x6002: len = (data[0] & 0x000000ff) + 2; instr_out(data, hw_offset, 0, "CONSTANT_BUFFER: %s\n", (data[0] >> 8) & 1 ? "valid" : "invalid"); instr_out(data, hw_offset, 1, "offset: 0x%08x, length: %d bytes\n", data[1] & ~0x3f, ((data[1] & 0x3f) + 1) * 64); return len; case 0x6101: if (IS_GEN6(devid)) sba_len = 10; else if (IS_IRONLAKE(devid)) sba_len = 8; else sba_len = 6; if (len != sba_len) fprintf(out, "Bad count in STATE_BASE_ADDRESS\n"); if (len != sba_len) BUFFER_FAIL(count, len, "STATE_BASE_ADDRESS"); i = 0; instr_out(data, hw_offset, 0, "STATE_BASE_ADDRESS\n"); i++; state_base_out(data, hw_offset, i++, "general"); state_base_out(data, hw_offset, i++, "surface"); if (IS_GEN6(devid)) state_base_out(data, hw_offset, i++, "dynamic"); state_base_out(data, hw_offset, i++, "indirect"); if (IS_IRONLAKE(devid) || IS_GEN6(devid)) state_base_out(data, hw_offset, i++, "instruction"); state_max_out(data, hw_offset, i++, "general"); if (IS_GEN6(devid)) state_max_out(data, hw_offset, i++, "dynamic"); state_max_out(data, hw_offset, i++, "indirect"); if (IS_IRONLAKE(devid) || IS_GEN6(devid)) state_max_out(data, hw_offset, i++, "instruction"); return len; case 0x7800: if (len != 7) fprintf(out, "Bad count in 3DSTATE_PIPELINED_POINTERS\n"); if (count < 7) BUFFER_FAIL(count, len, "3DSTATE_PIPELINED_POINTERS"); instr_out(data, hw_offset, 0, "3DSTATE_PIPELINED_POINTERS\n"); instr_out(data, hw_offset, 1, "VS state\n"); instr_out(data, hw_offset, 2, "GS state\n"); instr_out(data, hw_offset, 3, "Clip state\n"); instr_out(data, hw_offset, 4, "SF state\n"); instr_out(data, hw_offset, 5, "WM state\n"); instr_out(data, hw_offset, 6, "CC state\n"); return len; case 0x7801: len = (data[0] & 0x000000ff) + 2; if (len != 6 && len != 4) fprintf(out, "Bad count in 3DSTATE_BINDING_TABLE_POINTERS\n"); if (len == 6) { if (count < 6) BUFFER_FAIL(count, len, "3DSTATE_BINDING_TABLE_POINTERS"); instr_out(data, hw_offset, 0, "3DSTATE_BINDING_TABLE_POINTERS\n"); instr_out(data, hw_offset, 1, "VS binding table\n"); instr_out(data, hw_offset, 2, "GS binding table\n"); instr_out(data, hw_offset, 3, "Clip binding table\n"); instr_out(data, hw_offset, 4, "SF binding table\n"); instr_out(data, hw_offset, 5, "WM binding table\n"); } else { if (count < 4) BUFFER_FAIL(count, len, "3DSTATE_BINDING_TABLE_POINTERS"); instr_out(data, hw_offset, 0, "3DSTATE_BINDING_TABLE_POINTERS: VS mod %d, " "GS mod %d, PS mod %d\n", (data[0] & (1 << 8)) != 0, (data[0] & (1 << 9)) != 0, (data[0] & (1 << 10)) != 0); instr_out(data, hw_offset, 1, "VS binding table\n"); instr_out(data, hw_offset, 2, "GS binding table\n"); instr_out(data, hw_offset, 3, "WM binding table\n"); } return len; case 0x7808: len = (data[0] & 0xff) + 2; if ((len - 1) % 4 != 0) fprintf(out, "Bad count in 3DSTATE_VERTEX_BUFFERS\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_VERTEX_BUFFERS"); instr_out(data, hw_offset, 0, "3DSTATE_VERTEX_BUFFERS\n"); for (i = 1; i < len;) { instr_out(data, hw_offset, i, "buffer %d: %s, pitch %db\n", data[i] >> 27, data[i] & (1 << 26) ? "random" : "sequential", data[i] & 0x07ff); i++; instr_out(data, hw_offset, i++, "buffer address\n"); instr_out(data, hw_offset, i++, "max index\n"); instr_out(data, hw_offset, i++, "mbz\n"); } return len; case 0x7809: len = (data[0] & 0xff) + 2; if ((len + 1) % 2 != 0) fprintf(out, "Bad count in 3DSTATE_VERTEX_ELEMENTS\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_VERTEX_ELEMENTS"); instr_out(data, hw_offset, 0, "3DSTATE_VERTEX_ELEMENTS\n"); for (i = 1; i < len;) { instr_out(data, hw_offset, i, "buffer %d: %svalid, type 0x%04x, " "src offset 0x%04x bytes\n", data[i] >> 27, data[i] & (1 << 26) ? "" : "in", (data[i] >> 16) & 0x1ff, data[i] & 0x07ff); i++; instr_out(data, hw_offset, i, "(%s, %s, %s, %s), " "dst offset 0x%02x bytes\n", get_965_element_component(data[i], 0), get_965_element_component(data[i], 1), get_965_element_component(data[i], 2), get_965_element_component(data[i], 3), (data[i] & 0xff) * 4); i++; } return len; case 0x780d: len = (data[0] & 0xff) + 2; if (len != 4) fprintf(out, "Bad count in 3DSTATE_VIEWPORT_STATE_POINTERS\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_VIEWPORT_STATE_POINTERS"); instr_out(data, hw_offset, 0, "3DSTATE_VIEWPORT_STATE_POINTERS\n"); instr_out(data, hw_offset, 1, "clip\n"); instr_out(data, hw_offset, 2, "sf\n"); instr_out(data, hw_offset, 3, "cc\n"); return len; case 0x780a: len = (data[0] & 0xff) + 2; if (len != 3) fprintf(out, "Bad count in 3DSTATE_INDEX_BUFFER\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_INDEX_BUFFER"); instr_out(data, hw_offset, 0, "3DSTATE_INDEX_BUFFER\n"); instr_out(data, hw_offset, 1, "beginning buffer address\n"); instr_out(data, hw_offset, 2, "ending buffer address\n"); return len; case 0x7900: if (len != 4) fprintf(out, "Bad count in 3DSTATE_DRAWING_RECTANGLE\n"); if (count < 4) BUFFER_FAIL(count, len, "3DSTATE_DRAWING_RECTANGLE"); instr_out(data, hw_offset, 0, "3DSTATE_DRAWING_RECTANGLE\n"); instr_out(data, hw_offset, 1, "top left: %d,%d\n", data[1] & 0xffff, (data[1] >> 16) & 0xffff); instr_out(data, hw_offset, 2, "bottom right: %d,%d\n", data[2] & 0xffff, (data[2] >> 16) & 0xffff); instr_out(data, hw_offset, 3, "origin: %d,%d\n", (int)data[3] & 0xffff, ((int)data[3] >> 16) & 0xffff); return len; case 0x7905: if (len < 5 || len > 7) fprintf(out, "Bad count in 3DSTATE_DEPTH_BUFFER\n"); if (count < len) BUFFER_FAIL(count, len, "3DSTATE_DEPTH_BUFFER"); instr_out(data, hw_offset, 0, "3DSTATE_DEPTH_BUFFER\n"); instr_out(data, hw_offset, 1, "%s, %s, pitch = %d bytes, %stiled\n", get_965_surfacetype(data[1] >> 29), get_965_depthformat((data[1] >> 18) & 0x7), (data[1] & 0x0001ffff) + 1, data[1] & (1 << 27) ? "" : "not "); instr_out(data, hw_offset, 2, "depth offset\n"); instr_out(data, hw_offset, 3, "%dx%d\n", ((data[3] & 0x0007ffc0) >> 6) + 1, ((data[3] & 0xfff80000) >> 19) + 1); instr_out(data, hw_offset, 4, "volume depth\n"); if (len >= 6) instr_out(data, hw_offset, 5, "\n"); if (len >= 7) instr_out(data, hw_offset, 6, "render target view extent\n"); return len; case 0x7a00: len = (data[0] & 0xff) + 2; if (len != 4) fprintf(out, "Bad count in PIPE_CONTROL\n"); if (count < len) BUFFER_FAIL(count, len, "PIPE_CONTROL"); switch ((data[0] >> 14) & 0x3) { case 0: desc1 = "no write"; break; case 1: desc1 = "qword write"; break; case 2: desc1 = "PS_DEPTH_COUNT write"; break; case 3: desc1 = "TIMESTAMP write"; break; } instr_out(data, hw_offset, 0, "PIPE_CONTROL: %s, %sdepth stall, %sRC write flush, " "%sinst flush\n", desc1, data[0] & (1 << 13) ? "" : "no ", data[0] & (1 << 12) ? "" : "no ", data[0] & (1 << 11) ? "" : "no "); instr_out(data, hw_offset, 1, "destination address\n"); instr_out(data, hw_offset, 2, "immediate dword low\n"); instr_out(data, hw_offset, 3, "immediate dword high\n"); return len; case 0x7b00: len = (data[0] & 0xff) + 2; if (len != 6) fprintf(out, "Bad count in 3DPRIMITIVE\n"); if (count < len) BUFFER_FAIL(count, len, "3DPRIMITIVE"); instr_out(data, hw_offset, 0, "3DPRIMITIVE: %s %s\n", get_965_prim_type(data[0]), (data[0] & (1 << 15)) ? "random" : "sequential"); instr_out(data, hw_offset, 1, "vertex count\n"); instr_out(data, hw_offset, 2, "start vertex\n"); instr_out(data, hw_offset, 3, "instance count\n"); instr_out(data, hw_offset, 4, "start instance\n"); instr_out(data, hw_offset, 5, "index bias\n"); return len; } for (idx = 0; idx < Elements(opcodes_3d); idx++) { opcode_3d = &opcodes_3d[idx]; if ((data[0] & 0xffff0000) >> 16 == opcode_3d->opcode) { unsigned int i; len = 1; instr_out(data, hw_offset, 0, "%s\n", opcode_3d->name); if (opcode_3d->max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcode_3d->min_len || len > opcode_3d->max_len) { fprintf(out, "Bad count in %s\n", opcode_3d->name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcode_3d->name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN: 3d_965 opcode = 0x%x\n", opcode); (*failures)++; return 1; } static int decode_3d_i830(const uint32_t *data, int count, uint32_t hw_offset, uint32_t devid, int *failures) { unsigned int idx; uint32_t opcode; struct { uint32_t opcode; int min_len; int max_len; char *name; } opcodes_3d[] = { { 0x02, 1, 1, "3DSTATE_MODES_3" }, { 0x03, 1, 1, "3DSTATE_ENABLES_1"}, { 0x04, 1, 1, "3DSTATE_ENABLES_2"}, { 0x05, 1, 1, "3DSTATE_VFT0"}, { 0x06, 1, 1, "3DSTATE_AA"}, { 0x07, 1, 1, "3DSTATE_RASTERIZATION_RULES" }, { 0x08, 1, 1, "3DSTATE_MODES_1" }, { 0x09, 1, 1, "3DSTATE_STENCIL_TEST" }, { 0x0a, 1, 1, "3DSTATE_VFT1"}, { 0x0b, 1, 1, "3DSTATE_INDPT_ALPHA_BLEND" }, { 0x0c, 1, 1, "3DSTATE_MODES_5" }, { 0x0d, 1, 1, "3DSTATE_MAP_BLEND_OP" }, { 0x0e, 1, 1, "3DSTATE_MAP_BLEND_ARG" }, { 0x0f, 1, 1, "3DSTATE_MODES_2" }, { 0x15, 1, 1, "3DSTATE_FOG_COLOR" }, { 0x16, 1, 1, "3DSTATE_MODES_4" }, }, *opcode_3d; opcode = (data[0] & 0x1f000000) >> 24; switch (opcode) { case 0x1f: return decode_3d_primitive(data, count, hw_offset, failures); case 0x1d: return decode_3d_1d(data, count, hw_offset, devid, failures); case 0x1c: return decode_3d_1c(data, count, hw_offset, failures); } for (idx = 0; idx < Elements(opcodes_3d); idx++) { opcode_3d = &opcodes_3d[idx]; if ((data[0] & 0x1f000000) >> 24 == opcode_3d->opcode) { unsigned int len = 1, i; instr_out(data, hw_offset, 0, "%s\n", opcode_3d->name); if (opcode_3d->max_len > 1) { len = (data[0] & 0xff) + 2; if (len < opcode_3d->min_len || len > opcode_3d->max_len) { fprintf(out, "Bad count in %s\n", opcode_3d->name); } } for (i = 1; i < len; i++) { if (i >= count) BUFFER_FAIL(count, len, opcode_3d->name); instr_out(data, hw_offset, i, "dword %d\n", i); } return len; } } instr_out(data, hw_offset, 0, "3D UNKNOWN: 3d_i830 opcode = 0x%x\n", opcode); (*failures)++; return 1; } /** * Decodes an i830-i915 batch buffer, writing the output to stdout. * * \param data batch buffer contents * \param count number of DWORDs to decode in the batch buffer * \param hw_offset hardware address for the buffer */ int intel_decode(const uint32_t *data, int count, uint32_t hw_offset, uint32_t devid, uint32_t ignore_end_of_batchbuffer) { int ret; int index = 0; int failures = 0; out = stderr; while (index < count) { switch ((data[index] & 0xe0000000) >> 29) { case 0x0: ret = decode_mi(data + index, count - index, hw_offset + index * 4, &failures); /* If MI_BATCHBUFFER_END happened, then dump the rest of the * output in case we some day want it in debugging, but don't * decode it since it'll just confuse in the common case. */ if (ret == -1) { if (ignore_end_of_batchbuffer) { index++; } else { for (index = index + 1; index < count; index++) { instr_out(data, hw_offset, index, "\n"); } } } else index += ret; break; case 0x2: index += decode_2d(data + index, count - index, hw_offset + index * 4, &failures); break; case 0x3: if (IS_965(devid)) { index += decode_3d_965(data + index, count - index, hw_offset + index * 4, devid, &failures); } else if (IS_9XX(devid)) { index += decode_3d(data + index, count - index, hw_offset + index * 4, devid, &failures); } else { index += decode_3d_i830(data + index, count - index, hw_offset + index * 4, devid, &failures); } break; default: instr_out(data, hw_offset, index, "UNKNOWN\n"); failures++; index++; break; } fflush(out); } return failures; } void intel_decode_context_reset(void) { saved_s2_set = 0; saved_s4_set = 1; }