/************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include #include "util/u_memory.h" #include "util/u_math.h" #include "util/u_cpu_detect.h" #include "util/u_surface.h" #include "lp_scene_queue.h" #include "lp_debug.h" #include "lp_fence.h" #include "lp_perf.h" #include "lp_rast.h" #include "lp_rast_priv.h" #include "lp_tile_soa.h" #include "gallivm/lp_bld_debug.h" #include "lp_scene.h" /** * Begin the rasterization phase. * Map the framebuffer surfaces. Initialize the 'rast' state. */ static boolean lp_rast_begin( struct lp_rasterizer *rast, const struct pipe_framebuffer_state *fb, boolean write_color, boolean write_zstencil ) { struct pipe_screen *screen = rast->screen; struct pipe_surface *cbuf, *zsbuf; int i; LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); util_copy_framebuffer_state(&rast->state.fb, fb); rast->state.write_zstencil = write_zstencil; rast->state.write_color = write_color; rast->check_for_clipped_tiles = (fb->width % TILE_SIZE != 0 || fb->height % TILE_SIZE != 0); for (i = 0; i < rast->state.fb.nr_cbufs; i++) { cbuf = rast->state.fb.cbufs[i]; if (cbuf) { rast->cbuf_transfer[i] = screen->get_tex_transfer(rast->screen, cbuf->texture, cbuf->face, cbuf->level, cbuf->zslice, PIPE_TRANSFER_READ_WRITE, 0, 0, cbuf->width, cbuf->height); if (!rast->cbuf_transfer[i]) goto fail; rast->cbuf_map[i] = screen->transfer_map(rast->screen, rast->cbuf_transfer[i]); if (!rast->cbuf_map[i]) goto fail; } } zsbuf = rast->state.fb.zsbuf; if (zsbuf) { rast->zsbuf_transfer = screen->get_tex_transfer(rast->screen, zsbuf->texture, zsbuf->face, zsbuf->level, zsbuf->zslice, PIPE_TRANSFER_READ_WRITE, 0, 0, zsbuf->width, zsbuf->height); if (!rast->zsbuf_transfer) goto fail; rast->zsbuf_map = screen->transfer_map(rast->screen, rast->zsbuf_transfer); if (!rast->zsbuf_map) goto fail; } return TRUE; fail: /* Unmap and release transfers? */ return FALSE; } /** * Finish the rasterization phase. * Unmap framebuffer surfaces. */ static void lp_rast_end( struct lp_rasterizer *rast ) { struct pipe_screen *screen = rast->screen; unsigned i; for (i = 0; i < rast->state.fb.nr_cbufs; i++) { if (rast->cbuf_map[i]) screen->transfer_unmap(screen, rast->cbuf_transfer[i]); if (rast->cbuf_transfer[i]) screen->tex_transfer_destroy(rast->cbuf_transfer[i]); rast->cbuf_transfer[i] = NULL; rast->cbuf_map[i] = NULL; } if (rast->zsbuf_map) screen->transfer_unmap(screen, rast->zsbuf_transfer); if (rast->zsbuf_transfer) screen->tex_transfer_destroy(rast->zsbuf_transfer); rast->zsbuf_transfer = NULL; rast->zsbuf_map = NULL; } /** * Begining rasterization of a tile. * \param x window X position of the tile, in pixels * \param y window Y position of the tile, in pixels */ static void lp_rast_start_tile( struct lp_rasterizer *rast, unsigned thread_index, unsigned x, unsigned y ) { LP_DBG(DEBUG_RAST, "%s %d,%d\n", __FUNCTION__, x, y); rast->tasks[thread_index].x = x; rast->tasks[thread_index].y = y; } /** * Clear the rasterizer's current color tile. * This is a bin command called during bin processing. */ void lp_rast_clear_color( struct lp_rasterizer *rast, unsigned thread_index, const union lp_rast_cmd_arg arg ) { const uint8_t *clear_color = arg.clear_color; uint8_t **color_tile = rast->tasks[thread_index].tile.color; unsigned i; LP_DBG(DEBUG_RAST, "%s 0x%x,0x%x,0x%x,0x%x\n", __FUNCTION__, clear_color[0], clear_color[1], clear_color[2], clear_color[3]); if (clear_color[0] == clear_color[1] && clear_color[1] == clear_color[2] && clear_color[2] == clear_color[3]) { /* clear to grayscale value {x, x, x, x} */ for (i = 0; i < rast->state.fb.nr_cbufs; i++) { memset(color_tile[i], clear_color[0], TILE_SIZE * TILE_SIZE * 4); } } else { /* Non-gray color. * Note: if the swizzled tile layout changes (see TILE_PIXEL) this code * will need to change. It'll be pretty obvious when clearing no longer * works. */ const unsigned chunk = TILE_SIZE / 4; for (i = 0; i < rast->state.fb.nr_cbufs; i++) { uint8_t *c = color_tile[i]; unsigned j; for (j = 0; j < 4 * TILE_SIZE; j++) { memset(c, clear_color[0], chunk); c += chunk; memset(c, clear_color[1], chunk); c += chunk; memset(c, clear_color[2], chunk); c += chunk; memset(c, clear_color[3], chunk); c += chunk; } assert(c - color_tile[i] == TILE_SIZE * TILE_SIZE * 4); } } LP_COUNT(nr_color_tile_clear); } /** * Clear the rasterizer's current z/stencil tile. * This is a bin command called during bin processing. */ void lp_rast_clear_zstencil( struct lp_rasterizer *rast, unsigned thread_index, const union lp_rast_cmd_arg arg) { struct lp_rasterizer_task *task = &rast->tasks[thread_index]; const unsigned tile_x = task->x; const unsigned tile_y = task->y; const unsigned height = TILE_SIZE/TILE_VECTOR_HEIGHT; const unsigned width = TILE_SIZE*TILE_VECTOR_HEIGHT; unsigned block_size = util_format_get_blocksize(rast->zsbuf_transfer->texture->format); uint8_t *dst; unsigned dst_stride = rast->zsbuf_transfer->stride*TILE_VECTOR_HEIGHT; unsigned i, j; LP_DBG(DEBUG_RAST, "%s 0x%x\n", __FUNCTION__, arg.clear_zstencil); assert(rast->zsbuf_map); if (!rast->zsbuf_map) return; LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); /* * Clear the aera of the swizzled depth/depth buffer matching this tile, in * stripes of TILE_VECTOR_HEIGHT x TILE_SIZE at a time. * * The swizzled depth format is such that the depths for * TILE_VECTOR_HEIGHT x TILE_VECTOR_WIDTH pixels have consecutive offsets. */ dst = lp_rast_depth_pointer(rast, tile_x, tile_y); switch (block_size) { case 1: memset(dst, (uint8_t) arg.clear_zstencil, height * width); break; case 2: for (i = 0; i < height; i++) { uint16_t *row = (uint16_t *)dst; for (j = 0; j < width; j++) *row++ = (uint16_t) arg.clear_zstencil; dst += dst_stride; } break; case 4: for (i = 0; i < height; i++) { uint32_t *row = (uint32_t *)dst; for (j = 0; j < width; j++) *row++ = arg.clear_zstencil; dst += dst_stride; } break; default: assert(0); break; } } /** * Load tile color from the framebuffer surface. * This is a bin command called during bin processing. */ void lp_rast_load_color( struct lp_rasterizer *rast, unsigned thread_index, const union lp_rast_cmd_arg arg) { struct lp_rasterizer_task *task = &rast->tasks[thread_index]; const unsigned x = task->x; const unsigned y = task->y; unsigned i; LP_DBG(DEBUG_RAST, "%s at %u, %u\n", __FUNCTION__, x, y); for (i = 0; i < rast->state.fb.nr_cbufs; i++) { struct pipe_transfer *transfer = rast->cbuf_transfer[i]; int w = TILE_SIZE; int h = TILE_SIZE; if (x >= transfer->width) continue; if (y >= transfer->height) continue; assert(w >= 0); assert(h >= 0); assert(w <= TILE_SIZE); assert(h <= TILE_SIZE); lp_tile_read_4ub(transfer->texture->format, task->tile.color[i], rast->cbuf_map[i], transfer->stride, x, y, w, h); LP_COUNT(nr_color_tile_load); } } void lp_rast_set_state( struct lp_rasterizer *rast, unsigned thread_index, const union lp_rast_cmd_arg arg ) { const struct lp_rast_state *state = arg.set_state; LP_DBG(DEBUG_RAST, "%s %p\n", __FUNCTION__, (void *) state); /* just set the current state pointer for this rasterizer */ rast->tasks[thread_index].current_state = state; } /** * Run the shader on all blocks in a tile. This is used when a tile is * completely contained inside a triangle. * This is a bin command called during bin processing. */ void lp_rast_shade_tile( struct lp_rasterizer *rast, unsigned thread_index, const union lp_rast_cmd_arg arg ) { struct lp_rasterizer_task *task = &rast->tasks[thread_index]; const struct lp_rast_state *state = task->current_state; struct lp_rast_tile *tile = &task->tile; const struct lp_rast_shader_inputs *inputs = arg.shade_tile; const unsigned tile_x = task->x; const unsigned tile_y = task->y; unsigned x, y; LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); /* render the whole 64x64 tile in 4x4 chunks */ for (y = 0; y < TILE_SIZE; y += 4){ for (x = 0; x < TILE_SIZE; x += 4) { uint8_t *color[PIPE_MAX_COLOR_BUFS]; uint32_t *depth; unsigned block_offset, i; /* offset of the 16x16 pixel block within the tile */ block_offset = ((y / 4) * (16 * 16) + (x / 4) * 16); /* color buffer */ for (i = 0; i < rast->state.fb.nr_cbufs; i++) color[i] = tile->color[i] + 4 * block_offset; /* depth buffer */ depth = lp_rast_depth_pointer(rast, tile_x + x, tile_y + y); /* run shader */ state->jit_function[0]( &state->jit_context, tile_x + x, tile_y + y, inputs->a0, inputs->dadx, inputs->dady, color, depth, INT_MIN, INT_MIN, INT_MIN, NULL, NULL, NULL ); } } } /** * Compute shading for a 4x4 block of pixels. * This is a bin command called during bin processing. */ void lp_rast_shade_quads( struct lp_rasterizer *rast, unsigned thread_index, const struct lp_rast_shader_inputs *inputs, unsigned x, unsigned y, int32_t c1, int32_t c2, int32_t c3) { struct lp_rasterizer_task *task = &rast->tasks[thread_index]; const struct lp_rast_state *state = task->current_state; struct lp_rast_tile *tile = &task->tile; uint8_t *color[PIPE_MAX_COLOR_BUFS]; void *depth; unsigned i; unsigned ix, iy; int block_offset; #ifdef DEBUG assert(state); /* Sanity checks */ assert(x % TILE_VECTOR_WIDTH == 0); assert(y % TILE_VECTOR_HEIGHT == 0); assert((x % 4) == 0); assert((y % 4) == 0); #endif ix = x % TILE_SIZE; iy = y % TILE_SIZE; /* offset of the 16x16 pixel block within the tile */ block_offset = ((iy / 4) * (16 * 16) + (ix / 4) * 16); /* color buffer */ for (i = 0; i < rast->state.fb.nr_cbufs; i++) color[i] = tile->color[i] + 4 * block_offset; /* depth buffer */ depth = lp_rast_depth_pointer(rast, x, y); #ifdef DEBUG assert(lp_check_alignment(tile->color[0], 16)); assert(lp_check_alignment(state->jit_context.blend_color, 16)); assert(lp_check_alignment(inputs->step[0], 16)); assert(lp_check_alignment(inputs->step[1], 16)); assert(lp_check_alignment(inputs->step[2], 16)); #endif /* run shader */ state->jit_function[1]( &state->jit_context, x, y, inputs->a0, inputs->dadx, inputs->dady, color, depth, c1, c2, c3, inputs->step[0], inputs->step[1], inputs->step[2]); } /** * Set top row and left column of the tile's pixels to white. For debugging. */ static void outline_tile(uint8_t *tile) { const uint8_t val = 0xff; unsigned i; for (i = 0; i < TILE_SIZE; i++) { TILE_PIXEL(tile, i, 0, 0) = val; TILE_PIXEL(tile, i, 0, 1) = val; TILE_PIXEL(tile, i, 0, 2) = val; TILE_PIXEL(tile, i, 0, 3) = val; TILE_PIXEL(tile, 0, i, 0) = val; TILE_PIXEL(tile, 0, i, 1) = val; TILE_PIXEL(tile, 0, i, 2) = val; TILE_PIXEL(tile, 0, i, 3) = val; } } /** * Draw grid of gray lines at 16-pixel intervals across the tile to * show the sub-tile boundaries. For debugging. */ static void outline_subtiles(uint8_t *tile) { const uint8_t val = 0x80; const unsigned step = 16; unsigned i, j; for (i = 0; i < TILE_SIZE; i += step) { for (j = 0; j < TILE_SIZE; j++) { TILE_PIXEL(tile, i, j, 0) = val; TILE_PIXEL(tile, i, j, 1) = val; TILE_PIXEL(tile, i, j, 2) = val; TILE_PIXEL(tile, i, j, 3) = val; TILE_PIXEL(tile, j, i, 0) = val; TILE_PIXEL(tile, j, i, 1) = val; TILE_PIXEL(tile, j, i, 2) = val; TILE_PIXEL(tile, j, i, 3) = val; } } outline_tile(tile); } /** * Write the rasterizer's color tile to the framebuffer. */ static void lp_rast_store_color( struct lp_rasterizer *rast, unsigned thread_index) { struct lp_rasterizer_task *task = &rast->tasks[thread_index]; const unsigned x = task->x; const unsigned y = task->y; unsigned i; for (i = 0; i < rast->state.fb.nr_cbufs; i++) { struct pipe_transfer *transfer = rast->cbuf_transfer[i]; int w = TILE_SIZE; int h = TILE_SIZE; if (x >= transfer->width) continue; if (y >= transfer->height) continue; LP_DBG(DEBUG_RAST, "%s [%u] %d,%d %dx%d\n", __FUNCTION__, thread_index, x, y, w, h); if (LP_DEBUG & DEBUG_SHOW_SUBTILES) outline_subtiles(task->tile.color[i]); else if (LP_DEBUG & DEBUG_SHOW_TILES) outline_tile(task->tile.color[i]); lp_tile_write_4ub(transfer->texture->format, task->tile.color[i], rast->cbuf_map[i], transfer->stride, x, y, w, h); LP_COUNT(nr_color_tile_store); } } /** * Write the rasterizer's tiles to the framebuffer. */ static void lp_rast_end_tile( struct lp_rasterizer *rast, unsigned thread_index ) { LP_DBG(DEBUG_RAST, "%s\n", __FUNCTION__); if (rast->state.write_color) lp_rast_store_color(rast, thread_index); } /** * Signal on a fence. This is called during bin execution/rasterization. * Called per thread. */ void lp_rast_fence( struct lp_rasterizer *rast, unsigned thread_index, const union lp_rast_cmd_arg arg ) { struct lp_fence *fence = arg.fence; pipe_mutex_lock( fence->mutex ); fence->count++; assert(fence->count <= fence->rank); LP_DBG(DEBUG_RAST, "%s count=%u rank=%u\n", __FUNCTION__, fence->count, fence->rank); pipe_condvar_signal( fence->signalled ); pipe_mutex_unlock( fence->mutex ); } /** * When all the threads are done rasterizing a scene, one thread will * call this function to reset the scene and put it onto the empty queue. */ static void release_scene( struct lp_rasterizer *rast, struct lp_scene *scene ) { util_unreference_framebuffer_state( &scene->fb ); lp_scene_reset( scene ); lp_scene_enqueue( rast->empty_scenes, scene ); rast->curr_scene = NULL; } /** * Rasterize commands for a single bin. * \param x, y position of the bin's tile in the framebuffer * Must be called between lp_rast_begin() and lp_rast_end(). * Called per thread. */ static void rasterize_bin( struct lp_rasterizer *rast, unsigned thread_index, const struct cmd_bin *bin, int x, int y) { const struct cmd_block_list *commands = &bin->commands; struct cmd_block *block; unsigned k; lp_rast_start_tile( rast, thread_index, x, y ); /* simply execute each of the commands in the block list */ for (block = commands->head; block; block = block->next) { for (k = 0; k < block->count; k++) { block->cmd[k]( rast, thread_index, block->arg[k] ); } } lp_rast_end_tile( rast, thread_index ); } #define RAST(x) { lp_rast_##x, #x } static struct { lp_rast_cmd cmd; const char *name; } cmd_names[] = { RAST(load_color), RAST(clear_color), RAST(clear_zstencil), RAST(triangle), RAST(shade_tile), RAST(set_state), RAST(fence), }; static void debug_bin( const struct cmd_bin *bin ) { const struct cmd_block *head = bin->commands.head; int i, j; for (i = 0; i < head->count; i++) { debug_printf("%d: ", i); for (j = 0; j < Elements(cmd_names); j++) { if (head->cmd[i] == cmd_names[j].cmd) { debug_printf("%s\n", cmd_names[j].name); break; } } if (j == Elements(cmd_names)) debug_printf("...other\n"); } } /* An empty bin is one that just loads the contents of the tile and * stores them again unchanged. This typically happens when bins have * been flushed for some reason in the middle of a frame, or when * incremental updates are being made to a render target. * * Try to avoid doing pointless work in this case. */ static boolean is_empty_bin( const struct cmd_bin *bin ) { const struct cmd_block *head = bin->commands.head; int i; if (0) debug_bin(bin); /* We emit at most two load-tile commands at the start of the first * command block. In addition we seem to emit a couple of * set-state commands even in empty bins. * * As a heuristic, if a bin has more than 4 commands, consider it * non-empty. */ if (head->next != NULL || head->count > 4) { return FALSE; } for (i = 0; i < head->count; i++) if (head->cmd[i] != lp_rast_load_color && head->cmd[i] != lp_rast_set_state) { return FALSE; } return TRUE; } /** * Rasterize/execute all bins within a scene. * Called per thread. */ static void rasterize_scene( struct lp_rasterizer *rast, unsigned thread_index, struct lp_scene *scene, bool write_depth ) { /* loop over scene bins, rasterize each */ #if 0 { unsigned i, j; for (i = 0; i < scene->tiles_x; i++) { for (j = 0; j < scene->tiles_y; j++) { struct cmd_bin *bin = lp_get_bin(scene, i, j); rasterize_bin( rast, thread_index, bin, i * TILE_SIZE, j * TILE_SIZE ); } } } #else { struct cmd_bin *bin; int x, y; assert(scene); while ((bin = lp_scene_bin_iter_next(scene, &x, &y))) { if (!is_empty_bin( bin )) rasterize_bin( rast, thread_index, bin, x * TILE_SIZE, y * TILE_SIZE); } } #endif } /** * Called by setup module when it has something for us to render. */ void lp_rasterize_scene( struct lp_rasterizer *rast, struct lp_scene *scene, const struct pipe_framebuffer_state *fb, bool write_depth ) { boolean debug = false; LP_DBG(DEBUG_SETUP, "%s\n", __FUNCTION__); if (debug) { unsigned x, y; debug_printf("rasterize scene:\n"); debug_printf(" data size: %u\n", lp_scene_data_size(scene)); for (y = 0; y < scene->tiles_y; y++) { for (x = 0; x < scene->tiles_x; x++) { debug_printf(" bin %u, %u size: %u\n", x, y, lp_scene_bin_size(scene, x, y)); } } } /* save framebuffer state in the bin */ util_copy_framebuffer_state(&scene->fb, fb); scene->write_depth = write_depth; if (rast->num_threads == 0) { /* no threading */ lp_rast_begin( rast, fb, fb->nr_cbufs != 0, /* always write color if cbufs present */ fb->zsbuf != NULL && write_depth ); lp_scene_bin_iter_begin( scene ); rasterize_scene( rast, 0, scene, write_depth ); release_scene( rast, scene ); lp_rast_end( rast ); } else { /* threaded rendering! */ unsigned i; lp_scene_enqueue( rast->full_scenes, scene ); /* signal the threads that there's work to do */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_signal(&rast->tasks[i].work_ready); } /* wait for work to complete */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_wait(&rast->tasks[i].work_done); } } LP_DBG(DEBUG_SETUP, "%s done \n", __FUNCTION__); } /** * This is the thread's main entrypoint. * It's a simple loop: * 1. wait for work * 2. do work * 3. signal that we're done */ static PIPE_THREAD_ROUTINE( thread_func, init_data ) { struct lp_rasterizer_task *task = (struct lp_rasterizer_task *) init_data; struct lp_rasterizer *rast = task->rast; boolean debug = false; while (1) { /* wait for work */ if (debug) debug_printf("thread %d waiting for work\n", task->thread_index); pipe_semaphore_wait(&task->work_ready); if (task->thread_index == 0) { /* thread[0]: * - get next scene to rasterize * - map the framebuffer surfaces */ const struct pipe_framebuffer_state *fb; boolean write_depth; rast->curr_scene = lp_scene_dequeue( rast->full_scenes, TRUE ); lp_scene_bin_iter_begin( rast->curr_scene ); fb = &rast->curr_scene->fb; write_depth = rast->curr_scene->write_depth; lp_rast_begin( rast, fb, fb->nr_cbufs != 0, fb->zsbuf != NULL && write_depth ); } /* Wait for all threads to get here so that threads[1+] don't * get a null rast->curr_scene pointer. */ pipe_barrier_wait( &rast->barrier ); /* do work */ if (debug) debug_printf("thread %d doing work\n", task->thread_index); rasterize_scene(rast, task->thread_index, rast->curr_scene, rast->curr_scene->write_depth); /* wait for all threads to finish with this scene */ pipe_barrier_wait( &rast->barrier ); if (task->thread_index == 0) { /* thread[0]: * - release the scene object * - unmap the framebuffer surfaces */ release_scene( rast, rast->curr_scene ); lp_rast_end( rast ); } /* signal done with work */ if (debug) debug_printf("thread %d done working\n", task->thread_index); pipe_semaphore_signal(&task->work_done); } return NULL; } /** * Initialize semaphores and spawn the threads. */ static void create_rast_threads(struct lp_rasterizer *rast) { unsigned i; #ifdef PIPE_OS_WINDOWS /* Multithreading not supported on windows until conditions and barriers are * properly implemented. */ rast->num_threads = 0; #else rast->num_threads = util_cpu_caps.nr_cpus; rast->num_threads = debug_get_num_option("LP_NUM_THREADS", rast->num_threads); rast->num_threads = MIN2(rast->num_threads, MAX_THREADS); #endif /* NOTE: if num_threads is zero, we won't use any threads */ for (i = 0; i < rast->num_threads; i++) { pipe_semaphore_init(&rast->tasks[i].work_ready, 0); pipe_semaphore_init(&rast->tasks[i].work_done, 0); rast->threads[i] = pipe_thread_create(thread_func, (void *) &rast->tasks[i]); } } /** * Create new lp_rasterizer. * \param empty the queue to put empty scenes on after we've finished * processing them. */ struct lp_rasterizer * lp_rast_create( struct pipe_screen *screen, struct lp_scene_queue *empty ) { struct lp_rasterizer *rast; unsigned i, cbuf; rast = CALLOC_STRUCT(lp_rasterizer); if(!rast) return NULL; rast->screen = screen; rast->empty_scenes = empty; rast->full_scenes = lp_scene_queue_create(); for (i = 0; i < Elements(rast->tasks); i++) { struct lp_rasterizer_task *task = &rast->tasks[i]; for (cbuf = 0; cbuf < PIPE_MAX_COLOR_BUFS; cbuf++ ) task->tile.color[cbuf] = align_malloc(TILE_SIZE * TILE_SIZE * 4, 16); task->rast = rast; task->thread_index = i; } create_rast_threads(rast); /* for synchronizing rasterization threads */ pipe_barrier_init( &rast->barrier, rast->num_threads ); return rast; } /* Shutdown: */ void lp_rast_destroy( struct lp_rasterizer *rast ) { unsigned i, cbuf; util_unreference_framebuffer_state(&rast->state.fb); for (i = 0; i < Elements(rast->tasks); i++) { for (cbuf = 0; cbuf < PIPE_MAX_COLOR_BUFS; cbuf++ ) align_free(rast->tasks[i].tile.color[cbuf]); } /* for synchronizing rasterization threads */ pipe_barrier_destroy( &rast->barrier ); FREE(rast); } /** Return number of rasterization threads */ unsigned lp_rast_get_num_threads( struct lp_rasterizer *rast ) { return rast->num_threads; }