/************************************************************************** * * Copyright 2007-2010 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Rasterization for binned triangles within a tile */ /** * Prototype for a 7 plane rasterizer function. Will codegenerate * several of these. * * XXX: Varients for more/fewer planes. * XXX: Need ways of dropping planes as we descend. * XXX: SIMD */ static void TAG(do_block_4)(struct lp_rasterizer_task *task, const struct lp_rast_triangle *tri, const struct lp_rast_plane *plane, int x, int y, const int *c) { unsigned mask = 0; int i; for (i = 0; i < 16; i++) { int any_negative = 0; int j; for (j = 0; j < NR_PLANES; j++) any_negative |= (c[j] - 1 + plane[j].step[i]); any_negative >>= 31; mask |= (~any_negative) & (1 << i); } /* Now pass to the shader: */ if (mask) lp_rast_shade_quads_mask(task, &tri->inputs, x, y, mask); } /** * Evaluate a 16x16 block of pixels to determine which 4x4 subblocks are in/out * of the triangle's bounds. */ static void TAG(do_block_16)(struct lp_rasterizer_task *task, const struct lp_rast_triangle *tri, const struct lp_rast_plane *plane, int x, int y, const int *c) { unsigned outmask, inmask, partmask, partial_mask; unsigned i, j; outmask = 0; /* outside one or more trivial reject planes */ partmask = 0; /* outside one or more trivial accept planes */ for (j = 0; j < NR_PLANES; j++) { const int *step = plane[j].step; const int eo = plane[j].eo * 4; const int ei = plane[j].ei * 4; const int cox = c[j] + eo; const int cio = ei - 1 - eo; for (i = 0; i < 16; i++) { int out = cox + step[i] * 4; int part = out + cio; outmask |= (out >> 31) & (1 << i); partmask |= (part >> 31) & (1 << i); } } if (outmask == 0xffff) return; /* Mask of sub-blocks which are inside all trivial accept planes: */ inmask = ~partmask & 0xffff; /* Mask of sub-blocks which are inside all trivial reject planes, * but outside at least one trivial accept plane: */ partial_mask = partmask & ~outmask; assert((partial_mask & inmask) == 0); /* Iterate over partials: */ while (partial_mask) { int i = ffs(partial_mask) - 1; int px = x + pos_table4[i][0]; int py = y + pos_table4[i][1]; int cx[NR_PLANES]; for (j = 0; j < NR_PLANES; j++) cx[j] = c[j] + plane[j].step[i] * 4; partial_mask &= ~(1 << i); TAG(do_block_4)(task, tri, plane, px, py, cx); } /* Iterate over fulls: */ while (inmask) { int i = ffs(inmask) - 1; int px = x + pos_table4[i][0]; int py = y + pos_table4[i][1]; inmask &= ~(1 << i); block_full_4(task, tri, px, py); } } /** * Scan the tile in chunks and figure out which pixels to rasterize * for this triangle. */ void TAG(lp_rast_triangle)(struct lp_rasterizer_task *task, const union lp_rast_cmd_arg arg) { const struct lp_rast_triangle *tri = arg.triangle.tri; unsigned plane_mask = arg.triangle.plane_mask; const int x = task->x, y = task->y; struct lp_rast_plane plane[NR_PLANES]; int c[NR_PLANES]; unsigned outmask, inmask, partmask, partial_mask; unsigned i, j, nr_planes = 0; while (plane_mask) { int i = ffs(plane_mask) - 1; plane[nr_planes] = tri->plane[i]; plane_mask &= ~(1 << i); nr_planes++; }; assert(nr_planes == NR_PLANES); outmask = 0; /* outside one or more trivial reject planes */ partmask = 0; /* outside one or more trivial accept planes */ for (j = 0; j < NR_PLANES; j++) { const int *step = plane[j].step; const int eo = plane[j].eo * 16; const int ei = plane[j].ei * 16; int cox, cio; c[j] = plane[j].c + plane[j].dcdy * y - plane[j].dcdx * x; cox = c[j] + eo; cio = ei - 1 - eo; for (i = 0; i < 16; i++) { int out = cox + step[i] * 16; int part = out + cio; outmask |= (out >> 31) & (1 << i); partmask |= (part >> 31) & (1 << i); } } if (outmask == 0xffff) return; /* Mask of sub-blocks which are inside all trivial accept planes: */ inmask = ~partmask & 0xffff; /* Mask of sub-blocks which are inside all trivial reject planes, * but outside at least one trivial accept plane: */ partial_mask = partmask & ~outmask; assert((partial_mask & inmask) == 0); /* Iterate over partials: */ while (partial_mask) { int i = ffs(partial_mask) - 1; int px = x + pos_table16[i][0]; int py = y + pos_table16[i][1]; int cx[NR_PLANES]; for (j = 0; j < NR_PLANES; j++) cx[j] = c[j] + plane[j].step[i] * 16; partial_mask &= ~(1 << i); LP_COUNT(nr_partially_covered_16); TAG(do_block_16)(task, tri, plane, px, py, cx); } /* Iterate over fulls: */ while (inmask) { int i = ffs(inmask) - 1; int px = x + pos_table16[i][0]; int py = y + pos_table16[i][1]; inmask &= ~(1 << i); LP_COUNT(nr_fully_covered_16); block_full_16(task, tri, px, py); } } #undef TAG #undef NR_PLANES