/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Binning code for triangles */ #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_rect.h" #include "lp_perf.h" #include "lp_setup_context.h" #include "lp_setup_coef.h" #include "lp_rast.h" #include "lp_state_fs.h" #define NUM_CHANNELS 4 static INLINE int subpixel_snap(float a) { return util_iround(FIXED_ONE * a); } static INLINE float fixed_to_float(int a) { return a * (1.0 / FIXED_ONE); } /** * Alloc space for a new triangle plus the input.a0/dadx/dady arrays * immediately after it. * The memory is allocated from the per-scene pool, not per-tile. * \param tri_size returns number of bytes allocated * \param nr_inputs number of fragment shader inputs * \return pointer to triangle space */ struct lp_rast_triangle * lp_setup_alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned nr_planes, unsigned *tri_size) { unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float); struct lp_rast_triangle *tri; unsigned tri_bytes, bytes; char *inputs; tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16); bytes = tri_bytes + (3 * input_array_sz); tri = lp_scene_alloc_aligned( scene, bytes, 16 ); if (tri) { inputs = ((char *)tri) + tri_bytes; tri->inputs.a0 = (float (*)[4]) inputs; tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz); tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz); *tri_size = bytes; } return tri; } void lp_setup_print_vertex(struct lp_setup_context *setup, const char *name, const float (*v)[4]) { int i, j; debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n", name, v[0][0], v[0][1], v[0][2], v[0][3]); for (i = 0; i < setup->fs.nr_inputs; i++) { const float *in = v[setup->fs.input[i].src_index]; debug_printf(" in[%d] (%s[%d]) %s%s%s%s ", i, name, setup->fs.input[i].src_index, (setup->fs.input[i].usage_mask & 0x1) ? "x" : " ", (setup->fs.input[i].usage_mask & 0x2) ? "y" : " ", (setup->fs.input[i].usage_mask & 0x4) ? "z" : " ", (setup->fs.input[i].usage_mask & 0x8) ? "w" : " "); for (j = 0; j < 4; j++) if (setup->fs.input[i].usage_mask & (1< 0.0f) debug_printf(" - cw\n"); else debug_printf(" - zero area\n"); } lp_setup_print_vertex(setup, "v0", v0); lp_setup_print_vertex(setup, "v1", v1); lp_setup_print_vertex(setup, "v2", v2); } lp_rast_cmd lp_rast_tri_tab[9] = { NULL, /* should be impossible */ lp_rast_triangle_1, lp_rast_triangle_2, lp_rast_triangle_3, lp_rast_triangle_4, lp_rast_triangle_5, lp_rast_triangle_6, lp_rast_triangle_7, lp_rast_triangle_8 }; /** * Do basic setup for triangle rasterization and determine which * framebuffer tiles are touched. Put the triangle in the scene's * bins for the tiles which we overlap. */ static void do_triangle_ccw(struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4], boolean frontfacing ) { struct lp_scene *scene = lp_setup_get_current_scene(setup); struct lp_rast_triangle *tri; int x[3]; int y[3]; float dy01, dy20; float dx01, dx20; float oneoverarea; struct lp_tri_info info; int area; struct u_rect bbox; unsigned tri_bytes; int i; int nr_planes = 3; if (0) lp_setup_print_triangle(setup, v0, v1, v2); if (setup->scissor_test) { nr_planes = 7; } else { nr_planes = 3; } /* x/y positions in fixed point */ x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset); x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset); x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset); y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset); y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset); y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset); /* Bounding rectangle (in pixels) */ { /* Yes this is necessary to accurately calculate bounding boxes * with the two fill-conventions we support. GL (normally) ends * up needing a bottom-left fill convention, which requires * slightly different rounding. */ int adj = (setup->pixel_offset != 0) ? 1 : 0; bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER; bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER; bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER; bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER; /* Inclusive coordinates: */ bbox.x1--; bbox.y1--; } if (bbox.x1 < bbox.x0 || bbox.y1 < bbox.y0) { if (0) debug_printf("empty bounding box\n"); LP_COUNT(nr_culled_tris); return; } if (!u_rect_test_intersection(&setup->draw_region, &bbox)) { if (0) debug_printf("offscreen\n"); LP_COUNT(nr_culled_tris); return; } u_rect_find_intersection(&setup->draw_region, &bbox); tri = lp_setup_alloc_triangle(scene, setup->fs.nr_inputs, nr_planes, &tri_bytes); if (!tri) return; #ifdef DEBUG tri->v[0][0] = v0[0][0]; tri->v[1][0] = v1[0][0]; tri->v[2][0] = v2[0][0]; tri->v[0][1] = v0[0][1]; tri->v[1][1] = v1[0][1]; tri->v[2][1] = v2[0][1]; #endif tri->plane[0].dcdy = x[0] - x[1]; tri->plane[1].dcdy = x[1] - x[2]; tri->plane[2].dcdy = x[2] - x[0]; tri->plane[0].dcdx = y[0] - y[1]; tri->plane[1].dcdx = y[1] - y[2]; tri->plane[2].dcdx = y[2] - y[0]; area = (tri->plane[0].dcdy * tri->plane[2].dcdx - tri->plane[2].dcdy * tri->plane[0].dcdx); LP_COUNT(nr_tris); /* Cull non-ccw and zero-sized triangles. * * XXX: subject to overflow?? */ if (area <= 0) { lp_scene_putback_data( scene, tri_bytes ); LP_COUNT(nr_culled_tris); return; } /* */ dx01 = v0[0][0] - v1[0][0]; dy01 = v0[0][1] - v1[0][1]; dx20 = v2[0][0] - v0[0][0]; dy20 = v2[0][1] - v0[0][1]; oneoverarea = 1.0f / (dx01 * dy20 - dx20 * dy01); info.v0 = v0; info.v1 = v1; info.v2 = v2; info.frontfacing = frontfacing; info.x0_center = v0[0][0] - setup->pixel_offset; info.y0_center = v0[0][1] - setup->pixel_offset; info.dx01_ooa = dx01 * oneoverarea; info.dx20_ooa = dx20 * oneoverarea; info.dy01_ooa = dy01 * oneoverarea; info.dy20_ooa = dy20 * oneoverarea; /* Setup parameter interpolants: */ lp_setup_tri_coef( setup, &tri->inputs, &info ); tri->inputs.facing = frontfacing ? 1.0F : -1.0F; tri->inputs.state = setup->fs.stored; for (i = 0; i < 3; i++) { struct lp_rast_plane *plane = &tri->plane[i]; /* half-edge constants, will be interated over the whole render * target. */ plane->c = plane->dcdx * x[i] - plane->dcdy * y[i]; /* correct for top-left vs. bottom-left fill convention. * * note that we're overloading gl_rasterization_rules to mean * both (0.5,0.5) pixel centers *and* bottom-left filling * convention. * * GL actually has a top-left filling convention, but GL's * notion of "top" differs from gallium's... * * Also, sometimes (in FBO cases) GL will render upside down * to its usual method, in which case it will probably want * to use the opposite, top-left convention. */ if (plane->dcdx < 0) { /* both fill conventions want this - adjust for left edges */ plane->c++; } else if (plane->dcdx == 0) { if (setup->pixel_offset == 0) { /* correct for top-left fill convention: */ if (plane->dcdy > 0) plane->c++; } else { /* correct for bottom-left fill convention: */ if (plane->dcdy < 0) plane->c++; } } plane->dcdx *= FIXED_ONE; plane->dcdy *= FIXED_ONE; /* find trivial reject offsets for each edge for a single-pixel * sized block. These will be scaled up at each recursive level to * match the active blocksize. Scaling in this way works best if * the blocks are square. */ plane->eo = 0; if (plane->dcdx < 0) plane->eo -= plane->dcdx; if (plane->dcdy > 0) plane->eo += plane->dcdy; /* Calculate trivial accept offsets from the above. */ plane->ei = plane->dcdy - plane->dcdx - plane->eo; } /* * When rasterizing scissored tris, use the intersection of the * triangle bounding box and the scissor rect to generate the * scissor planes. * * This permits us to cut off the triangle "tails" that are present * in the intermediate recursive levels caused when two of the * triangles edges don't diverge quickly enough to trivially reject * exterior blocks from the triangle. * * It's not really clear if it's worth worrying about these tails, * but since we generate the planes for each scissored tri, it's * free to trim them in this case. * * Note that otherwise, the scissor planes only vary in 'C' value, * and even then only on state-changes. Could alternatively store * these planes elsewhere. */ if (nr_planes == 7) { tri->plane[3].dcdx = -1; tri->plane[3].dcdy = 0; tri->plane[3].c = 1-bbox.x0; tri->plane[3].ei = 0; tri->plane[3].eo = 1; tri->plane[4].dcdx = 1; tri->plane[4].dcdy = 0; tri->plane[4].c = bbox.x1+1; tri->plane[4].ei = -1; tri->plane[4].eo = 0; tri->plane[5].dcdx = 0; tri->plane[5].dcdy = 1; tri->plane[5].c = 1-bbox.y0; tri->plane[5].ei = 0; tri->plane[5].eo = 1; tri->plane[6].dcdx = 0; tri->plane[6].dcdy = -1; tri->plane[6].c = bbox.y1+1; tri->plane[6].ei = -1; tri->plane[6].eo = 0; } lp_setup_bin_triangle( setup, tri, &bbox, nr_planes ); } void lp_setup_bin_triangle( struct lp_setup_context *setup, struct lp_rast_triangle *tri, const struct u_rect *bbox, int nr_planes ) { struct lp_scene *scene = setup->scene; struct lp_fragment_shader_variant *variant = setup->fs.current.variant; int ix0, ix1, iy0, iy1; int i; /* * All fields of 'tri' are now set. The remaining code here is * concerned with binning. */ /* Convert to tile coordinates, and inclusive ranges: */ if (nr_planes == 3) { int ix0 = bbox->x0 / 16; int iy0 = bbox->y0 / 16; int ix1 = bbox->x1 / 16; int iy1 = bbox->y1 / 16; if (iy0 == iy1 && ix0 == ix1) { /* Triangle is contained in a single 16x16 block: */ int mask = (ix0 & 3) | ((iy0 & 3) << 4); lp_scene_bin_command( scene, ix0/4, iy0/4, lp_rast_triangle_3_16, lp_rast_arg_triangle(tri, mask) ); return; } } ix0 = bbox->x0 / TILE_SIZE; iy0 = bbox->y0 / TILE_SIZE; ix1 = bbox->x1 / TILE_SIZE; iy1 = bbox->y1 / TILE_SIZE; /* * Clamp to framebuffer size */ assert(ix0 == MAX2(ix0, 0)); assert(iy0 == MAX2(iy0, 0)); assert(ix1 == MIN2(ix1, scene->tiles_x - 1)); assert(iy1 == MIN2(iy1, scene->tiles_y - 1)); /* Determine which tile(s) intersect the triangle's bounding box */ if (iy0 == iy1 && ix0 == ix1) { /* Triangle is contained in a single tile: */ lp_scene_bin_command( scene, ix0, iy0, lp_rast_tri_tab[nr_planes], lp_rast_arg_triangle(tri, (1<plane[i].c + tri->plane[i].dcdy * iy0 * TILE_SIZE - tri->plane[i].dcdx * ix0 * TILE_SIZE); ei[i] = tri->plane[i].ei << TILE_ORDER; eo[i] = tri->plane[i].eo << TILE_ORDER; xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER); ystep[i] = tri->plane[i].dcdy << TILE_ORDER; } /* Test tile-sized blocks against the triangle. * Discard blocks fully outside the tri. If the block is fully * contained inside the tri, bin an lp_rast_shade_tile command. * Else, bin a lp_rast_triangle command. */ for (y = iy0; y <= iy1; y++) { boolean in = FALSE; /* are we inside the triangle? */ int cx[7]; for (i = 0; i < nr_planes; i++) cx[i] = c[i]; for (x = ix0; x <= ix1; x++) { int out = 0; int partial = 0; for (i = 0; i < nr_planes; i++) { int planeout = cx[i] + eo[i]; int planepartial = cx[i] + ei[i] - 1; out |= (planeout >> 31); partial |= (planepartial >> 31) & (1<opaque && !setup->fb.zsbuf) { lp_scene_bin_reset( scene, x, y ); } lp_scene_bin_command( scene, x, y, lp_rast_shade_tile, lp_rast_arg_inputs(&tri->inputs) ); } /* Iterate cx values across the region: */ for (i = 0; i < nr_planes; i++) cx[i] += xstep[i]; } /* Iterate c values down the region: */ for (i = 0; i < nr_planes; i++) c[i] += ystep[i]; } } } /** * Draw triangle if it's CW, cull otherwise. */ static void triangle_cw( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4] ) { do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface ); } /** * Draw triangle if it's CCW, cull otherwise. */ static void triangle_ccw( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4] ) { do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ); } /** * Draw triangle whether it's CW or CCW. */ static void triangle_both( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4] ) { /* edge vectors e = v0 - v2, f = v1 - v2 */ const float ex = v0[0][0] - v2[0][0]; const float ey = v0[0][1] - v2[0][1]; const float fx = v1[0][0] - v2[0][0]; const float fy = v1[0][1] - v2[0][1]; /* det = cross(e,f).z */ const float det = ex * fy - ey * fx; if (det < 0.0f) triangle_ccw( setup, v0, v1, v2 ); else if (det > 0.0f) triangle_cw( setup, v0, v1, v2 ); } static void triangle_nop( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4] ) { } void lp_setup_choose_triangle( struct lp_setup_context *setup ) { switch (setup->cullmode) { case PIPE_FACE_NONE: setup->triangle = triangle_both; break; case PIPE_FACE_BACK: setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw; break; case PIPE_FACE_FRONT: setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw; break; default: setup->triangle = triangle_nop; break; } }