/************************************************************************** * * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Binning code for triangles */ #include "util/u_math.h" #include "util/u_memory.h" #include "util/u_rect.h" #include "lp_perf.h" #include "lp_setup_context.h" #include "lp_setup_coef.h" #include "lp_rast.h" #include "lp_state_fs.h" #define NUM_CHANNELS 4 static INLINE int subpixel_snap(float a) { return util_iround(FIXED_ONE * a); } static INLINE float fixed_to_float(int a) { return a * (1.0 / FIXED_ONE); } /** * Alloc space for a new triangle plus the input.a0/dadx/dady arrays * immediately after it. * The memory is allocated from the per-scene pool, not per-tile. * \param tri_size returns number of bytes allocated * \param nr_inputs number of fragment shader inputs * \return pointer to triangle space */ struct lp_rast_triangle * lp_setup_alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned nr_planes, unsigned *tri_size) { unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float); struct lp_rast_triangle *tri; unsigned tri_bytes, bytes; char *inputs; tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16); bytes = tri_bytes + (3 * input_array_sz); tri = lp_scene_alloc_aligned( scene, bytes, 16 ); if (tri) { inputs = ((char *)tri) + tri_bytes; tri->inputs.a0 = (float (*)[4]) inputs; tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz); tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz); *tri_size = bytes; } return tri; } void lp_setup_print_vertex(struct lp_setup_context *setup, const char *name, const float (*v)[4]) { int i, j; debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n", name, v[0][0], v[0][1], v[0][2], v[0][3]); for (i = 0; i < setup->fs.nr_inputs; i++) { const float *in = v[setup->fs.input[i].src_index]; debug_printf(" in[%d] (%s[%d]) %s%s%s%s ", i, name, setup->fs.input[i].src_index, (setup->fs.input[i].usage_mask & 0x1) ? "x" : " ", (setup->fs.input[i].usage_mask & 0x2) ? "y" : " ", (setup->fs.input[i].usage_mask & 0x4) ? "z" : " ", (setup->fs.input[i].usage_mask & 0x8) ? "w" : " "); for (j = 0; j < 4; j++) if (setup->fs.input[i].usage_mask & (1< 0.0f) debug_printf(" - cw\n"); else debug_printf(" - zero area\n"); } lp_setup_print_vertex(setup, "v0", v0); lp_setup_print_vertex(setup, "v1", v1); lp_setup_print_vertex(setup, "v2", v2); } #define MAX_PLANES 8 static unsigned lp_rast_tri_tab[MAX_PLANES+1] = { 0, /* should be impossible */ LP_RAST_OP_TRIANGLE_1, LP_RAST_OP_TRIANGLE_2, LP_RAST_OP_TRIANGLE_3, LP_RAST_OP_TRIANGLE_4, LP_RAST_OP_TRIANGLE_5, LP_RAST_OP_TRIANGLE_6, LP_RAST_OP_TRIANGLE_7, LP_RAST_OP_TRIANGLE_8 }; /** * The primitive covers the whole tile- shade whole tile. * * \param tx, ty the tile position in tiles, not pixels */ static boolean lp_setup_whole_tile(struct lp_setup_context *setup, const struct lp_rast_shader_inputs *inputs, int tx, int ty) { struct lp_scene *scene = setup->scene; LP_COUNT(nr_fully_covered_64); /* if variant is opaque and scissor doesn't effect the tile */ if (inputs->opaque) { if (!scene->fb.zsbuf) { /* * All previous rendering will be overwritten so reset the bin. */ lp_scene_bin_reset( scene, tx, ty ); } LP_COUNT(nr_shade_opaque_64); return lp_scene_bin_command( scene, tx, ty, LP_RAST_OP_SHADE_TILE_OPAQUE, lp_rast_arg_inputs(inputs) ); } else { LP_COUNT(nr_shade_64); return lp_scene_bin_command( scene, tx, ty, LP_RAST_OP_SHADE_TILE, lp_rast_arg_inputs(inputs) ); } } /** * Do basic setup for triangle rasterization and determine which * framebuffer tiles are touched. Put the triangle in the scene's * bins for the tiles which we overlap. */ static boolean do_triangle_ccw(struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4], boolean frontfacing ) { struct lp_scene *scene = setup->scene; struct lp_rast_triangle *tri; int x[3]; int y[3]; struct u_rect bbox; unsigned tri_bytes; int i; int nr_planes = 3; if (0) lp_setup_print_triangle(setup, v0, v1, v2); if (setup->scissor_test) { nr_planes = 7; } else { nr_planes = 3; } /* x/y positions in fixed point */ x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset); x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset); x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset); y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset); y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset); y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset); /* Bounding rectangle (in pixels) */ { /* Yes this is necessary to accurately calculate bounding boxes * with the two fill-conventions we support. GL (normally) ends * up needing a bottom-left fill convention, which requires * slightly different rounding. */ int adj = (setup->pixel_offset != 0) ? 1 : 0; bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER; bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER; bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER; bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER; /* Inclusive coordinates: */ bbox.x1--; bbox.y1--; } if (bbox.x1 < bbox.x0 || bbox.y1 < bbox.y0) { if (0) debug_printf("empty bounding box\n"); LP_COUNT(nr_culled_tris); return TRUE; } if (!u_rect_test_intersection(&setup->draw_region, &bbox)) { if (0) debug_printf("offscreen\n"); LP_COUNT(nr_culled_tris); return TRUE; } u_rect_find_intersection(&setup->draw_region, &bbox); tri = lp_setup_alloc_triangle(scene, setup->fs.nr_inputs, nr_planes, &tri_bytes); if (!tri) return FALSE; #ifdef DEBUG tri->v[0][0] = v0[0][0]; tri->v[1][0] = v1[0][0]; tri->v[2][0] = v2[0][0]; tri->v[0][1] = v0[0][1]; tri->v[1][1] = v1[0][1]; tri->v[2][1] = v2[0][1]; #endif tri->plane[0].dcdy = x[0] - x[1]; tri->plane[1].dcdy = x[1] - x[2]; tri->plane[2].dcdy = x[2] - x[0]; tri->plane[0].dcdx = y[0] - y[1]; tri->plane[1].dcdx = y[1] - y[2]; tri->plane[2].dcdx = y[2] - y[0]; LP_COUNT(nr_tris); /* Setup parameter interpolants: */ lp_setup_tri_coef( setup, &tri->inputs, v0, v1, v2, frontfacing ); tri->inputs.facing = frontfacing ? 1.0F : -1.0F; tri->inputs.disable = FALSE; tri->inputs.opaque = setup->fs.current.variant->opaque; tri->inputs.state = setup->fs.stored; for (i = 0; i < 3; i++) { struct lp_rast_plane *plane = &tri->plane[i]; /* half-edge constants, will be interated over the whole render * target. */ plane->c = plane->dcdx * x[i] - plane->dcdy * y[i]; /* correct for top-left vs. bottom-left fill convention. * * note that we're overloading gl_rasterization_rules to mean * both (0.5,0.5) pixel centers *and* bottom-left filling * convention. * * GL actually has a top-left filling convention, but GL's * notion of "top" differs from gallium's... * * Also, sometimes (in FBO cases) GL will render upside down * to its usual method, in which case it will probably want * to use the opposite, top-left convention. */ if (plane->dcdx < 0) { /* both fill conventions want this - adjust for left edges */ plane->c++; } else if (plane->dcdx == 0) { if (setup->pixel_offset == 0) { /* correct for top-left fill convention: */ if (plane->dcdy > 0) plane->c++; } else { /* correct for bottom-left fill convention: */ if (plane->dcdy < 0) plane->c++; } } plane->dcdx *= FIXED_ONE; plane->dcdy *= FIXED_ONE; /* find trivial reject offsets for each edge for a single-pixel * sized block. These will be scaled up at each recursive level to * match the active blocksize. Scaling in this way works best if * the blocks are square. */ plane->eo = 0; if (plane->dcdx < 0) plane->eo -= plane->dcdx; if (plane->dcdy > 0) plane->eo += plane->dcdy; /* Calculate trivial accept offsets from the above. */ plane->ei = plane->dcdy - plane->dcdx - plane->eo; } /* * When rasterizing scissored tris, use the intersection of the * triangle bounding box and the scissor rect to generate the * scissor planes. * * This permits us to cut off the triangle "tails" that are present * in the intermediate recursive levels caused when two of the * triangles edges don't diverge quickly enough to trivially reject * exterior blocks from the triangle. * * It's not really clear if it's worth worrying about these tails, * but since we generate the planes for each scissored tri, it's * free to trim them in this case. * * Note that otherwise, the scissor planes only vary in 'C' value, * and even then only on state-changes. Could alternatively store * these planes elsewhere. */ if (nr_planes == 7) { tri->plane[3].dcdx = -1; tri->plane[3].dcdy = 0; tri->plane[3].c = 1-bbox.x0; tri->plane[3].ei = 0; tri->plane[3].eo = 1; tri->plane[4].dcdx = 1; tri->plane[4].dcdy = 0; tri->plane[4].c = bbox.x1+1; tri->plane[4].ei = -1; tri->plane[4].eo = 0; tri->plane[5].dcdx = 0; tri->plane[5].dcdy = 1; tri->plane[5].c = 1-bbox.y0; tri->plane[5].ei = 0; tri->plane[5].eo = 1; tri->plane[6].dcdx = 0; tri->plane[6].dcdy = -1; tri->plane[6].c = bbox.y1+1; tri->plane[6].ei = -1; tri->plane[6].eo = 0; } return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes ); } /* * Round to nearest less or equal power of two of the input. * * Undefined if no bit set exists, so code should check against 0 first. */ static INLINE uint32_t floor_pot(uint32_t n) { #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86) if (n == 0) return 0; __asm__("bsr %1,%0" : "=r" (n) : "rm" (n)); return 1 << n; #else n |= (n >> 1); n |= (n >> 2); n |= (n >> 4); n |= (n >> 8); n |= (n >> 16); return n - (n >> 1); #endif } boolean lp_setup_bin_triangle( struct lp_setup_context *setup, struct lp_rast_triangle *tri, const struct u_rect *bbox, int nr_planes ) { struct lp_scene *scene = setup->scene; int i; /* What is the largest power-of-two boundary this triangle crosses: */ int dx = floor_pot((bbox->x0 ^ bbox->x1) | (bbox->y0 ^ bbox->y1)); /* The largest dimension of the rasterized area of the triangle * (aligned to a 4x4 grid), rounded down to the nearest power of two: */ int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) | (bbox->y1 - (bbox->y0 & ~3))); /* Determine which tile(s) intersect the triangle's bounding box */ if (dx < TILE_SIZE) { int ix0 = bbox->x0 / TILE_SIZE; int iy0 = bbox->y0 / TILE_SIZE; int px = bbox->x0 & 63 & ~3; int py = bbox->y0 & 63 & ~3; int mask = px | (py << 8); assert(iy0 == bbox->y1 / TILE_SIZE && ix0 == bbox->x1 / TILE_SIZE); if (nr_planes == 3) { if (sz < 4) { /* Triangle is contained in a single 4x4 stamp: */ return lp_scene_bin_command( scene, ix0, iy0, LP_RAST_OP_TRIANGLE_3_4, lp_rast_arg_triangle(tri, mask) ); } if (sz < 16) { /* Triangle is contained in a single 16x16 block: */ return lp_scene_bin_command( scene, ix0, iy0, LP_RAST_OP_TRIANGLE_3_16, lp_rast_arg_triangle(tri, mask) ); } } else if (nr_planes == 4 && sz < 16) { return lp_scene_bin_command( scene, ix0, iy0, LP_RAST_OP_TRIANGLE_4_16, lp_rast_arg_triangle(tri, mask) ); } /* Triangle is contained in a single tile: */ return lp_scene_bin_command( scene, ix0, iy0, lp_rast_tri_tab[nr_planes], lp_rast_arg_triangle(tri, (1<x0 / TILE_SIZE; int iy0 = bbox->y0 / TILE_SIZE; int ix1 = bbox->x1 / TILE_SIZE; int iy1 = bbox->y1 / TILE_SIZE; for (i = 0; i < nr_planes; i++) { c[i] = (tri->plane[i].c + tri->plane[i].dcdy * iy0 * TILE_SIZE - tri->plane[i].dcdx * ix0 * TILE_SIZE); ei[i] = tri->plane[i].ei << TILE_ORDER; eo[i] = tri->plane[i].eo << TILE_ORDER; xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER); ystep[i] = tri->plane[i].dcdy << TILE_ORDER; } /* Test tile-sized blocks against the triangle. * Discard blocks fully outside the tri. If the block is fully * contained inside the tri, bin an lp_rast_shade_tile command. * Else, bin a lp_rast_triangle command. */ for (y = iy0; y <= iy1; y++) { boolean in = FALSE; /* are we inside the triangle? */ int cx[MAX_PLANES]; for (i = 0; i < nr_planes; i++) cx[i] = c[i]; for (x = ix0; x <= ix1; x++) { int out = 0; int partial = 0; for (i = 0; i < nr_planes; i++) { int planeout = cx[i] + eo[i]; int planepartial = cx[i] + ei[i] - 1; out |= (planeout >> 31); partial |= (planepartial >> 31) & (1<inputs, x, y)) goto fail; } /* Iterate cx values across the region: */ for (i = 0; i < nr_planes; i++) cx[i] += xstep[i]; } /* Iterate c values down the region: */ for (i = 0; i < nr_planes; i++) c[i] += ystep[i]; } } return TRUE; fail: /* Need to disable any partially binned triangle. This is easier * than trying to locate all the triangle, shade-tile, etc, * commands which may have been binned. */ tri->inputs.disable = TRUE; return FALSE; } /** * Try to draw the triangle, restart the scene on failure. */ static void retry_triangle_ccw( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4], boolean front) { if (!do_triangle_ccw( setup, v0, v1, v2, front )) { if (!lp_setup_flush_and_restart(setup)) return; if (!do_triangle_ccw( setup, v0, v1, v2, front )) return; } } static INLINE float calc_area(const float (*v0)[4], const float (*v1)[4], const float (*v2)[4]) { float dx01 = v0[0][0] - v1[0][0]; float dy01 = v0[0][1] - v1[0][1]; float dx20 = v2[0][0] - v0[0][0]; float dy20 = v2[0][1] - v0[0][1]; return dx01 * dy20 - dx20 * dy01; } /** * Draw triangle if it's CW, cull otherwise. */ static void triangle_cw( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4] ) { float area = calc_area(v0, v1, v2); if (area < 0.0f) retry_triangle_ccw(setup, v0, v2, v1, !setup->ccw_is_frontface); } static void triangle_ccw( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4]) { float area = calc_area(v0, v1, v2); if (area > 0.0f) retry_triangle_ccw(setup, v0, v1, v2, setup->ccw_is_frontface); } /** * Draw triangle whether it's CW or CCW. */ static void triangle_both( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4] ) { float area = calc_area(v0, v1, v2); if (area > 0.0f) retry_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface ); else if (area < 0.0f) retry_triangle_ccw( setup, v0, v2, v1, !setup->ccw_is_frontface ); } static void triangle_nop( struct lp_setup_context *setup, const float (*v0)[4], const float (*v1)[4], const float (*v2)[4] ) { } void lp_setup_choose_triangle( struct lp_setup_context *setup ) { switch (setup->cullmode) { case PIPE_FACE_NONE: setup->triangle = triangle_both; break; case PIPE_FACE_BACK: setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw; break; case PIPE_FACE_FRONT: setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw; break; default: setup->triangle = triangle_nop; break; } }