/************************************************************************** * * Copyright 2009 VMware, Inc. * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Code generate the whole fragment pipeline. * * The fragment pipeline consists of the following stages: * - early depth test * - fragment shader * - alpha test * - depth/stencil test * - blending * * This file has only the glue to assemble the fragment pipeline. The actual * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we * muster the LLVM JIT execution engine to create a function that follows an * established binary interface and that can be called from C directly. * * A big source of complexity here is that we often want to run different * stages with different precisions and data types and precisions. For example, * the fragment shader needs typically to be done in floats, but the * depth/stencil test and blending is better done in the type that most closely * matches the depth/stencil and color buffer respectively. * * Since the width of a SIMD vector register stays the same regardless of the * element type, different types imply different number of elements, so we must * code generate more instances of the stages with larger types to be able to * feed/consume the stages with smaller types. * * @author Jose Fonseca */ #include #include "pipe/p_defines.h" #include "util/u_inlines.h" #include "util/u_memory.h" #include "util/u_pointer.h" #include "util/u_format.h" #include "util/u_dump.h" #include "util/u_string.h" #include "util/u_simple_list.h" #include "os/os_time.h" #include "pipe/p_shader_tokens.h" #include "draw/draw_context.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_scan.h" #include "tgsi/tgsi_parse.h" #include "gallivm/lp_bld_type.h" #include "gallivm/lp_bld_const.h" #include "gallivm/lp_bld_conv.h" #include "gallivm/lp_bld_init.h" #include "gallivm/lp_bld_intr.h" #include "gallivm/lp_bld_logic.h" #include "gallivm/lp_bld_tgsi.h" #include "gallivm/lp_bld_swizzle.h" #include "gallivm/lp_bld_flow.h" #include "gallivm/lp_bld_debug.h" #include "lp_bld_alpha.h" #include "lp_bld_blend.h" #include "lp_bld_depth.h" #include "lp_bld_interp.h" #include "lp_context.h" #include "lp_debug.h" #include "lp_perf.h" #include "lp_screen.h" #include "lp_setup.h" #include "lp_state.h" #include "lp_tex_sample.h" #include "lp_flush.h" #include "lp_state_fs.h" #include static unsigned fs_no = 0; /** * Expand the relevent bits of mask_input to a 4-dword mask for the * four pixels in a 2x2 quad. This will set the four elements of the * quad mask vector to 0 or ~0. * * \param quad which quad of the quad group to test, in [0,3] * \param mask_input bitwise mask for the whole 4x4 stamp */ static LLVMValueRef generate_quad_mask(LLVMBuilderRef builder, struct lp_type fs_type, unsigned quad, LLVMValueRef mask_input) /* int32 */ { struct lp_type mask_type; LLVMTypeRef i32t = LLVMInt32Type(); LLVMValueRef bits[4]; LLVMValueRef mask; int shift; /* * XXX: We'll need a different path for 16 x u8 */ assert(fs_type.width == 32); assert(fs_type.length == 4); mask_type = lp_int_type(fs_type); /* * mask_input >>= (quad * 4) */ switch (quad) { case 0: shift = 0; break; case 1: shift = 2; break; case 2: shift = 8; break; case 3: shift = 10; break; default: assert(0); shift = 0; } mask_input = LLVMBuildLShr(builder, mask_input, LLVMConstInt(i32t, shift, 0), ""); /* * mask = { mask_input & (1 << i), for i in [0,3] } */ mask = lp_build_broadcast(builder, lp_build_vec_type(mask_type), mask_input); bits[0] = LLVMConstInt(i32t, 1 << 0, 0); bits[1] = LLVMConstInt(i32t, 1 << 1, 0); bits[2] = LLVMConstInt(i32t, 1 << 4, 0); bits[3] = LLVMConstInt(i32t, 1 << 5, 0); mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, 4), ""); /* * mask = mask != 0 ? ~0 : 0 */ mask = lp_build_compare(builder, mask_type, PIPE_FUNC_NOTEQUAL, mask, lp_build_const_int_vec(mask_type, 0)); return mask; } #define EARLY_DEPTH_TEST 0x1 #define LATE_DEPTH_TEST 0x2 #define EARLY_DEPTH_WRITE 0x4 #define LATE_DEPTH_WRITE 0x8 static int find_output_by_semantic( const struct tgsi_shader_info *info, unsigned semantic, unsigned index ) { int i; for (i = 0; i < info->num_outputs; i++) if (info->output_semantic_name[i] == semantic && info->output_semantic_index[i] == index) return i; return -1; } /** * Generate the fragment shader, depth/stencil test, and alpha tests. * \param i which quad in the tile, in range [0,3] * \param partial_mask if 1, do mask_input testing */ static void generate_fs(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key, LLVMBuilderRef builder, struct lp_type type, LLVMValueRef context_ptr, unsigned i, struct lp_build_interp_soa_context *interp, struct lp_build_sampler_soa *sampler, LLVMValueRef *pmask, LLVMValueRef (*color)[4], LLVMValueRef depth_ptr, LLVMValueRef facing, unsigned partial_mask, LLVMValueRef mask_input, LLVMValueRef counter) { const struct util_format_description *zs_format_desc = NULL; const struct tgsi_token *tokens = shader->base.tokens; LLVMTypeRef vec_type; LLVMValueRef consts_ptr; LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS]; LLVMValueRef z; LLVMValueRef zs_value = NULL; LLVMValueRef stencil_refs[2]; struct lp_build_mask_context mask; boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 && shader->info.base.num_inputs < 3 && shader->info.base.num_instructions < 8); unsigned attrib; unsigned chan; unsigned cbuf; unsigned depth_mode; if (key->depth.enabled || key->stencil[0].enabled || key->stencil[1].enabled) { zs_format_desc = util_format_description(key->zsbuf_format); assert(zs_format_desc); if (!shader->info.base.writes_z) { if (key->alpha.enabled || shader->info.base.uses_kill) /* With alpha test and kill, can do the depth test early * and hopefully eliminate some quads. But need to do a * special deferred depth write once the final mask value * is known. */ depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE; else depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE; } else { depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE; } if (!(key->depth.enabled && key->depth.writemask) && !(key->stencil[0].enabled && key->stencil[0].writemask)) depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE); } else { depth_mode = 0; } assert(i < 4); stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr); stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr); vec_type = lp_build_vec_type(type); consts_ptr = lp_jit_context_constants(builder, context_ptr); memset(outputs, 0, sizeof outputs); /* Declare the color and z variables */ for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { for(chan = 0; chan < NUM_CHANNELS; ++chan) { color[cbuf][chan] = lp_build_alloca(builder, vec_type, "color"); } } /* do triangle edge testing */ if (partial_mask) { *pmask = generate_quad_mask(builder, type, i, mask_input); } else { *pmask = lp_build_const_int_vec(type, ~0); } /* 'mask' will control execution based on quad's pixel alive/killed state */ lp_build_mask_begin(&mask, builder, type, *pmask); if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader) lp_build_mask_check(&mask); lp_build_interp_soa_update_pos(interp, i); z = interp->pos[2]; if (depth_mode & EARLY_DEPTH_TEST) { lp_build_depth_stencil_test(builder, &key->depth, key->stencil, type, zs_format_desc, &mask, stencil_refs, z, depth_ptr, facing, &zs_value, !simple_shader); if (depth_mode & EARLY_DEPTH_WRITE) { lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value); } } lp_build_interp_soa_update_inputs(interp, i); /* Build the actual shader */ lp_build_tgsi_soa(builder, tokens, type, &mask, consts_ptr, interp->pos, interp->inputs, outputs, sampler, &shader->info.base); /* Alpha test */ if (key->alpha.enabled) { int color0 = find_output_by_semantic(&shader->info.base, TGSI_SEMANTIC_COLOR, 0); if (color0 != -1) { LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha"); LLVMValueRef alpha_ref_value; alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr); alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value); lp_build_alpha_test(builder, key->alpha.func, type, &mask, alpha, alpha_ref_value, (depth_mode & LATE_DEPTH_TEST) != 0); } } /* Late Z test */ if (depth_mode & LATE_DEPTH_TEST) { int pos0 = find_output_by_semantic(&shader->info.base, TGSI_SEMANTIC_POSITION, 0); if (pos0 != -1) { z = LLVMBuildLoad(builder, outputs[pos0][2], "z"); lp_build_name(z, "output%u.%u.%c", i, pos0, "xyzw"[chan]); } lp_build_depth_stencil_test(builder, &key->depth, key->stencil, type, zs_format_desc, &mask, stencil_refs, z, depth_ptr, facing, &zs_value, !simple_shader); /* Late Z write */ if (depth_mode & LATE_DEPTH_WRITE) { lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value); } } else if ((depth_mode & EARLY_DEPTH_TEST) && (depth_mode & LATE_DEPTH_WRITE)) { /* Need to apply a reduced mask to the depth write. Reload the * depth value, update from zs_value with the new mask value and * write that out. */ lp_build_deferred_depth_write(builder, type, zs_format_desc, &mask, depth_ptr, zs_value); } /* Color write */ for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) { if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR) { unsigned cbuf = shader->info.base.output_semantic_index[attrib]; for(chan = 0; chan < NUM_CHANNELS; ++chan) { if(outputs[attrib][chan]) { /* XXX: just initialize outputs to point at colors[] and * skip this. */ LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], ""); lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]); LLVMBuildStore(builder, out, color[cbuf][chan]); } } } } if (counter) lp_build_occlusion_count(builder, type, lp_build_mask_value(&mask), counter); *pmask = lp_build_mask_end(&mask); } /** * Generate color blending and color output. * \param rt the render target index (to index blend, colormask state) * \param type the pixel color type * \param context_ptr pointer to the runtime JIT context * \param mask execution mask (active fragment/pixel mask) * \param src colors from the fragment shader * \param dst_ptr the destination color buffer pointer */ static void generate_blend(const struct pipe_blend_state *blend, unsigned rt, LLVMBuilderRef builder, struct lp_type type, LLVMValueRef context_ptr, LLVMValueRef mask, LLVMValueRef *src, LLVMValueRef dst_ptr, boolean do_branch) { struct lp_build_context bld; struct lp_build_mask_context mask_ctx; LLVMTypeRef vec_type; LLVMValueRef const_ptr; LLVMValueRef con[4]; LLVMValueRef dst[4]; LLVMValueRef res[4]; unsigned chan; lp_build_context_init(&bld, builder, type); lp_build_mask_begin(&mask_ctx, builder, type, mask); if (do_branch) lp_build_mask_check(&mask_ctx); vec_type = lp_build_vec_type(type); const_ptr = lp_jit_context_blend_color(builder, context_ptr); const_ptr = LLVMBuildBitCast(builder, const_ptr, LLVMPointerType(vec_type, 0), ""); /* load constant blend color and colors from the dest color buffer */ for(chan = 0; chan < 4; ++chan) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0); con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), ""); dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), ""); lp_build_name(con[chan], "con.%c", "rgba"[chan]); lp_build_name(dst[chan], "dst.%c", "rgba"[chan]); } /* do blend */ lp_build_blend_soa(builder, blend, type, rt, src, dst, con, res); /* store results to color buffer */ for(chan = 0; chan < 4; ++chan) { if(blend->rt[rt].colormask & (1 << chan)) { LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0); lp_build_name(res[chan], "res.%c", "rgba"[chan]); res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]); LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, "")); } } lp_build_mask_end(&mask_ctx); } /** * Generate the runtime callable function for the whole fragment pipeline. * Note that the function which we generate operates on a block of 16 * pixels at at time. The block contains 2x2 quads. Each quad contains * 2x2 pixels. */ static void generate_fragment(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, struct lp_fragment_shader_variant *variant, unsigned partial_mask) { struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen); const struct lp_fragment_shader_variant_key *key = &variant->key; char func_name[256]; struct lp_type fs_type; struct lp_type blend_type; LLVMTypeRef fs_elem_type; LLVMTypeRef fs_int_vec_type; LLVMTypeRef blend_vec_type; LLVMTypeRef arg_types[11]; LLVMTypeRef func_type; LLVMValueRef context_ptr; LLVMValueRef x; LLVMValueRef y; LLVMValueRef a0_ptr; LLVMValueRef dadx_ptr; LLVMValueRef dady_ptr; LLVMValueRef color_ptr_ptr; LLVMValueRef depth_ptr; LLVMValueRef mask_input; LLVMValueRef counter = NULL; LLVMBasicBlockRef block; LLVMBuilderRef builder; struct lp_build_sampler_soa *sampler; struct lp_build_interp_soa_context interp; LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH]; LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH]; LLVMValueRef blend_mask; LLVMValueRef function; LLVMValueRef facing; const struct util_format_description *zs_format_desc; unsigned num_fs; unsigned i; unsigned chan; unsigned cbuf; /* TODO: actually pick these based on the fs and color buffer * characteristics. */ memset(&fs_type, 0, sizeof fs_type); fs_type.floating = TRUE; /* floating point values */ fs_type.sign = TRUE; /* values are signed */ fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */ fs_type.width = 32; /* 32-bit float */ fs_type.length = 4; /* 4 elements per vector */ num_fs = 4; /* number of quads per block */ memset(&blend_type, 0, sizeof blend_type); blend_type.floating = FALSE; /* values are integers */ blend_type.sign = FALSE; /* values are unsigned */ blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ blend_type.width = 8; /* 8-bit ubyte values */ blend_type.length = 16; /* 16 elements per vector */ /* * Generate the function prototype. Any change here must be reflected in * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa. */ fs_elem_type = lp_build_elem_type(fs_type); fs_int_vec_type = lp_build_int_vec_type(fs_type); blend_vec_type = lp_build_vec_type(blend_type); util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s", shader->no, variant->no, partial_mask ? "partial" : "whole"); arg_types[0] = screen->context_ptr_type; /* context */ arg_types[1] = LLVMInt32Type(); /* x */ arg_types[2] = LLVMInt32Type(); /* y */ arg_types[3] = LLVMFloatType(); /* facing */ arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */ arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */ arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */ arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */ arg_types[8] = LLVMPointerType(LLVMInt8Type(), 0); /* depth */ arg_types[9] = LLVMInt32Type(); /* mask_input */ arg_types[10] = LLVMPointerType(LLVMInt32Type(), 0);/* counter */ func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0); function = LLVMAddFunction(screen->module, func_name, func_type); LLVMSetFunctionCallConv(function, LLVMCCallConv); variant->function[partial_mask] = function; /* XXX: need to propagate noalias down into color param now we are * passing a pointer-to-pointer? */ for(i = 0; i < Elements(arg_types); ++i) if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute); context_ptr = LLVMGetParam(function, 0); x = LLVMGetParam(function, 1); y = LLVMGetParam(function, 2); facing = LLVMGetParam(function, 3); a0_ptr = LLVMGetParam(function, 4); dadx_ptr = LLVMGetParam(function, 5); dady_ptr = LLVMGetParam(function, 6); color_ptr_ptr = LLVMGetParam(function, 7); depth_ptr = LLVMGetParam(function, 8); mask_input = LLVMGetParam(function, 9); lp_build_name(context_ptr, "context"); lp_build_name(x, "x"); lp_build_name(y, "y"); lp_build_name(a0_ptr, "a0"); lp_build_name(dadx_ptr, "dadx"); lp_build_name(dady_ptr, "dady"); lp_build_name(color_ptr_ptr, "color_ptr_ptr"); lp_build_name(depth_ptr, "depth"); lp_build_name(mask_input, "mask_input"); if (key->occlusion_count) { counter = LLVMGetParam(function, 10); lp_build_name(counter, "counter"); } /* * Function body */ block = LLVMAppendBasicBlock(function, "entry"); builder = LLVMCreateBuilder(); LLVMPositionBuilderAtEnd(builder, block); /* * The shader input interpolation info is not explicitely baked in the * shader key, but everything it derives from (TGSI, and flatshade) is * already included in the shader key. */ lp_build_interp_soa_init(&interp, lp->num_inputs, lp->inputs, builder, fs_type, a0_ptr, dadx_ptr, dady_ptr, x, y); /* code generated texture sampling */ sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr); /* loop over quads in the block */ zs_format_desc = util_format_description(key->zsbuf_format); for(i = 0; i < num_fs; ++i) { LLVMValueRef depth_offset = LLVMConstInt(LLVMInt32Type(), i*fs_type.length*zs_format_desc->block.bits/8, 0); LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS]; LLVMValueRef depth_ptr_i; depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, ""); generate_fs(lp, shader, key, builder, fs_type, context_ptr, i, &interp, sampler, &fs_mask[i], /* output */ out_color, depth_ptr_i, facing, partial_mask, mask_input, counter); for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) for(chan = 0; chan < NUM_CHANNELS; ++chan) fs_out_color[cbuf][chan][i] = out_color[cbuf][chan]; } sampler->destroy(sampler); /* Loop over color outputs / color buffers to do blending. */ for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { LLVMValueRef color_ptr; LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0); LLVMValueRef blend_in_color[NUM_CHANNELS]; unsigned rt; /* * Convert the fs's output color and mask to fit to the blending type. */ for(chan = 0; chan < NUM_CHANNELS; ++chan) { LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH]; for (i = 0; i < num_fs; i++) { fs_color_vals[i] = LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals"); } lp_build_conv(builder, fs_type, blend_type, fs_color_vals, num_fs, &blend_in_color[chan], 1); lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]); } if (partial_mask || !variant->opaque) { lp_build_conv_mask(builder, fs_type, blend_type, fs_mask, num_fs, &blend_mask, 1); } else { blend_mask = lp_build_const_int_vec(blend_type, ~0); } color_ptr = LLVMBuildLoad(builder, LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""), ""); lp_build_name(color_ptr, "color_ptr%d", cbuf); /* which blend/colormask state to use */ rt = key->blend.independent_blend_enable ? cbuf : 0; /* * Blending. */ { /* Could the 4x4 have been killed? */ boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) && !key->alpha.enabled && !shader->info.base.uses_kill); generate_blend(&key->blend, rt, builder, blend_type, context_ptr, blend_mask, blend_in_color, color_ptr, do_branch); } } #ifdef PIPE_ARCH_X86 /* Avoid corrupting the FPU stack on 32bit OSes. */ lp_build_intrinsic(builder, "llvm.x86.mmx.emms", LLVMVoidType(), NULL, 0); #endif LLVMBuildRetVoid(builder); LLVMDisposeBuilder(builder); /* Verify the LLVM IR. If invalid, dump and abort */ #ifdef DEBUG if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) { if (1) lp_debug_dump_value(function); abort(); } #endif /* Apply optimizations to LLVM IR */ LLVMRunFunctionPassManager(screen->pass, function); if ((gallivm_debug & GALLIVM_DEBUG_IR) || (LP_DEBUG & DEBUG_FS)) { /* Print the LLVM IR to stderr */ lp_debug_dump_value(function); debug_printf("\n"); } /* * Translate the LLVM IR into machine code. */ { void *f = LLVMGetPointerToGlobal(screen->engine, function); variant->jit_function[partial_mask] = (lp_jit_frag_func)pointer_to_func(f); if ((gallivm_debug & GALLIVM_DEBUG_ASM) || (LP_DEBUG & DEBUG_FS)) { lp_disassemble(f); } lp_func_delete_body(function); } } static void dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key) { unsigned i; debug_printf("fs variant %p:\n", (void *) key); if (key->flatshade) { debug_printf("flatshade = 1\n"); } for (i = 0; i < key->nr_cbufs; ++i) { debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i])); } if (key->depth.enabled) { debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format)); debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE)); debug_printf("depth.writemask = %u\n", key->depth.writemask); } for (i = 0; i < 2; ++i) { if (key->stencil[i].enabled) { debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE)); debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE)); debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE)); debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE)); debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask); debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask); } } if (key->alpha.enabled) { debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE)); } if (key->occlusion_count) { debug_printf("occlusion_count = 1\n"); } if (key->blend.logicop_enable) { debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE)); } else if (key->blend.rt[0].blend_enable) { debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE)); debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE)); debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE)); debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE)); debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE)); debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE)); } debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask); for (i = 0; i < key->nr_samplers; ++i) { debug_printf("sampler[%u] = \n", i); debug_printf(" .format = %s\n", util_format_name(key->sampler[i].format)); debug_printf(" .target = %s\n", util_dump_tex_target(key->sampler[i].target, TRUE)); debug_printf(" .pot = %u %u %u\n", key->sampler[i].pot_width, key->sampler[i].pot_height, key->sampler[i].pot_depth); debug_printf(" .wrap = %s %s %s\n", util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE), util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE), util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE)); debug_printf(" .min_img_filter = %s\n", util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE)); debug_printf(" .min_mip_filter = %s\n", util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE)); debug_printf(" .mag_img_filter = %s\n", util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE)); if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE) debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE)); debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords); debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal); debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero); debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod); debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod); } } void lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant) { debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n", variant->shader->no, variant->no); tgsi_dump(variant->shader->base.tokens, 0); dump_fs_variant_key(&variant->key); debug_printf("variant->opaque = %u\n", variant->opaque); debug_printf("\n"); } static struct lp_fragment_shader_variant * generate_variant(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, const struct lp_fragment_shader_variant_key *key) { struct lp_fragment_shader_variant *variant; boolean fullcolormask; variant = CALLOC_STRUCT(lp_fragment_shader_variant); if(!variant) return NULL; variant->shader = shader; variant->list_item_global.base = variant; variant->list_item_local.base = variant; variant->no = shader->variants_created++; memcpy(&variant->key, key, shader->variant_key_size); /* * Determine whether we are touching all channels in the color buffer. */ fullcolormask = FALSE; if (key->nr_cbufs == 1) { const struct util_format_description *format_desc; format_desc = util_format_description(key->cbuf_format[0]); if ((~key->blend.rt[0].colormask & util_format_colormask(format_desc)) == 0) { fullcolormask = TRUE; } } variant->opaque = !key->blend.logicop_enable && !key->blend.rt[0].blend_enable && fullcolormask && !key->stencil[0].enabled && !key->alpha.enabled && !key->depth.enabled && !shader->info.base.uses_kill ? TRUE : FALSE; if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) { lp_debug_fs_variant(variant); } generate_fragment(lp, shader, variant, RAST_EDGE_TEST); if (variant->opaque) { /* Specialized shader, which doesn't need to read the color buffer. */ generate_fragment(lp, shader, variant, RAST_WHOLE); } else { variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST]; } return variant; } static void * llvmpipe_create_fs_state(struct pipe_context *pipe, const struct pipe_shader_state *templ) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); struct lp_fragment_shader *shader; int nr_samplers; shader = CALLOC_STRUCT(lp_fragment_shader); if (!shader) return NULL; shader->no = fs_no++; make_empty_list(&shader->variants); /* get/save the summary info for this shader */ lp_build_tgsi_info(templ->tokens, &shader->info); /* we need to keep a local copy of the tokens */ shader->base.tokens = tgsi_dup_tokens(templ->tokens); shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ); if (shader->draw_data == NULL) { FREE((void *) shader->base.tokens); FREE(shader); return NULL; } nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1; shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key, sampler[nr_samplers]); if (LP_DEBUG & DEBUG_TGSI) { unsigned attrib; debug_printf("llvmpipe: Create fragment shader #%u %p:\n", shader->no, (void *) shader); tgsi_dump(templ->tokens, 0); debug_printf("usage masks:\n"); for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) { unsigned usage_mask = shader->info.base.input_usage_mask[attrib]; debug_printf(" IN[%u].%s%s%s%s\n", attrib, usage_mask & TGSI_WRITEMASK_X ? "x" : "", usage_mask & TGSI_WRITEMASK_Y ? "y" : "", usage_mask & TGSI_WRITEMASK_Z ? "z" : "", usage_mask & TGSI_WRITEMASK_W ? "w" : ""); } debug_printf("\n"); } return shader; } static void llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); if (llvmpipe->fs == fs) return; draw_flush(llvmpipe->draw); draw_bind_fragment_shader(llvmpipe->draw, (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL)); llvmpipe->fs = fs; llvmpipe->dirty |= LP_NEW_FS; } static void remove_shader_variant(struct llvmpipe_context *lp, struct lp_fragment_shader_variant *variant) { struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen); unsigned i; if (gallivm_debug & GALLIVM_DEBUG_IR) { debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached #%u v total cached #%u\n", variant->shader->no, variant->no, variant->shader->variants_created, variant->shader->variants_cached, lp->nr_fs_variants); } for (i = 0; i < Elements(variant->function); i++) { if (variant->function[i]) { if (variant->jit_function[i]) LLVMFreeMachineCodeForFunction(screen->engine, variant->function[i]); LLVMDeleteFunction(variant->function[i]); } } remove_from_list(&variant->list_item_local); variant->shader->variants_cached--; remove_from_list(&variant->list_item_global); lp->nr_fs_variants--; FREE(variant); } static void llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); struct lp_fragment_shader *shader = fs; struct lp_fs_variant_list_item *li; assert(fs != llvmpipe->fs); (void) llvmpipe; /* * XXX: we need to flush the context until we have some sort of reference * counting in fragment shaders as they may still be binned * Flushing alone might not sufficient we need to wait on it too. */ llvmpipe_finish(pipe, __FUNCTION__); li = first_elem(&shader->variants); while(!at_end(&shader->variants, li)) { struct lp_fs_variant_list_item *next = next_elem(li); remove_shader_variant(llvmpipe, li->base); li = next; } draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data); assert(shader->variants_cached == 0); FREE((void *) shader->base.tokens); FREE(shader); } static void llvmpipe_set_constant_buffer(struct pipe_context *pipe, uint shader, uint index, struct pipe_resource *constants) { struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); unsigned size = constants ? constants->width0 : 0; const void *data = constants ? llvmpipe_resource_data(constants) : NULL; assert(shader < PIPE_SHADER_TYPES); assert(index < PIPE_MAX_CONSTANT_BUFFERS); if(llvmpipe->constants[shader][index] == constants) return; draw_flush(llvmpipe->draw); /* note: reference counting */ pipe_resource_reference(&llvmpipe->constants[shader][index], constants); if(shader == PIPE_SHADER_VERTEX || shader == PIPE_SHADER_GEOMETRY) { draw_set_mapped_constant_buffer(llvmpipe->draw, shader, index, data, size); } llvmpipe->dirty |= LP_NEW_CONSTANTS; } /** * Return the blend factor equivalent to a destination alpha of one. */ static INLINE unsigned force_dst_alpha_one(unsigned factor) { switch(factor) { case PIPE_BLENDFACTOR_DST_ALPHA: return PIPE_BLENDFACTOR_ONE; case PIPE_BLENDFACTOR_INV_DST_ALPHA: return PIPE_BLENDFACTOR_ZERO; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: return PIPE_BLENDFACTOR_ZERO; } return factor; } /** * We need to generate several variants of the fragment pipeline to match * all the combinations of the contributing state atoms. * * TODO: there is actually no reason to tie this to context state -- the * generated code could be cached globally in the screen. */ static void make_variant_key(struct llvmpipe_context *lp, struct lp_fragment_shader *shader, struct lp_fragment_shader_variant_key *key) { unsigned i; memset(key, 0, shader->variant_key_size); if (lp->framebuffer.zsbuf) { if (lp->depth_stencil->depth.enabled) { key->zsbuf_format = lp->framebuffer.zsbuf->format; memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth); } if (lp->depth_stencil->stencil[0].enabled) { key->zsbuf_format = lp->framebuffer.zsbuf->format; memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil); } } key->alpha.enabled = lp->depth_stencil->alpha.enabled; if(key->alpha.enabled) key->alpha.func = lp->depth_stencil->alpha.func; /* alpha.ref_value is passed in jit_context */ key->flatshade = lp->rasterizer->flatshade; if (lp->active_query_count) { key->occlusion_count = TRUE; } if (lp->framebuffer.nr_cbufs) { memcpy(&key->blend, lp->blend, sizeof key->blend); } key->nr_cbufs = lp->framebuffer.nr_cbufs; for (i = 0; i < lp->framebuffer.nr_cbufs; i++) { enum pipe_format format = lp->framebuffer.cbufs[i]->format; struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i]; const struct util_format_description *format_desc; key->cbuf_format[i] = format; format_desc = util_format_description(format); assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB || format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB); blend_rt->colormask = lp->blend->rt[i].colormask; /* * Mask out color channels not present in the color buffer. */ blend_rt->colormask &= util_format_colormask(format_desc); /* * Our swizzled render tiles always have an alpha channel, but the linear * render target format often does not, so force here the dst alpha to be * one. * * This is not a mere optimization. Wrong results will be produced if the * dst alpha is used, the dst format does not have alpha, and the previous * rendering was not flushed from the swizzled to linear buffer. For * example, NonPowTwo DCT. * * TODO: This should be generalized to all channels for better * performance, but only alpha causes correctness issues. * * Also, force rgb/alpha func/factors match, to make AoS blending easier. */ if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W) { blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor); blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor); blend_rt->alpha_func = blend_rt->rgb_func; blend_rt->alpha_src_factor = blend_rt->rgb_src_factor; blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor; } } /* This value will be the same for all the variants of a given shader: */ key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1; for(i = 0; i < key->nr_samplers; ++i) { if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) { lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i], lp->sampler[i]); } } } /** * Update fragment state. This is called just prior to drawing * something when some fragment-related state has changed. */ void llvmpipe_update_fs(struct llvmpipe_context *lp) { struct lp_fragment_shader *shader = lp->fs; struct lp_fragment_shader_variant_key key; struct lp_fragment_shader_variant *variant = NULL; struct lp_fs_variant_list_item *li; make_variant_key(lp, shader, &key); li = first_elem(&shader->variants); while(!at_end(&shader->variants, li)) { if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) { variant = li->base; break; } li = next_elem(li); } if (variant) { move_to_head(&lp->fs_variants_list, &variant->list_item_global); } else { int64_t t0, t1; int64_t dt; unsigned i; if (lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS) { struct pipe_context *pipe = &lp->pipe; /* * XXX: we need to flush the context until we have some sort of reference * counting in fragment shaders as they may still be binned * Flushing alone might not be sufficient we need to wait on it too. */ llvmpipe_finish(pipe, __FUNCTION__); for (i = 0; i < LP_MAX_SHADER_VARIANTS / 4; i++) { struct lp_fs_variant_list_item *item = last_elem(&lp->fs_variants_list); remove_shader_variant(lp, item->base); } } t0 = os_time_get(); variant = generate_variant(lp, shader, &key); t1 = os_time_get(); dt = t1 - t0; LP_COUNT_ADD(llvm_compile_time, dt); LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */ if (variant) { insert_at_head(&shader->variants, &variant->list_item_local); insert_at_head(&lp->fs_variants_list, &variant->list_item_global); lp->nr_fs_variants++; shader->variants_cached++; } } lp_setup_set_fs_variant(lp->setup, variant); } void llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe) { llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state; llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state; llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state; llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer; }