/************************************************************************** * * Copyright 2009 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /** * @file * Unit tests for blend LLVM IR generation * * @author Jose Fonseca * * Blend computation code derived from code written by * @author Brian Paul */ #include #include #include #include #include #include #include #include #include #include "pipe/p_state.h" #include "util/u_format.h" #include "util/u_math.h" #include "lp_bld.h" #include "lp_bld_type.h" #include "lp_bld_arit.h" unsigned verbose = 0; typedef void (*blend_test_ptr_t)(const void *src, const void *dst, const void *con, void *res); static INLINE uint64_t rdtsc(void) { #if defined(PIPE_ARCH_X86) || defined(PIPE_ARCH_X86_64) uint32_t hi, lo; __asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi)); return ((uint64_t)lo) | (((uint64_t)hi) << 32); #else return 0; #endif } static LLVMValueRef add_blend_test(LLVMModuleRef module, const struct pipe_blend_state *blend, union lp_type type) { LLVMTypeRef ret_type; LLVMTypeRef vec_type; LLVMTypeRef args[4]; LLVMValueRef func; LLVMValueRef src_ptr; LLVMValueRef dst_ptr; LLVMValueRef const_ptr; LLVMValueRef res_ptr; LLVMBasicBlockRef block; LLVMBuilderRef builder; LLVMValueRef src; LLVMValueRef dst; LLVMValueRef con; LLVMValueRef res; ret_type = LLVMInt64Type(); vec_type = lp_build_vec_type(type); args[3] = args[2] = args[1] = args[0] = LLVMPointerType(vec_type, 0); func = LLVMAddFunction(module, "test", LLVMFunctionType(LLVMVoidType(), args, 4, 0)); LLVMSetFunctionCallConv(func, LLVMCCallConv); src_ptr = LLVMGetParam(func, 0); dst_ptr = LLVMGetParam(func, 1); const_ptr = LLVMGetParam(func, 2); res_ptr = LLVMGetParam(func, 3); block = LLVMAppendBasicBlock(func, "entry"); builder = LLVMCreateBuilder(); LLVMPositionBuilderAtEnd(builder, block); src = LLVMBuildLoad(builder, src_ptr, "src"); dst = LLVMBuildLoad(builder, dst_ptr, "dst"); con = LLVMBuildLoad(builder, const_ptr, "const"); res = lp_build_blend(builder, blend, type, src, dst, con, 3); LLVMSetValueName(res, "res"); LLVMBuildStore(builder, res, res_ptr); LLVMBuildRetVoid(builder);; LLVMDisposeBuilder(builder); return func; } static float random_float(void) { return (float)((double)random()/(double)RAND_MAX); } /** Add and limit result to ceiling of 1.0 */ #define ADD_SAT(R, A, B) \ do { \ R = (A) + (B); if (R > 1.0f) R = 1.0f; \ } while (0) /** Subtract and limit result to floor of 0.0 */ #define SUB_SAT(R, A, B) \ do { \ R = (A) - (B); if (R < 0.0f) R = 0.0f; \ } while (0) static void compute_blend_ref_term(unsigned rgb_factor, unsigned alpha_factor, const float *factor, const float *src, const float *dst, const float *con, float *term) { float temp; switch (rgb_factor) { case PIPE_BLENDFACTOR_ONE: term[0] = factor[0]; /* R */ term[1] = factor[1]; /* G */ term[2] = factor[2]; /* B */ break; case PIPE_BLENDFACTOR_SRC_COLOR: term[0] = factor[0] * src[0]; /* R */ term[1] = factor[1] * src[1]; /* G */ term[2] = factor[2] * src[2]; /* B */ break; case PIPE_BLENDFACTOR_SRC_ALPHA: term[0] = factor[0] * src[3]; /* R */ term[1] = factor[1] * src[3]; /* G */ term[2] = factor[2] * src[3]; /* B */ break; case PIPE_BLENDFACTOR_DST_COLOR: term[0] = factor[0] * dst[0]; /* R */ term[1] = factor[1] * dst[1]; /* G */ term[2] = factor[2] * dst[2]; /* B */ break; case PIPE_BLENDFACTOR_DST_ALPHA: term[0] = factor[0] * dst[3]; /* R */ term[1] = factor[1] * dst[3]; /* G */ term[2] = factor[2] * dst[3]; /* B */ break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: temp = MIN2(src[3], 1.0f - dst[3]); term[0] = factor[0] * temp; /* R */ term[1] = factor[1] * temp; /* G */ term[2] = factor[2] * temp; /* B */ break; case PIPE_BLENDFACTOR_CONST_COLOR: term[0] = factor[0] * con[0]; /* R */ term[1] = factor[1] * con[1]; /* G */ term[2] = factor[2] * con[2]; /* B */ break; case PIPE_BLENDFACTOR_CONST_ALPHA: term[0] = factor[0] * con[3]; /* R */ term[1] = factor[1] * con[3]; /* G */ term[2] = factor[2] * con[3]; /* B */ break; case PIPE_BLENDFACTOR_SRC1_COLOR: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_SRC1_ALPHA: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_ZERO: term[0] = 0.0f; /* R */ term[1] = 0.0f; /* G */ term[2] = 0.0f; /* B */ break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: term[0] = factor[0] * (1.0f - src[0]); /* R */ term[1] = factor[1] * (1.0f - src[1]); /* G */ term[2] = factor[2] * (1.0f - src[2]); /* B */ break; case PIPE_BLENDFACTOR_INV_SRC_ALPHA: term[0] = factor[0] * (1.0f - src[3]); /* R */ term[1] = factor[1] * (1.0f - src[3]); /* G */ term[2] = factor[2] * (1.0f - src[3]); /* B */ break; case PIPE_BLENDFACTOR_INV_DST_ALPHA: term[0] = factor[0] * (1.0f - dst[3]); /* R */ term[1] = factor[1] * (1.0f - dst[3]); /* G */ term[2] = factor[2] * (1.0f - dst[3]); /* B */ break; case PIPE_BLENDFACTOR_INV_DST_COLOR: term[0] = factor[0] * (1.0f - dst[0]); /* R */ term[1] = factor[1] * (1.0f - dst[1]); /* G */ term[2] = factor[2] * (1.0f - dst[2]); /* B */ break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: term[0] = factor[0] * (1.0f - con[0]); /* R */ term[1] = factor[1] * (1.0f - con[1]); /* G */ term[2] = factor[2] * (1.0f - con[2]); /* B */ break; case PIPE_BLENDFACTOR_INV_CONST_ALPHA: term[0] = factor[0] * (1.0f - con[3]); /* R */ term[1] = factor[1] * (1.0f - con[3]); /* G */ term[2] = factor[2] * (1.0f - con[3]); /* B */ break; case PIPE_BLENDFACTOR_INV_SRC1_COLOR: assert(0); /* to do */ break; case PIPE_BLENDFACTOR_INV_SRC1_ALPHA: assert(0); /* to do */ break; default: assert(0); } /* * Compute src/first term A */ switch (alpha_factor) { case PIPE_BLENDFACTOR_ONE: term[3] = factor[3]; /* A */ break; case PIPE_BLENDFACTOR_SRC_COLOR: case PIPE_BLENDFACTOR_SRC_ALPHA: term[3] = factor[3] * src[3]; /* A */ break; case PIPE_BLENDFACTOR_DST_COLOR: case PIPE_BLENDFACTOR_DST_ALPHA: term[3] = factor[3] * dst[3]; /* A */ break; case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: term[3] = src[3]; /* A */ break; case PIPE_BLENDFACTOR_CONST_COLOR: case PIPE_BLENDFACTOR_CONST_ALPHA: term[3] = factor[3] * con[3]; /* A */ break; case PIPE_BLENDFACTOR_ZERO: term[3] = 0.0f; /* A */ break; case PIPE_BLENDFACTOR_INV_SRC_COLOR: case PIPE_BLENDFACTOR_INV_SRC_ALPHA: term[3] = factor[3] * (1.0f - src[3]); /* A */ break; case PIPE_BLENDFACTOR_INV_DST_COLOR: case PIPE_BLENDFACTOR_INV_DST_ALPHA: term[3] = factor[3] * (1.0f - dst[3]); /* A */ break; case PIPE_BLENDFACTOR_INV_CONST_COLOR: case PIPE_BLENDFACTOR_INV_CONST_ALPHA: term[3] = factor[3] * (1.0f - con[3]); break; default: assert(0); } } static void compute_blend_ref(const struct pipe_blend_state *blend, const float *src, const float *dst, const float *con, float *res) { float src_term[4]; float dst_term[4]; compute_blend_ref_term(blend->rgb_src_factor, blend->alpha_src_factor, src, src, dst, con, src_term); compute_blend_ref_term(blend->rgb_dst_factor, blend->alpha_dst_factor, dst, src, dst, con, dst_term); /* * Combine RGB terms */ switch (blend->rgb_func) { case PIPE_BLEND_ADD: ADD_SAT(res[0], src_term[0], dst_term[0]); /* R */ ADD_SAT(res[1], src_term[1], dst_term[1]); /* G */ ADD_SAT(res[2], src_term[2], dst_term[2]); /* B */ break; case PIPE_BLEND_SUBTRACT: SUB_SAT(res[0], src_term[0], dst_term[0]); /* R */ SUB_SAT(res[1], src_term[1], dst_term[1]); /* G */ SUB_SAT(res[2], src_term[2], dst_term[2]); /* B */ break; case PIPE_BLEND_REVERSE_SUBTRACT: SUB_SAT(res[0], dst_term[0], src_term[0]); /* R */ SUB_SAT(res[1], dst_term[1], src_term[1]); /* G */ SUB_SAT(res[2], dst_term[2], src_term[2]); /* B */ break; case PIPE_BLEND_MIN: res[0] = MIN2(src_term[0], dst_term[0]); /* R */ res[1] = MIN2(src_term[1], dst_term[1]); /* G */ res[2] = MIN2(src_term[2], dst_term[2]); /* B */ break; case PIPE_BLEND_MAX: res[0] = MAX2(src_term[0], dst_term[0]); /* R */ res[1] = MAX2(src_term[1], dst_term[1]); /* G */ res[2] = MAX2(src_term[2], dst_term[2]); /* B */ break; default: assert(0); } /* * Combine A terms */ switch (blend->alpha_func) { case PIPE_BLEND_ADD: ADD_SAT(res[3], src_term[3], dst_term[3]); /* A */ break; case PIPE_BLEND_SUBTRACT: SUB_SAT(res[3], src_term[3], dst_term[3]); /* A */ break; case PIPE_BLEND_REVERSE_SUBTRACT: SUB_SAT(res[3], dst_term[3], src_term[3]); /* A */ break; case PIPE_BLEND_MIN: res[3] = MIN2(src_term[3], dst_term[3]); /* A */ break; case PIPE_BLEND_MAX: res[3] = MAX2(src_term[3], dst_term[3]); /* A */ break; default: assert(0); } } static boolean test_one(const struct pipe_blend_state *blend, union lp_type type) { LLVMModuleRef module = NULL; LLVMValueRef func = NULL; LLVMExecutionEngineRef engine = NULL; LLVMModuleProviderRef provider = NULL; LLVMPassManagerRef pass = NULL; char *error = NULL; blend_test_ptr_t blend_test_ptr; boolean success; const unsigned n = 32; int64_t cycles[n]; unsigned i, j, k; module = LLVMModuleCreateWithName("test"); func = add_blend_test(module, blend, type); if(LLVMVerifyModule(module, LLVMPrintMessageAction, &error)) { LLVMDumpModule(module); abort(); } LLVMDisposeMessage(error); provider = LLVMCreateModuleProviderForExistingModule(module); if (LLVMCreateJITCompiler(&engine, provider, 1, &error)) { fprintf(stderr, "%s\n", error); LLVMDisposeMessage(error); abort(); } #if 0 pass = LLVMCreatePassManager(); LLVMAddTargetData(LLVMGetExecutionEngineTargetData(engine), pass); /* These are the passes currently listed in llvm-c/Transforms/Scalar.h, * but there are more on SVN. */ LLVMAddConstantPropagationPass(pass); LLVMAddInstructionCombiningPass(pass); LLVMAddPromoteMemoryToRegisterPass(pass); LLVMAddGVNPass(pass); LLVMAddCFGSimplificationPass(pass); LLVMRunPassManager(pass, module); #else (void)pass; #endif blend_test_ptr = (blend_test_ptr_t)LLVMGetPointerToGlobal(engine, func); if(verbose >= 2) LLVMDumpModule(module); success = TRUE; for(i = 0; i < n && success; ++i) { int64_t start_counter = 0; int64_t end_counter = 0; if(type.floating && type.width == 32) { float src[LP_MAX_VECTOR_LENGTH]; float dst[LP_MAX_VECTOR_LENGTH]; float con[LP_MAX_VECTOR_LENGTH]; float ref[LP_MAX_VECTOR_LENGTH]; float res[LP_MAX_VECTOR_LENGTH]; for(j = 0; j < type.length; ++j) { src[j] = random_float(); dst[j] = random_float(); con[j] = random_float(); } for(j = 0; j < type.length; j += 4) compute_blend_ref(blend, src + j, dst + j, con + j, ref + j); start_counter = rdtsc(); blend_test_ptr(src, dst, con, res); end_counter = rdtsc(); for(j = 0; j < type.length; ++j) if(fabs(res[j] - ref[j]) > FLT_EPSILON) success = FALSE; if (!success) { fprintf(stderr, "MISMATCH\n"); fprintf(stderr, " Result: "); for(j = 0; j < type.length; ++j) fprintf(stderr, " %f", res[j]); fprintf(stderr, "\n"); fprintf(stderr, " Expected: "); for(j = 0; j < type.length; ++j) fprintf(stderr, " %f", ref[j]); fprintf(stderr, "\n"); } } else if(!type.floating && !type.fixed && !type.sign && type.norm && type.width == 8) { uint8_t src[LP_MAX_VECTOR_LENGTH]; uint8_t dst[LP_MAX_VECTOR_LENGTH]; uint8_t con[LP_MAX_VECTOR_LENGTH]; uint8_t ref[LP_MAX_VECTOR_LENGTH]; uint8_t res[LP_MAX_VECTOR_LENGTH]; for(j = 0; j < type.length; ++j) { src[j] = random() & 0xff; dst[j] = random() & 0xff; con[j] = random() & 0xff; } for(j = 0; j < type.length; j += 4) { float srcf[4]; float dstf[4]; float conf[4]; float reff[4]; for(k = 0; k < 4; ++k) { srcf[k] = (1.0f/255.0f)*src[j + k]; dstf[k] = (1.0f/255.0f)*dst[j + k]; conf[k] = (1.0f/255.0f)*con[j + k]; } compute_blend_ref(blend, srcf, dstf, conf, reff); for(k = 0; k < 4; ++k) ref[j + k] = (uint8_t)(reff[k]*255.0f + 0.5f); } start_counter = rdtsc(); blend_test_ptr(src, dst, con, res); end_counter = rdtsc(); for(j = 0; j < type.length; ++j) { int delta = (int)res[j] - (int)ref[j]; if (delta < 0) delta = -delta; if(delta > 1) success = FALSE; } if (!success) { fprintf(stderr, "MISMATCH\n"); fprintf(stderr, " Result: "); for(j = 0; j < type.length; ++j) fprintf(stderr, " %3u", res[j]); fprintf(stderr, "\n"); fprintf(stderr, " Expected: "); for(j = 0; j < type.length; ++j) fprintf(stderr, " %3u", ref[j]); fprintf(stderr, "\n"); } } else assert(0); cycles[i] = end_counter - start_counter; } /* * Unfortunately the output of cycle counter is not very reliable as it comes * -- sometimes we get outliers (due IRQs perhaps?) which are * better removed to avoid random or biased data. */ if(verbose >=1 && success) { double sum = 0.0, sum2 = 0.0; double avg, std; unsigned m; for(i = 0; i < n; ++i) { sum += cycles[i]; sum2 += cycles[i]*cycles[i]; } avg = sum/n; std = sqrtf((sum2 - n*avg*avg)/n); m = 0; sum = 0.0; for(i = 0; i < n; ++i) { if(fabs(cycles[i] - avg) <= 4.0*std) { sum += cycles[i]; ++m; } } avg = sum/m; fprintf(stdout, " cycles=%.1f", avg); fprintf(stdout, " cycles_per_elem=%.1f", avg/type.length); } if(verbose >= 1) { fprintf(stdout, " result=%s\n", success ? "pass" : "fail"); fflush(stdout); } if (!success) { LLVMDumpModule(module); LLVMWriteBitcodeToFile(module, "blend.bc"); fprintf(stderr, "blend.bc written\n"); abort(); } LLVMFreeMachineCodeForFunction(engine, func); LLVMDisposeExecutionEngine(engine); if(pass) LLVMDisposePassManager(pass); return success; } struct value_name_pair { unsigned value; const char *name; }; const struct value_name_pair blend_factors[] = { {PIPE_BLENDFACTOR_ZERO , "zero"}, {PIPE_BLENDFACTOR_ONE , "one"}, {PIPE_BLENDFACTOR_SRC_COLOR , "src_color"}, {PIPE_BLENDFACTOR_SRC_ALPHA , "src_alpha"}, {PIPE_BLENDFACTOR_DST_COLOR , "dst_color"}, {PIPE_BLENDFACTOR_DST_ALPHA , "dst_alpha"}, {PIPE_BLENDFACTOR_CONST_COLOR , "const_color"}, {PIPE_BLENDFACTOR_CONST_ALPHA , "const_alpha"}, #if 0 {PIPE_BLENDFACTOR_SRC1_COLOR , "src1_color"}, {PIPE_BLENDFACTOR_SRC1_ALPHA , "src1_alpha"}, #endif {PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE , "src_alpha_saturate"}, {PIPE_BLENDFACTOR_INV_SRC_COLOR , "inv_src_color"}, {PIPE_BLENDFACTOR_INV_SRC_ALPHA , "inv_src_alpha"}, {PIPE_BLENDFACTOR_INV_DST_COLOR , "inv_dst_color"}, {PIPE_BLENDFACTOR_INV_DST_ALPHA , "inv_dst_alpha"}, {PIPE_BLENDFACTOR_INV_CONST_COLOR , "inv_const_color"}, {PIPE_BLENDFACTOR_INV_CONST_ALPHA , "inv_const_alpha"}, #if 0 {PIPE_BLENDFACTOR_INV_SRC1_COLOR , "inv_src1_color"}, {PIPE_BLENDFACTOR_INV_SRC1_ALPHA , "inv_src1_alpha"} #endif }; const struct value_name_pair blend_funcs[] = { {PIPE_BLEND_ADD , "add"}, {PIPE_BLEND_SUBTRACT , "sub"}, {PIPE_BLEND_REVERSE_SUBTRACT , "rev_sub"}, {PIPE_BLEND_MIN , "min"}, {PIPE_BLEND_MAX , "max"} }; const union lp_type blend_types[] = { /* float, fixed, sign, norm, width, len */ {{ TRUE, FALSE, TRUE, TRUE, 32, 4 }}, /* f32 x 4 */ {{ FALSE, FALSE, FALSE, TRUE, 8, 16 }}, /* u8n x 16 */ }; const unsigned num_funcs = sizeof(blend_funcs)/sizeof(blend_funcs[0]); const unsigned num_factors = sizeof(blend_factors)/sizeof(blend_factors[0]); const unsigned num_types = sizeof(blend_types)/sizeof(blend_types[0]); static boolean test_all(void) { const struct value_name_pair *rgb_func; const struct value_name_pair *rgb_src_factor; const struct value_name_pair *rgb_dst_factor; const struct value_name_pair *alpha_func; const struct value_name_pair *alpha_src_factor; const struct value_name_pair *alpha_dst_factor; struct pipe_blend_state blend; const union lp_type *type; bool success = TRUE; for(rgb_func = blend_funcs; rgb_func < &blend_funcs[num_funcs]; ++rgb_func) { for(alpha_func = blend_funcs; alpha_func < &blend_funcs[num_funcs]; ++alpha_func) { for(rgb_src_factor = blend_factors; rgb_src_factor < &blend_factors[num_factors]; ++rgb_src_factor) { for(rgb_dst_factor = blend_factors; rgb_dst_factor <= rgb_src_factor; ++rgb_dst_factor) { for(alpha_src_factor = blend_factors; alpha_src_factor < &blend_factors[num_factors]; ++alpha_src_factor) { for(alpha_dst_factor = blend_factors; alpha_dst_factor <= alpha_src_factor; ++alpha_dst_factor) { for(type = blend_types; type < &blend_types[num_types]; ++type) { if(rgb_dst_factor->value == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || alpha_dst_factor->value == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) continue; if(verbose >= 1) { fprintf(stdout, "%s=%s %s=%s %s=%s %s=%s %s=%s %s=%s", "rgb_func", rgb_func->name, "rgb_src_factor", rgb_src_factor->name, "rgb_dst_factor", rgb_dst_factor->name, "alpha_func", alpha_func->name, "alpha_src_factor", alpha_src_factor->name, "alpha_dst_factor", alpha_dst_factor->name); fflush(stdout); } memset(&blend, 0, sizeof blend); blend.blend_enable = 1; blend.rgb_func = rgb_func->value; blend.rgb_src_factor = rgb_src_factor->value; blend.rgb_dst_factor = rgb_dst_factor->value; blend.alpha_func = alpha_func->value; blend.alpha_src_factor = alpha_src_factor->value; blend.alpha_dst_factor = alpha_dst_factor->value; if(!test_one(&blend, *type)) success = FALSE; } } } } } } } return success; } static boolean test_some(unsigned long n) { const struct value_name_pair *rgb_func; const struct value_name_pair *rgb_src_factor; const struct value_name_pair *rgb_dst_factor; const struct value_name_pair *alpha_func; const struct value_name_pair *alpha_src_factor; const struct value_name_pair *alpha_dst_factor; struct pipe_blend_state blend; const union lp_type *type; unsigned long i; bool success = TRUE; for(i = 0; i < n; ++i) { rgb_func = &blend_funcs[random() % num_funcs]; alpha_func = &blend_funcs[random() % num_funcs]; rgb_src_factor = &blend_factors[random() % num_factors]; alpha_src_factor = &blend_factors[random() % num_factors]; do { rgb_dst_factor = &blend_factors[random() % num_factors]; } while(rgb_dst_factor->value == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE); do { alpha_dst_factor = &blend_factors[random() % num_factors]; } while(alpha_dst_factor->value == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE); for(type = blend_types; type < &blend_types[num_types]; ++type) { if(verbose >= 1) { fprintf(stdout, "%s=%s %s=%s %s=%s %s=%s %s=%s %s=%s", "rgb_func", rgb_func->name, "rgb_src_factor", rgb_src_factor->name, "rgb_dst_factor", rgb_dst_factor->name, "alpha_func", alpha_func->name, "alpha_src_factor", alpha_src_factor->name, "alpha_dst_factor", alpha_dst_factor->name); fflush(stdout); } memset(&blend, 0, sizeof blend); blend.blend_enable = 1; blend.rgb_func = rgb_func->value; blend.rgb_src_factor = rgb_src_factor->value; blend.rgb_dst_factor = rgb_dst_factor->value; blend.alpha_func = alpha_func->value; blend.alpha_src_factor = alpha_src_factor->value; blend.alpha_dst_factor = alpha_dst_factor->value; if(!test_one(&blend, *type)) success = FALSE; } } return success; } int main(int argc, char **argv) { unsigned long n = 1000; unsigned i; boolean success; for(i = 1; i < argc; ++i) { if(strcmp(argv[i], "-v") == 0) ++verbose; else n = atoi(argv[i]); } if(n) success = test_some(n); else success = test_all(); return success ? 0 : 1; }