#include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_inlines.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "nv40_context.h" #include "nv40_state.h" /* TODO (at least...): * 1. Indexed consts + ARL * 3. NV_vp11, NV_vp2, NV_vp3 features * - extra arith opcodes * - branching * - texture sampling * - indexed attribs * - indexed results * 4. bugs */ #define SWZ_X 0 #define SWZ_Y 1 #define SWZ_Z 2 #define SWZ_W 3 #define MASK_X 8 #define MASK_Y 4 #define MASK_Z 2 #define MASK_W 1 #define MASK_ALL (MASK_X|MASK_Y|MASK_Z|MASK_W) #define DEF_SCALE 0 #define DEF_CTEST 0 #include "nv40_shader.h" #define swz(s,x,y,z,w) nv40_sr_swz((s), SWZ_##x, SWZ_##y, SWZ_##z, SWZ_##w) #define neg(s) nv40_sr_neg((s)) #define abs(s) nv40_sr_abs((s)) #define NV40_VP_INST_DEST_CLIP(n) ((~0 - 6) + (n)) struct nv40_vpc { struct nv40_vertex_program *vp; struct nv40_vertex_program_exec *vpi; unsigned r_temps; unsigned r_temps_discard; struct nv40_sreg r_result[PIPE_MAX_SHADER_OUTPUTS]; struct nv40_sreg *r_address; struct nv40_sreg *r_temp; struct nv40_sreg *imm; unsigned nr_imm; unsigned hpos_idx; }; static struct nv40_sreg temp(struct nv40_vpc *vpc) { int idx = ffs(~vpc->r_temps) - 1; if (idx < 0) { NOUVEAU_ERR("out of temps!!\n"); assert(0); return nv40_sr(NV40SR_TEMP, 0); } vpc->r_temps |= (1 << idx); vpc->r_temps_discard |= (1 << idx); return nv40_sr(NV40SR_TEMP, idx); } static INLINE void release_temps(struct nv40_vpc *vpc) { vpc->r_temps &= ~vpc->r_temps_discard; vpc->r_temps_discard = 0; } static struct nv40_sreg constant(struct nv40_vpc *vpc, int pipe, float x, float y, float z, float w) { struct nv40_vertex_program *vp = vpc->vp; struct nv40_vertex_program_data *vpd; int idx; if (pipe >= 0) { for (idx = 0; idx < vp->nr_consts; idx++) { if (vp->consts[idx].index == pipe) return nv40_sr(NV40SR_CONST, idx); } } idx = vp->nr_consts++; vp->consts = realloc(vp->consts, sizeof(*vpd) * vp->nr_consts); vpd = &vp->consts[idx]; vpd->index = pipe; vpd->value[0] = x; vpd->value[1] = y; vpd->value[2] = z; vpd->value[3] = w; return nv40_sr(NV40SR_CONST, idx); } #define arith(cc,s,o,d,m,s0,s1,s2) \ nv40_vp_arith((cc), (s), NV40_VP_INST_##o, (d), (m), (s0), (s1), (s2)) static void emit_src(struct nv40_vpc *vpc, uint32_t *hw, int pos, struct nv40_sreg src) { struct nv40_vertex_program *vp = vpc->vp; uint32_t sr = 0; switch (src.type) { case NV40SR_TEMP: sr |= (NV40_VP_SRC_REG_TYPE_TEMP << NV40_VP_SRC_REG_TYPE_SHIFT); sr |= (src.index << NV40_VP_SRC_TEMP_SRC_SHIFT); break; case NV40SR_INPUT: sr |= (NV40_VP_SRC_REG_TYPE_INPUT << NV40_VP_SRC_REG_TYPE_SHIFT); vp->ir |= (1 << src.index); hw[1] |= (src.index << NV40_VP_INST_INPUT_SRC_SHIFT); break; case NV40SR_CONST: sr |= (NV40_VP_SRC_REG_TYPE_CONST << NV40_VP_SRC_REG_TYPE_SHIFT); assert(vpc->vpi->const_index == -1 || vpc->vpi->const_index == src.index); vpc->vpi->const_index = src.index; break; case NV40SR_NONE: sr |= (NV40_VP_SRC_REG_TYPE_INPUT << NV40_VP_SRC_REG_TYPE_SHIFT); break; default: assert(0); } if (src.negate) sr |= NV40_VP_SRC_NEGATE; if (src.abs) hw[0] |= (1 << (21 + pos)); sr |= ((src.swz[0] << NV40_VP_SRC_SWZ_X_SHIFT) | (src.swz[1] << NV40_VP_SRC_SWZ_Y_SHIFT) | (src.swz[2] << NV40_VP_SRC_SWZ_Z_SHIFT) | (src.swz[3] << NV40_VP_SRC_SWZ_W_SHIFT)); switch (pos) { case 0: hw[1] |= ((sr & NV40_VP_SRC0_HIGH_MASK) >> NV40_VP_SRC0_HIGH_SHIFT) << NV40_VP_INST_SRC0H_SHIFT; hw[2] |= (sr & NV40_VP_SRC0_LOW_MASK) << NV40_VP_INST_SRC0L_SHIFT; break; case 1: hw[2] |= sr << NV40_VP_INST_SRC1_SHIFT; break; case 2: hw[2] |= ((sr & NV40_VP_SRC2_HIGH_MASK) >> NV40_VP_SRC2_HIGH_SHIFT) << NV40_VP_INST_SRC2H_SHIFT; hw[3] |= (sr & NV40_VP_SRC2_LOW_MASK) << NV40_VP_INST_SRC2L_SHIFT; break; default: assert(0); } } static void emit_dst(struct nv40_vpc *vpc, uint32_t *hw, int slot, struct nv40_sreg dst) { struct nv40_vertex_program *vp = vpc->vp; switch (dst.type) { case NV40SR_TEMP: hw[3] |= NV40_VP_INST_DEST_MASK; if (slot == 0) { hw[0] |= (dst.index << NV40_VP_INST_VEC_DEST_TEMP_SHIFT); } else { hw[3] |= (dst.index << NV40_VP_INST_SCA_DEST_TEMP_SHIFT); } break; case NV40SR_OUTPUT: switch (dst.index) { case NV40_VP_INST_DEST_COL0 : vp->or |= (1 << 0); break; case NV40_VP_INST_DEST_COL1 : vp->or |= (1 << 1); break; case NV40_VP_INST_DEST_BFC0 : vp->or |= (1 << 2); break; case NV40_VP_INST_DEST_BFC1 : vp->or |= (1 << 3); break; case NV40_VP_INST_DEST_FOGC : vp->or |= (1 << 4); break; case NV40_VP_INST_DEST_PSZ : vp->or |= (1 << 5); break; case NV40_VP_INST_DEST_TC(0): vp->or |= (1 << 14); break; case NV40_VP_INST_DEST_TC(1): vp->or |= (1 << 15); break; case NV40_VP_INST_DEST_TC(2): vp->or |= (1 << 16); break; case NV40_VP_INST_DEST_TC(3): vp->or |= (1 << 17); break; case NV40_VP_INST_DEST_TC(4): vp->or |= (1 << 18); break; case NV40_VP_INST_DEST_TC(5): vp->or |= (1 << 19); break; case NV40_VP_INST_DEST_TC(6): vp->or |= (1 << 20); break; case NV40_VP_INST_DEST_TC(7): vp->or |= (1 << 21); break; case NV40_VP_INST_DEST_CLIP(0): vp->or |= (1 << 6); vp->clip_ctrl |= NV40TCL_CLIP_PLANE_ENABLE_PLANE0; dst.index = NV40_VP_INST_DEST_FOGC; break; case NV40_VP_INST_DEST_CLIP(1): vp->or |= (1 << 7); vp->clip_ctrl |= NV40TCL_CLIP_PLANE_ENABLE_PLANE1; dst.index = NV40_VP_INST_DEST_FOGC; break; case NV40_VP_INST_DEST_CLIP(2): vp->or |= (1 << 8); vp->clip_ctrl |= NV40TCL_CLIP_PLANE_ENABLE_PLANE2; dst.index = NV40_VP_INST_DEST_FOGC; break; case NV40_VP_INST_DEST_CLIP(3): vp->or |= (1 << 9); vp->clip_ctrl |= NV40TCL_CLIP_PLANE_ENABLE_PLANE3; dst.index = NV40_VP_INST_DEST_PSZ; break; case NV40_VP_INST_DEST_CLIP(4): vp->or |= (1 << 10); vp->clip_ctrl |= NV40TCL_CLIP_PLANE_ENABLE_PLANE4; dst.index = NV40_VP_INST_DEST_PSZ; break; case NV40_VP_INST_DEST_CLIP(5): vp->or |= (1 << 11); vp->clip_ctrl |= NV40TCL_CLIP_PLANE_ENABLE_PLANE5; dst.index = NV40_VP_INST_DEST_PSZ; break; default: break; } hw[3] |= (dst.index << NV40_VP_INST_DEST_SHIFT); if (slot == 0) { hw[0] |= NV40_VP_INST_VEC_RESULT; hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK | (1<<20); } else { hw[3] |= NV40_VP_INST_SCA_RESULT; hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK; } break; default: assert(0); } } static void nv40_vp_arith(struct nv40_vpc *vpc, int slot, int op, struct nv40_sreg dst, int mask, struct nv40_sreg s0, struct nv40_sreg s1, struct nv40_sreg s2) { struct nv40_vertex_program *vp = vpc->vp; uint32_t *hw; vp->insns = realloc(vp->insns, ++vp->nr_insns * sizeof(*vpc->vpi)); vpc->vpi = &vp->insns[vp->nr_insns - 1]; memset(vpc->vpi, 0, sizeof(*vpc->vpi)); vpc->vpi->const_index = -1; hw = vpc->vpi->data; hw[0] |= (NV40_VP_INST_COND_TR << NV40_VP_INST_COND_SHIFT); hw[0] |= ((0 << NV40_VP_INST_COND_SWZ_X_SHIFT) | (1 << NV40_VP_INST_COND_SWZ_Y_SHIFT) | (2 << NV40_VP_INST_COND_SWZ_Z_SHIFT) | (3 << NV40_VP_INST_COND_SWZ_W_SHIFT)); if (slot == 0) { hw[1] |= (op << NV40_VP_INST_VEC_OPCODE_SHIFT); hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK; hw[3] |= (mask << NV40_VP_INST_VEC_WRITEMASK_SHIFT); } else { hw[1] |= (op << NV40_VP_INST_SCA_OPCODE_SHIFT); hw[0] |= (NV40_VP_INST_VEC_DEST_TEMP_MASK | (1 << 20)); hw[3] |= (mask << NV40_VP_INST_SCA_WRITEMASK_SHIFT); } emit_dst(vpc, hw, slot, dst); emit_src(vpc, hw, 0, s0); emit_src(vpc, hw, 1, s1); emit_src(vpc, hw, 2, s2); } static INLINE struct nv40_sreg tgsi_src(struct nv40_vpc *vpc, const struct tgsi_full_src_register *fsrc) { struct nv40_sreg src; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: src = nv40_sr(NV40SR_INPUT, fsrc->Register.Index); break; case TGSI_FILE_CONSTANT: src = constant(vpc, fsrc->Register.Index, 0, 0, 0, 0); break; case TGSI_FILE_IMMEDIATE: src = vpc->imm[fsrc->Register.Index]; break; case TGSI_FILE_TEMPORARY: src = vpc->r_temp[fsrc->Register.Index]; break; default: NOUVEAU_ERR("bad src file\n"); break; } src.abs = fsrc->Register.Absolute; src.negate = fsrc->Register.Negate; src.swz[0] = fsrc->Register.SwizzleX; src.swz[1] = fsrc->Register.SwizzleY; src.swz[2] = fsrc->Register.SwizzleZ; src.swz[3] = fsrc->Register.SwizzleW; return src; } static INLINE struct nv40_sreg tgsi_dst(struct nv40_vpc *vpc, const struct tgsi_full_dst_register *fdst) { struct nv40_sreg dst; switch (fdst->Register.File) { case TGSI_FILE_OUTPUT: dst = vpc->r_result[fdst->Register.Index]; break; case TGSI_FILE_TEMPORARY: dst = vpc->r_temp[fdst->Register.Index]; break; case TGSI_FILE_ADDRESS: dst = vpc->r_address[fdst->Register.Index]; break; default: NOUVEAU_ERR("bad dst file\n"); break; } return dst; } static INLINE int tgsi_mask(uint tgsi) { int mask = 0; if (tgsi & TGSI_WRITEMASK_X) mask |= MASK_X; if (tgsi & TGSI_WRITEMASK_Y) mask |= MASK_Y; if (tgsi & TGSI_WRITEMASK_Z) mask |= MASK_Z; if (tgsi & TGSI_WRITEMASK_W) mask |= MASK_W; return mask; } static boolean src_native_swz(struct nv40_vpc *vpc, const struct tgsi_full_src_register *fsrc, struct nv40_sreg *src) { const struct nv40_sreg none = nv40_sr(NV40SR_NONE, 0); struct nv40_sreg tgsi = tgsi_src(vpc, fsrc); uint mask = 0; uint c; for (c = 0; c < 4; c++) { switch (tgsi_util_get_full_src_register_swizzle(fsrc, c)) { case TGSI_SWIZZLE_X: case TGSI_SWIZZLE_Y: case TGSI_SWIZZLE_Z: case TGSI_SWIZZLE_W: mask |= tgsi_mask(1 << c); break; default: assert(0); } } if (mask == MASK_ALL) return TRUE; *src = temp(vpc); if (mask) arith(vpc, 0, OP_MOV, *src, mask, tgsi, none, none); return FALSE; } static boolean nv40_vertprog_parse_instruction(struct nv40_vpc *vpc, const struct tgsi_full_instruction *finst) { struct nv40_sreg src[3], dst, tmp; struct nv40_sreg none = nv40_sr(NV40SR_NONE, 0); int mask; int ai = -1, ci = -1, ii = -1; int i; if (finst->Instruction.Opcode == TGSI_OPCODE_END) return TRUE; for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; if (fsrc->Register.File == TGSI_FILE_TEMPORARY) { src[i] = tgsi_src(vpc, fsrc); } } for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: case TGSI_FILE_CONSTANT: case TGSI_FILE_TEMPORARY: if (!src_native_swz(vpc, fsrc, &src[i])) continue; break; default: break; } switch (fsrc->Register.File) { case TGSI_FILE_INPUT: if (ai == -1 || ai == fsrc->Register.Index) { ai = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = temp(vpc); arith(vpc, 0, OP_MOV, src[i], MASK_ALL, tgsi_src(vpc, fsrc), none, none); } break; case TGSI_FILE_CONSTANT: if ((ci == -1 && ii == -1) || ci == fsrc->Register.Index) { ci = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = temp(vpc); arith(vpc, 0, OP_MOV, src[i], MASK_ALL, tgsi_src(vpc, fsrc), none, none); } break; case TGSI_FILE_IMMEDIATE: if ((ci == -1 && ii == -1) || ii == fsrc->Register.Index) { ii = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = temp(vpc); arith(vpc, 0, OP_MOV, src[i], MASK_ALL, tgsi_src(vpc, fsrc), none, none); } break; case TGSI_FILE_TEMPORARY: /* handled above */ break; default: NOUVEAU_ERR("bad src file\n"); return FALSE; } } dst = tgsi_dst(vpc, &finst->Dst[0]); mask = tgsi_mask(finst->Dst[0].Register.WriteMask); switch (finst->Instruction.Opcode) { case TGSI_OPCODE_ABS: arith(vpc, 0, OP_MOV, dst, mask, abs(src[0]), none, none); break; case TGSI_OPCODE_ADD: arith(vpc, 0, OP_ADD, dst, mask, src[0], none, src[1]); break; case TGSI_OPCODE_ARL: arith(vpc, 0, OP_ARL, dst, mask, src[0], none, none); break; case TGSI_OPCODE_DP3: arith(vpc, 0, OP_DP3, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_DP4: arith(vpc, 0, OP_DP4, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_DPH: arith(vpc, 0, OP_DPH, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_DST: arith(vpc, 0, OP_DST, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_EX2: arith(vpc, 1, OP_EX2, dst, mask, none, none, src[0]); break; case TGSI_OPCODE_EXP: arith(vpc, 1, OP_EXP, dst, mask, none, none, src[0]); break; case TGSI_OPCODE_FLR: arith(vpc, 0, OP_FLR, dst, mask, src[0], none, none); break; case TGSI_OPCODE_FRC: arith(vpc, 0, OP_FRC, dst, mask, src[0], none, none); break; case TGSI_OPCODE_LG2: arith(vpc, 1, OP_LG2, dst, mask, none, none, src[0]); break; case TGSI_OPCODE_LIT: arith(vpc, 1, OP_LIT, dst, mask, none, none, src[0]); break; case TGSI_OPCODE_LOG: arith(vpc, 1, OP_LOG, dst, mask, none, none, src[0]); break; case TGSI_OPCODE_MAD: arith(vpc, 0, OP_MAD, dst, mask, src[0], src[1], src[2]); break; case TGSI_OPCODE_MAX: arith(vpc, 0, OP_MAX, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_MIN: arith(vpc, 0, OP_MIN, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_MOV: arith(vpc, 0, OP_MOV, dst, mask, src[0], none, none); break; case TGSI_OPCODE_MUL: arith(vpc, 0, OP_MUL, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_POW: tmp = temp(vpc); arith(vpc, 1, OP_LG2, tmp, MASK_X, none, none, swz(src[0], X, X, X, X)); arith(vpc, 0, OP_MUL, tmp, MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none); arith(vpc, 1, OP_EX2, dst, mask, none, none, swz(tmp, X, X, X, X)); break; case TGSI_OPCODE_RCP: arith(vpc, 1, OP_RCP, dst, mask, none, none, src[0]); break; case TGSI_OPCODE_RET: break; case TGSI_OPCODE_RSQ: arith(vpc, 1, OP_RSQ, dst, mask, none, none, abs(src[0])); break; case TGSI_OPCODE_SGE: arith(vpc, 0, OP_SGE, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_SLT: arith(vpc, 0, OP_SLT, dst, mask, src[0], src[1], none); break; case TGSI_OPCODE_SUB: arith(vpc, 0, OP_ADD, dst, mask, src[0], none, neg(src[1])); break; case TGSI_OPCODE_XPD: tmp = temp(vpc); arith(vpc, 0, OP_MUL, tmp, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none); arith(vpc, 0, OP_MAD, dst, (mask & ~MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp)); break; default: NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode); return FALSE; } release_temps(vpc); return TRUE; } static boolean nv40_vertprog_parse_decl_output(struct nv40_vpc *vpc, const struct tgsi_full_declaration *fdec) { unsigned idx = fdec->Range.First; int hw; switch (fdec->Semantic.Name) { case TGSI_SEMANTIC_POSITION: hw = NV40_VP_INST_DEST_POS; vpc->hpos_idx = idx; break; case TGSI_SEMANTIC_COLOR: if (fdec->Semantic.Index == 0) { hw = NV40_VP_INST_DEST_COL0; } else if (fdec->Semantic.Index == 1) { hw = NV40_VP_INST_DEST_COL1; } else { NOUVEAU_ERR("bad colour semantic index\n"); return FALSE; } break; case TGSI_SEMANTIC_BCOLOR: if (fdec->Semantic.Index == 0) { hw = NV40_VP_INST_DEST_BFC0; } else if (fdec->Semantic.Index == 1) { hw = NV40_VP_INST_DEST_BFC1; } else { NOUVEAU_ERR("bad bcolour semantic index\n"); return FALSE; } break; case TGSI_SEMANTIC_FOG: hw = NV40_VP_INST_DEST_FOGC; break; case TGSI_SEMANTIC_PSIZE: hw = NV40_VP_INST_DEST_PSZ; break; case TGSI_SEMANTIC_GENERIC: if (fdec->Semantic.Index <= 7) { hw = NV40_VP_INST_DEST_TC(fdec->Semantic.Index); } else { NOUVEAU_ERR("bad generic semantic index\n"); return FALSE; } break; default: NOUVEAU_ERR("bad output semantic\n"); return FALSE; } vpc->r_result[idx] = nv40_sr(NV40SR_OUTPUT, hw); return TRUE; } static boolean nv40_vertprog_prepare(struct nv40_vpc *vpc) { struct tgsi_parse_context p; int high_temp = -1, high_addr = -1, nr_imm = 0, i; tgsi_parse_init(&p, vpc->vp->pipe.tokens); while (!tgsi_parse_end_of_tokens(&p)) { const union tgsi_full_token *tok = &p.FullToken; tgsi_parse_token(&p); switch(tok->Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: nr_imm++; break; case TGSI_TOKEN_TYPE_DECLARATION: { const struct tgsi_full_declaration *fdec; fdec = &p.FullToken.FullDeclaration; switch (fdec->Declaration.File) { case TGSI_FILE_TEMPORARY: if (fdec->Range.Last > high_temp) { high_temp = fdec->Range.Last; } break; #if 0 /* this would be nice.. except gallium doesn't track it */ case TGSI_FILE_ADDRESS: if (fdec->Range.Last > high_addr) { high_addr = fdec->Range.Last; } break; #endif case TGSI_FILE_OUTPUT: if (!nv40_vertprog_parse_decl_output(vpc, fdec)) return FALSE; break; default: break; } } break; #if 1 /* yay, parse instructions looking for address regs instead */ case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *finst; const struct tgsi_full_dst_register *fdst; finst = &p.FullToken.FullInstruction; fdst = &finst->Dst[0]; if (fdst->Register.File == TGSI_FILE_ADDRESS) { if (fdst->Register.Index > high_addr) high_addr = fdst->Register.Index; } } break; #endif default: break; } } tgsi_parse_free(&p); if (nr_imm) { vpc->imm = CALLOC(nr_imm, sizeof(struct nv40_sreg)); assert(vpc->imm); } if (++high_temp) { vpc->r_temp = CALLOC(high_temp, sizeof(struct nv40_sreg)); for (i = 0; i < high_temp; i++) vpc->r_temp[i] = temp(vpc); } if (++high_addr) { vpc->r_address = CALLOC(high_addr, sizeof(struct nv40_sreg)); for (i = 0; i < high_addr; i++) vpc->r_address[i] = temp(vpc); } vpc->r_temps_discard = 0; return TRUE; } static void nv40_vertprog_translate(struct nv40_context *nv40, struct nv40_vertex_program *vp) { struct tgsi_parse_context parse; struct nv40_vpc *vpc = NULL; struct nv40_sreg none = nv40_sr(NV40SR_NONE, 0); int i; vpc = CALLOC(1, sizeof(struct nv40_vpc)); if (!vpc) return; vpc->vp = vp; if (!nv40_vertprog_prepare(vpc)) { FREE(vpc); return; } /* Redirect post-transform vertex position to a temp if user clip * planes are enabled. We need to append code the the vtxprog * to handle clip planes later. */ if (vp->ucp.nr) { vpc->r_result[vpc->hpos_idx] = temp(vpc); vpc->r_temps_discard = 0; } tgsi_parse_init(&parse, vp->pipe.tokens); while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); switch (parse.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: { const struct tgsi_full_immediate *imm; imm = &parse.FullToken.FullImmediate; assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32); assert(imm->Immediate.NrTokens == 4 + 1); vpc->imm[vpc->nr_imm++] = constant(vpc, -1, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float); } break; case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *finst; finst = &parse.FullToken.FullInstruction; if (!nv40_vertprog_parse_instruction(vpc, finst)) goto out_err; } break; default: break; } } /* Write out HPOS if it was redirected to a temp earlier */ if (vpc->r_result[vpc->hpos_idx].type != NV40SR_OUTPUT) { struct nv40_sreg hpos = nv40_sr(NV40SR_OUTPUT, NV40_VP_INST_DEST_POS); struct nv40_sreg htmp = vpc->r_result[vpc->hpos_idx]; arith(vpc, 0, OP_MOV, hpos, MASK_ALL, htmp, none, none); } /* Insert code to handle user clip planes */ for (i = 0; i < vp->ucp.nr; i++) { struct nv40_sreg cdst = nv40_sr(NV40SR_OUTPUT, NV40_VP_INST_DEST_CLIP(i)); struct nv40_sreg ceqn = constant(vpc, -1, nv40->clip.ucp[i][0], nv40->clip.ucp[i][1], nv40->clip.ucp[i][2], nv40->clip.ucp[i][3]); struct nv40_sreg htmp = vpc->r_result[vpc->hpos_idx]; unsigned mask; switch (i) { case 0: case 3: mask = MASK_Y; break; case 1: case 4: mask = MASK_Z; break; case 2: case 5: mask = MASK_W; break; default: NOUVEAU_ERR("invalid clip dist #%d\n", i); goto out_err; } arith(vpc, 0, OP_DP4, cdst, mask, htmp, ceqn, none); } vp->insns[vp->nr_insns - 1].data[3] |= NV40_VP_INST_LAST; vp->translated = TRUE; out_err: tgsi_parse_free(&parse); if (vpc->r_temp) FREE(vpc->r_temp); if (vpc->r_address) FREE(vpc->r_address); if (vpc->imm) FREE(vpc->imm); FREE(vpc); } static boolean nv40_vertprog_validate(struct nv40_context *nv40) { struct pipe_screen *pscreen = nv40->pipe.screen; struct nouveau_grobj *curie = nv40->screen->curie; struct nv40_vertex_program *vp; struct pipe_buffer *constbuf; boolean upload_code = FALSE, upload_data = FALSE; int i; if (nv40->render_mode == HW) { vp = nv40->vertprog; constbuf = nv40->constbuf[PIPE_SHADER_VERTEX]; if ((nv40->dirty & NV40_NEW_UCP) || memcmp(&nv40->clip, &vp->ucp, sizeof(vp->ucp))) { nv40_vertprog_destroy(nv40, vp); memcpy(&vp->ucp, &nv40->clip, sizeof(vp->ucp)); } } else { vp = nv40->swtnl.vertprog; constbuf = NULL; } /* Translate TGSI shader into hw bytecode */ if (vp->translated) goto check_gpu_resources; nv40->fallback_swtnl &= ~NV40_NEW_VERTPROG; nv40_vertprog_translate(nv40, vp); if (!vp->translated) { nv40->fallback_swtnl |= NV40_NEW_VERTPROG; return FALSE; } check_gpu_resources: /* Allocate hw vtxprog exec slots */ if (!vp->exec) { struct nouveau_resource *heap = nv40->screen->vp_exec_heap; struct nouveau_stateobj *so; uint vplen = vp->nr_insns; if (nouveau_resource_alloc(heap, vplen, vp, &vp->exec)) { while (heap->next && heap->size < vplen) { struct nv40_vertex_program *evict; evict = heap->next->priv; nouveau_resource_free(&evict->exec); } if (nouveau_resource_alloc(heap, vplen, vp, &vp->exec)) assert(0); } so = so_new(7, 0); so_method(so, curie, NV40TCL_VP_START_FROM_ID, 1); so_data (so, vp->exec->start); so_method(so, curie, NV40TCL_VP_ATTRIB_EN, 2); so_data (so, vp->ir); so_data (so, vp->or); so_method(so, curie, NV40TCL_CLIP_PLANE_ENABLE, 1); so_data (so, vp->clip_ctrl); so_ref(so, &vp->so); so_ref(NULL, &so); upload_code = TRUE; } /* Allocate hw vtxprog const slots */ if (vp->nr_consts && !vp->data) { struct nouveau_resource *heap = nv40->screen->vp_data_heap; if (nouveau_resource_alloc(heap, vp->nr_consts, vp, &vp->data)) { while (heap->next && heap->size < vp->nr_consts) { struct nv40_vertex_program *evict; evict = heap->next->priv; nouveau_resource_free(&evict->data); } if (nouveau_resource_alloc(heap, vp->nr_consts, vp, &vp->data)) assert(0); } /*XXX: handle this some day */ assert(vp->data->start >= vp->data_start_min); upload_data = TRUE; if (vp->data_start != vp->data->start) upload_code = TRUE; } /* If exec or data segments moved we need to patch the program to * fixup offsets and register IDs. */ if (vp->exec_start != vp->exec->start) { for (i = 0; i < vp->nr_insns; i++) { struct nv40_vertex_program_exec *vpi = &vp->insns[i]; if (vpi->has_branch_offset) { assert(0); } } vp->exec_start = vp->exec->start; } if (vp->nr_consts && vp->data_start != vp->data->start) { for (i = 0; i < vp->nr_insns; i++) { struct nv40_vertex_program_exec *vpi = &vp->insns[i]; if (vpi->const_index >= 0) { vpi->data[1] &= ~NV40_VP_INST_CONST_SRC_MASK; vpi->data[1] |= (vpi->const_index + vp->data->start) << NV40_VP_INST_CONST_SRC_SHIFT; } } vp->data_start = vp->data->start; } /* Update + Upload constant values */ if (vp->nr_consts) { float *map = NULL; if (constbuf) { map = pipe_buffer_map(pscreen, constbuf, PIPE_BUFFER_USAGE_CPU_READ); } for (i = 0; i < vp->nr_consts; i++) { struct nv40_vertex_program_data *vpd = &vp->consts[i]; if (vpd->index >= 0) { if (!upload_data && !memcmp(vpd->value, &map[vpd->index * 4], 4 * sizeof(float))) continue; memcpy(vpd->value, &map[vpd->index * 4], 4 * sizeof(float)); } BEGIN_RING(curie, NV40TCL_VP_UPLOAD_CONST_ID, 5); OUT_RING (i + vp->data->start); OUT_RINGp ((uint32_t *)vpd->value, 4); } if (constbuf) pscreen->buffer_unmap(pscreen, constbuf); } /* Upload vtxprog */ if (upload_code) { #if 0 for (i = 0; i < vp->nr_insns; i++) { NOUVEAU_MSG("VP %d: 0x%08x\n", i, vp->insns[i].data[0]); NOUVEAU_MSG("VP %d: 0x%08x\n", i, vp->insns[i].data[1]); NOUVEAU_MSG("VP %d: 0x%08x\n", i, vp->insns[i].data[2]); NOUVEAU_MSG("VP %d: 0x%08x\n", i, vp->insns[i].data[3]); } #endif BEGIN_RING(curie, NV40TCL_VP_UPLOAD_FROM_ID, 1); OUT_RING (vp->exec->start); for (i = 0; i < vp->nr_insns; i++) { BEGIN_RING(curie, NV40TCL_VP_UPLOAD_INST(0), 4); OUT_RINGp (vp->insns[i].data, 4); } } if (vp->so != nv40->state.hw[NV40_STATE_VERTPROG]) { so_ref(vp->so, &nv40->state.hw[NV40_STATE_VERTPROG]); return TRUE; } return FALSE; } void nv40_vertprog_destroy(struct nv40_context *nv40, struct nv40_vertex_program *vp) { vp->translated = FALSE; if (vp->nr_insns) { FREE(vp->insns); vp->insns = NULL; vp->nr_insns = 0; } if (vp->nr_consts) { FREE(vp->consts); vp->consts = NULL; vp->nr_consts = 0; } nouveau_resource_free(&vp->exec); vp->exec_start = 0; nouveau_resource_free(&vp->data); vp->data_start = 0; vp->data_start_min = 0; vp->ir = vp->or = vp->clip_ctrl = 0; so_ref(NULL, &vp->so); } struct nv40_state_entry nv40_state_vertprog = { .validate = nv40_vertprog_validate, .dirty = { .pipe = NV40_NEW_VERTPROG | NV40_NEW_UCP, .hw = NV40_STATE_VERTPROG, } };