/* * Copyright 2008 Ben Skeggs * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "pipe/p_inlines.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "nv50_context.h" #define NV50_SU_MAX_TEMP 64 //#define NV50_PROGRAM_DUMP /* ARL - gallium craps itself on progs/vp/arl.txt * * MSB - Like MAD, but MUL+SUB * - Fuck it off, introduce a way to negate args for ops that * support it. * * Look into inlining IMMD for ops other than MOV (make it general?) * - Maybe even relax restrictions a bit, can't do P_RESULT + P_IMMD, * but can emit to P_TEMP first - then MOV later. NVIDIA does this * * In ops such as ADD it's possible to construct a bad opcode in the !is_long() * case, if the emit_src() causes the inst to suddenly become long. * * Verify half-insns work where expected - and force disable them where they * don't work - MUL has it forcibly disabled atm as it fixes POW.. * * FUCK! watch dst==src vectors, can overwrite components that are needed. * ie. SUB R0, R0.yzxw, R0 * * Things to check with renouveau: * FP attr/result assignment - how? * attrib * - 0x16bc maps vp output onto fp hpos * - 0x16c0 maps vp output onto fp col0 * result * - colr always 0-3 * - depr always 4 * 0x16bc->0x16e8 --> some binding between vp/fp regs * 0x16b8 --> VP output count * * 0x1298 --> "MOV rcol.x, fcol.y" "MOV depr, fcol.y" = 0x00000005 * "MOV rcol.x, fcol.y" = 0x00000004 * 0x19a8 --> as above but 0x00000100 and 0x00000000 * - 0x00100000 used when KIL used * 0x196c --> as above but 0x00000011 and 0x00000000 * * 0x1988 --> 0xXXNNNNNN * - XX == FP high something */ struct nv50_reg { enum { P_TEMP, P_ATTR, P_RESULT, P_CONST, P_IMMD } type; int index; int hw; int neg; int rhw; /* result hw for FP outputs, or interpolant index */ int acc; /* instruction where this reg is last read (first insn == 1) */ }; struct nv50_pc { struct nv50_program *p; /* hw resources */ struct nv50_reg *r_temp[NV50_SU_MAX_TEMP]; /* tgsi resources */ struct nv50_reg *temp; int temp_nr; struct nv50_reg *attr; int attr_nr; struct nv50_reg *result; int result_nr; struct nv50_reg *param; int param_nr; struct nv50_reg *immd; float *immd_buf; int immd_nr; struct nv50_reg *temp_temp[16]; unsigned temp_temp_nr; unsigned interp_mode[32]; /* perspective interpolation registers */ struct nv50_reg *iv_p; struct nv50_reg *iv_c; /* current instruction and total number of insns */ unsigned insn_cur; unsigned insn_nr; boolean allow32; }; static void alloc_reg(struct nv50_pc *pc, struct nv50_reg *reg) { int i = 0; if (reg->type == P_RESULT) { if (pc->p->cfg.high_result < (reg->hw + 1)) pc->p->cfg.high_result = reg->hw + 1; } if (reg->type != P_TEMP) return; if (reg->hw >= 0) { /*XXX: do this here too to catch FP temp-as-attr usage.. * not clean, but works */ if (pc->p->cfg.high_temp < (reg->hw + 1)) pc->p->cfg.high_temp = reg->hw + 1; return; } if (reg->rhw != -1) { /* try to allocate temporary with index rhw first */ if (!(pc->r_temp[reg->rhw])) { pc->r_temp[reg->rhw] = reg; reg->hw = reg->rhw; if (pc->p->cfg.high_temp < (reg->rhw + 1)) pc->p->cfg.high_temp = reg->rhw + 1; return; } /* make sure we don't get things like $r0 needs to go * in $r1 and $r1 in $r0 */ i = pc->result_nr * 4; } for (; i < NV50_SU_MAX_TEMP; i++) { if (!(pc->r_temp[i])) { pc->r_temp[i] = reg; reg->hw = i; if (pc->p->cfg.high_temp < (i + 1)) pc->p->cfg.high_temp = i + 1; return; } } assert(0); } static struct nv50_reg * alloc_temp(struct nv50_pc *pc, struct nv50_reg *dst) { struct nv50_reg *r; int i; if (dst && dst->type == P_TEMP && dst->hw == -1) return dst; for (i = 0; i < NV50_SU_MAX_TEMP; i++) { if (!pc->r_temp[i]) { r = CALLOC_STRUCT(nv50_reg); r->type = P_TEMP; r->index = -1; r->hw = i; r->rhw = -1; pc->r_temp[i] = r; return r; } } assert(0); return NULL; } /* Assign the hw of the discarded temporary register src * to the tgsi register dst and free src. */ static void assimilate_temp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { assert(src->index == -1 && src->hw != -1); if (dst->hw != -1) pc->r_temp[dst->hw] = NULL; pc->r_temp[src->hw] = dst; dst->hw = src->hw; FREE(src); } /* release the hardware resource held by r */ static void release_hw(struct nv50_pc *pc, struct nv50_reg *r) { assert(r->type == P_TEMP); if (r->hw == -1) return; assert(pc->r_temp[r->hw] == r); pc->r_temp[r->hw] = NULL; r->acc = 0; if (r->index == -1) FREE(r); } static void free_temp(struct nv50_pc *pc, struct nv50_reg *r) { if (r->index == -1) { unsigned hw = r->hw; FREE(pc->r_temp[hw]); pc->r_temp[hw] = NULL; } } static int alloc_temp4(struct nv50_pc *pc, struct nv50_reg *dst[4], int idx) { int i; if ((idx + 4) >= NV50_SU_MAX_TEMP) return 1; if (pc->r_temp[idx] || pc->r_temp[idx + 1] || pc->r_temp[idx + 2] || pc->r_temp[idx + 3]) return alloc_temp4(pc, dst, idx + 1); for (i = 0; i < 4; i++) { dst[i] = CALLOC_STRUCT(nv50_reg); dst[i]->type = P_TEMP; dst[i]->index = -1; dst[i]->hw = idx + i; pc->r_temp[idx + i] = dst[i]; } return 0; } static void free_temp4(struct nv50_pc *pc, struct nv50_reg *reg[4]) { int i; for (i = 0; i < 4; i++) free_temp(pc, reg[i]); } static struct nv50_reg * temp_temp(struct nv50_pc *pc) { if (pc->temp_temp_nr >= 16) assert(0); pc->temp_temp[pc->temp_temp_nr] = alloc_temp(pc, NULL); return pc->temp_temp[pc->temp_temp_nr++]; } static void kill_temp_temp(struct nv50_pc *pc) { int i; for (i = 0; i < pc->temp_temp_nr; i++) free_temp(pc, pc->temp_temp[i]); pc->temp_temp_nr = 0; } static int ctor_immd(struct nv50_pc *pc, float x, float y, float z, float w) { pc->immd_buf = REALLOC(pc->immd_buf, (pc->immd_nr * r * sizeof(float)), (pc->immd_nr + 1) * 4 * sizeof(float)); pc->immd_buf[(pc->immd_nr * 4) + 0] = x; pc->immd_buf[(pc->immd_nr * 4) + 1] = y; pc->immd_buf[(pc->immd_nr * 4) + 2] = z; pc->immd_buf[(pc->immd_nr * 4) + 3] = w; return pc->immd_nr++; } static struct nv50_reg * alloc_immd(struct nv50_pc *pc, float f) { struct nv50_reg *r = CALLOC_STRUCT(nv50_reg); unsigned hw; for (hw = 0; hw < pc->immd_nr * 4; hw++) if (pc->immd_buf[hw] == f) break; if (hw == pc->immd_nr * 4) hw = ctor_immd(pc, f, -f, 0.5 * f, 0) * 4; r->type = P_IMMD; r->hw = hw; r->index = -1; return r; } static struct nv50_program_exec * exec(struct nv50_pc *pc) { struct nv50_program_exec *e = CALLOC_STRUCT(nv50_program_exec); e->param.index = -1; return e; } static void emit(struct nv50_pc *pc, struct nv50_program_exec *e) { struct nv50_program *p = pc->p; if (p->exec_tail) p->exec_tail->next = e; if (!p->exec_head) p->exec_head = e; p->exec_tail = e; p->exec_size += (e->inst[0] & 1) ? 2 : 1; } static INLINE void set_long(struct nv50_pc *, struct nv50_program_exec *); static boolean is_long(struct nv50_program_exec *e) { if (e->inst[0] & 1) return TRUE; return FALSE; } static boolean is_immd(struct nv50_program_exec *e) { if (is_long(e) && (e->inst[1] & 3) == 3) return TRUE; return FALSE; } static INLINE void set_pred(struct nv50_pc *pc, unsigned pred, unsigned idx, struct nv50_program_exec *e) { set_long(pc, e); e->inst[1] &= ~((0x1f << 7) | (0x3 << 12)); e->inst[1] |= (pred << 7) | (idx << 12); } static INLINE void set_pred_wr(struct nv50_pc *pc, unsigned on, unsigned idx, struct nv50_program_exec *e) { set_long(pc, e); e->inst[1] &= ~((0x3 << 4) | (1 << 6)); e->inst[1] |= (idx << 4) | (on << 6); } static INLINE void set_long(struct nv50_pc *pc, struct nv50_program_exec *e) { if (is_long(e)) return; e->inst[0] |= 1; set_pred(pc, 0xf, 0, e); set_pred_wr(pc, 0, 0, e); } static INLINE void set_dst(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_program_exec *e) { if (dst->type == P_RESULT) { set_long(pc, e); e->inst[1] |= 0x00000008; } alloc_reg(pc, dst); e->inst[0] |= (dst->hw << 2); } static INLINE void set_immd(struct nv50_pc *pc, struct nv50_reg *imm, struct nv50_program_exec *e) { float f = pc->immd_buf[imm->hw]; unsigned val = fui(imm->neg ? -f : f); set_long(pc, e); /*XXX: can't be predicated - bits overlap.. catch cases where both * are required and avoid them. */ set_pred(pc, 0, 0, e); set_pred_wr(pc, 0, 0, e); e->inst[1] |= 0x00000002 | 0x00000001; e->inst[0] |= (val & 0x3f) << 16; e->inst[1] |= (val >> 6) << 2; } #define INTERP_LINEAR 0 #define INTERP_FLAT 1 #define INTERP_PERSPECTIVE 2 #define INTERP_CENTROID 4 /* interpolant index has been stored in dst->rhw */ static void emit_interp(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *iv, unsigned mode) { assert(dst->rhw != -1); struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0x80000000; set_dst(pc, dst, e); e->inst[0] |= (dst->rhw << 16); if (mode & INTERP_FLAT) { e->inst[0] |= (1 << 8); } else { if (mode & INTERP_PERSPECTIVE) { e->inst[0] |= (1 << 25); alloc_reg(pc, iv); e->inst[0] |= (iv->hw << 9); } if (mode & INTERP_CENTROID) e->inst[0] |= (1 << 24); } emit(pc, e); } static void set_data(struct nv50_pc *pc, struct nv50_reg *src, unsigned m, unsigned s, struct nv50_program_exec *e) { set_long(pc, e); e->param.index = src->hw; e->param.shift = s; e->param.mask = m << (s % 32); e->inst[1] |= (((src->type == P_IMMD) ? 0 : 1) << 22); } static void emit_mov(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0x10000000; set_dst(pc, dst, e); if (pc->allow32 && dst->type != P_RESULT && src->type == P_IMMD) { set_immd(pc, src, e); /*XXX: 32-bit, but steals part of "half" reg space - need to * catch and handle this case if/when we do half-regs */ } else if (src->type == P_IMMD || src->type == P_CONST) { set_long(pc, e); set_data(pc, src, 0x7f, 9, e); e->inst[1] |= 0x20000000; /* src0 const? */ } else { if (src->type == P_ATTR) { set_long(pc, e); e->inst[1] |= 0x00200000; } alloc_reg(pc, src); e->inst[0] |= (src->hw << 9); } if (is_long(e) && !is_immd(e)) { e->inst[1] |= 0x04000000; /* 32-bit */ e->inst[1] |= 0x0000c000; /* "subsubop" 0x3 */ if (!(e->inst[1] & 0x20000000)) e->inst[1] |= 0x00030000; /* "subsubop" 0xf */ } else e->inst[0] |= 0x00008000; emit(pc, e); } static INLINE void emit_mov_immdval(struct nv50_pc *pc, struct nv50_reg *dst, float f) { struct nv50_reg *imm = alloc_immd(pc, f); emit_mov(pc, dst, imm); FREE(imm); } static boolean check_swap_src_0_1(struct nv50_pc *pc, struct nv50_reg **s0, struct nv50_reg **s1) { struct nv50_reg *src0 = *s0, *src1 = *s1; if (src0->type == P_CONST) { if (src1->type != P_CONST) { *s0 = src1; *s1 = src0; return TRUE; } } else if (src1->type == P_ATTR) { if (src0->type != P_ATTR) { *s0 = src1; *s1 = src0; return TRUE; } } return FALSE; } static void set_src_0(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e) { if (src->type == P_ATTR) { set_long(pc, e); e->inst[1] |= 0x00200000; } else if (src->type == P_CONST || src->type == P_IMMD) { struct nv50_reg *temp = temp_temp(pc); emit_mov(pc, temp, src); src = temp; } alloc_reg(pc, src); e->inst[0] |= (src->hw << 9); } static void set_src_1(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e) { if (src->type == P_ATTR) { struct nv50_reg *temp = temp_temp(pc); emit_mov(pc, temp, src); src = temp; } else if (src->type == P_CONST || src->type == P_IMMD) { assert(!(e->inst[0] & 0x00800000)); if (e->inst[0] & 0x01000000) { struct nv50_reg *temp = temp_temp(pc); emit_mov(pc, temp, src); src = temp; } else { set_data(pc, src, 0x7f, 16, e); e->inst[0] |= 0x00800000; } } alloc_reg(pc, src); e->inst[0] |= (src->hw << 16); } static void set_src_2(struct nv50_pc *pc, struct nv50_reg *src, struct nv50_program_exec *e) { set_long(pc, e); if (src->type == P_ATTR) { struct nv50_reg *temp = temp_temp(pc); emit_mov(pc, temp, src); src = temp; } else if (src->type == P_CONST || src->type == P_IMMD) { assert(!(e->inst[0] & 0x01000000)); if (e->inst[0] & 0x00800000) { struct nv50_reg *temp = temp_temp(pc); emit_mov(pc, temp, src); src = temp; } else { set_data(pc, src, 0x7f, 32+14, e); e->inst[0] |= 0x01000000; } } alloc_reg(pc, src); e->inst[1] |= (src->hw << 14); } static void emit_mul(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xc0000000; if (!pc->allow32) set_long(pc, e); check_swap_src_0_1(pc, &src0, &src1); set_dst(pc, dst, e); set_src_0(pc, src0, e); if (src1->type == P_IMMD && !is_long(e)) { if (src0->neg) e->inst[0] |= 0x00008000; set_immd(pc, src1, e); } else { set_src_1(pc, src1, e); if (src0->neg ^ src1->neg) { if (is_long(e)) e->inst[1] |= 0x08000000; else e->inst[0] |= 0x00008000; } } emit(pc, e); } static void emit_add(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xb0000000; check_swap_src_0_1(pc, &src0, &src1); if (!pc->allow32 || src0->neg || src1->neg) { set_long(pc, e); e->inst[1] |= (src0->neg << 26) | (src1->neg << 27); } set_dst(pc, dst, e); set_src_0(pc, src0, e); if (src1->type == P_CONST || src1->type == P_ATTR || is_long(e)) set_src_2(pc, src1, e); else if (src1->type == P_IMMD) set_immd(pc, src1, e); else set_src_1(pc, src1, e); emit(pc, e); } static void emit_minmax(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { struct nv50_program_exec *e = exec(pc); set_long(pc, e); e->inst[0] |= 0xb0000000; e->inst[1] |= (sub << 29); check_swap_src_0_1(pc, &src0, &src1); set_dst(pc, dst, e); set_src_0(pc, src0, e); set_src_1(pc, src1, e); emit(pc, e); } static INLINE void emit_sub(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { src1->neg ^= 1; emit_add(pc, dst, src0, src1); src1->neg ^= 1; } static void emit_mad(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1, struct nv50_reg *src2) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xe0000000; check_swap_src_0_1(pc, &src0, &src1); set_dst(pc, dst, e); set_src_0(pc, src0, e); set_src_1(pc, src1, e); set_src_2(pc, src2, e); if (src0->neg ^ src1->neg) e->inst[1] |= 0x04000000; if (src2->neg) e->inst[1] |= 0x08000000; emit(pc, e); } static INLINE void emit_msb(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1, struct nv50_reg *src2) { src2->neg ^= 1; emit_mad(pc, dst, src0, src1, src2); src2->neg ^= 1; } static void emit_flop(struct nv50_pc *pc, unsigned sub, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0x90000000; if (sub) { set_long(pc, e); e->inst[1] |= (sub << 29); } set_dst(pc, dst, e); set_src_0(pc, src, e); emit(pc, e); } static void emit_preex2(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xb0000000; set_dst(pc, dst, e); set_src_0(pc, src, e); set_long(pc, e); e->inst[1] |= (6 << 29) | 0x00004000; emit(pc, e); } static void emit_precossin(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); e->inst[0] |= 0xb0000000; set_dst(pc, dst, e); set_src_0(pc, src, e); set_long(pc, e); e->inst[1] |= (6 << 29); emit(pc, e); } #define CVTOP_RN 0x01 #define CVTOP_FLOOR 0x03 #define CVTOP_CEIL 0x05 #define CVTOP_TRUNC 0x07 #define CVTOP_SAT 0x08 #define CVTOP_ABS 0x10 #define CVT_F32_F32 0xc4 #define CVT_F32_S32 0x44 #define CVT_F32_U32 0x64 #define CVT_S32_F32 0x8c #define CVT_S32_S32 0x0c #define CVT_F32_F32_ROP 0xcc static void emit_cvt(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src, int wp, unsigned cop, unsigned fmt) { struct nv50_program_exec *e; e = exec(pc); set_long(pc, e); e->inst[0] |= 0xa0000000; e->inst[1] |= 0x00004000; e->inst[1] |= (cop << 16); e->inst[1] |= (fmt << 24); set_src_0(pc, src, e); if (wp >= 0) set_pred_wr(pc, 1, wp, e); if (dst) set_dst(pc, dst, e); else { e->inst[0] |= 0x000001fc; e->inst[1] |= 0x00000008; } emit(pc, e); } static void emit_set(struct nv50_pc *pc, unsigned c_op, struct nv50_reg *dst, struct nv50_reg *src0, struct nv50_reg *src1) { struct nv50_program_exec *e = exec(pc); unsigned inv_cop[8] = { 0, 4, 2, 6, 1, 5, 3, 7 }; struct nv50_reg *rdst; assert(c_op <= 7); if (check_swap_src_0_1(pc, &src0, &src1)) c_op = inv_cop[c_op]; rdst = dst; if (dst->type != P_TEMP) dst = alloc_temp(pc, NULL); /* set.u32 */ set_long(pc, e); e->inst[0] |= 0xb0000000; e->inst[1] |= (3 << 29); e->inst[1] |= (c_op << 14); /*XXX: breaks things, .u32 by default? * decuda will disasm as .u16 and use .lo/.hi regs, but this * doesn't seem to match what the hw actually does. inst[1] |= 0x04000000; << breaks things.. .u32 by default? */ set_dst(pc, dst, e); set_src_0(pc, src0, e); set_src_1(pc, src1, e); emit(pc, e); /* cvt.f32.u32 */ e = exec(pc); e->inst[0] = 0xa0000001; e->inst[1] = 0x64014780; set_dst(pc, rdst, e); set_src_0(pc, dst, e); emit(pc, e); if (dst != rdst) free_temp(pc, dst); } static INLINE void emit_flr(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { emit_cvt(pc, dst, src, -1, CVTOP_FLOOR, CVT_F32_F32_ROP); } static void emit_pow(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *v, struct nv50_reg *e) { struct nv50_reg *temp = alloc_temp(pc, NULL); emit_flop(pc, 3, temp, v); emit_mul(pc, temp, temp, e); emit_preex2(pc, temp, temp); emit_flop(pc, 6, dst, temp); free_temp(pc, temp); } static INLINE void emit_abs(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { emit_cvt(pc, dst, src, -1, CVTOP_ABS, CVT_F32_F32); } static void emit_lit(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask, struct nv50_reg **src) { struct nv50_reg *one = alloc_immd(pc, 1.0); struct nv50_reg *zero = alloc_immd(pc, 0.0); struct nv50_reg *neg128 = alloc_immd(pc, -127.999999); struct nv50_reg *pos128 = alloc_immd(pc, 127.999999); struct nv50_reg *tmp[4]; boolean allow32 = pc->allow32; pc->allow32 = FALSE; if (mask & (3 << 1)) { tmp[0] = alloc_temp(pc, NULL); emit_minmax(pc, 4, tmp[0], src[0], zero); } if (mask & (1 << 2)) { set_pred_wr(pc, 1, 0, pc->p->exec_tail); tmp[1] = temp_temp(pc); emit_minmax(pc, 4, tmp[1], src[1], zero); tmp[3] = temp_temp(pc); emit_minmax(pc, 4, tmp[3], src[3], neg128); emit_minmax(pc, 5, tmp[3], tmp[3], pos128); emit_pow(pc, dst[2], tmp[1], tmp[3]); emit_mov(pc, dst[2], zero); set_pred(pc, 3, 0, pc->p->exec_tail); } if (mask & (1 << 1)) assimilate_temp(pc, dst[1], tmp[0]); else if (mask & (1 << 2)) free_temp(pc, tmp[0]); pc->allow32 = allow32; /* do this last, in case src[i,j] == dst[0,3] */ if (mask & (1 << 0)) emit_mov(pc, dst[0], one); if (mask & (1 << 3)) emit_mov(pc, dst[3], one); FREE(pos128); FREE(neg128); FREE(zero); FREE(one); } static void emit_neg(struct nv50_pc *pc, struct nv50_reg *dst, struct nv50_reg *src) { struct nv50_program_exec *e = exec(pc); set_long(pc, e); e->inst[0] |= 0xa0000000; /* delta */ e->inst[1] |= (7 << 29); /* delta */ e->inst[1] |= 0x04000000; /* negate arg0? probably not */ e->inst[1] |= (1 << 14); /* src .f32 */ set_dst(pc, dst, e); set_src_0(pc, src, e); emit(pc, e); } static void emit_kil(struct nv50_pc *pc, struct nv50_reg *src) { struct nv50_program_exec *e; const int r_pred = 1; /* Sets predicate reg ? */ e = exec(pc); e->inst[0] = 0xa00001fd; e->inst[1] = 0xc4014788; set_src_0(pc, src, e); set_pred_wr(pc, 1, r_pred, e); if (src->neg) e->inst[1] |= 0x20000000; emit(pc, e); /* This is probably KILP */ e = exec(pc); e->inst[0] = 0x000001fe; set_long(pc, e); set_pred(pc, 1 /* LT? */, r_pred, e); emit(pc, e); } static void emit_tex(struct nv50_pc *pc, struct nv50_reg **dst, unsigned mask, struct nv50_reg **src, unsigned unit, unsigned type, boolean proj) { struct nv50_reg *temp, *t[4]; struct nv50_program_exec *e; unsigned c, mode, dim; switch (type) { case TGSI_TEXTURE_1D: dim = 1; break; case TGSI_TEXTURE_UNKNOWN: case TGSI_TEXTURE_2D: case TGSI_TEXTURE_SHADOW1D: /* XXX: x, z */ case TGSI_TEXTURE_RECT: dim = 2; break; case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: /* XXX */ dim = 3; break; default: assert(0); break; } alloc_temp4(pc, t, 0); if (proj) { if (src[0]->type == P_TEMP && src[0]->rhw != -1) { mode = pc->interp_mode[src[0]->index]; t[3]->rhw = src[3]->rhw; emit_interp(pc, t[3], NULL, (mode & INTERP_CENTROID)); emit_flop(pc, 0, t[3], t[3]); for (c = 0; c < dim; c++) { t[c]->rhw = src[c]->rhw; emit_interp(pc, t[c], t[3], (mode | INTERP_PERSPECTIVE)); } } else { emit_flop(pc, 0, t[3], src[3]); for (c = 0; c < dim; c++) emit_mul(pc, t[c], src[c], t[3]); /* XXX: for some reason the blob sometimes uses MAD: * emit_mad(pc, t[c], src[0][c], t[3], t[3]) * pc->p->exec_tail->inst[1] |= 0x080fc000; */ } } else { if (type == TGSI_TEXTURE_CUBE) { temp = temp_temp(pc); emit_minmax(pc, 4, temp, src[0], src[1]); emit_minmax(pc, 4, temp, temp, src[2]); emit_flop(pc, 0, temp, temp); for (c = 0; c < 3; c++) emit_mul(pc, t[c], src[c], temp); } else { for (c = 0; c < dim; c++) emit_mov(pc, t[c], src[c]); } } e = exec(pc); set_long(pc, e); e->inst[0] |= 0xf0000000; e->inst[1] |= 0x00000004; set_dst(pc, t[0], e); e->inst[0] |= (unit << 9); if (dim == 2) e->inst[0] |= 0x00400000; else if (dim == 3) e->inst[0] |= 0x00800000; e->inst[0] |= (mask & 0x3) << 25; e->inst[1] |= (mask & 0xc) << 12; emit(pc, e); #if 1 if (mask & 1) emit_mov(pc, dst[0], t[0]); if (mask & 2) emit_mov(pc, dst[1], t[1]); if (mask & 4) emit_mov(pc, dst[2], t[2]); if (mask & 8) emit_mov(pc, dst[3], t[3]); free_temp4(pc, t); #else /* XXX: if p.e. MUL is used directly after TEX, it would still use * the texture coordinates, not the fetched values: latency ? */ for (c = 0; c < 4; c++) { if (mask & (1 << c)) assimilate_temp(pc, dst[c], t[c]); else free_temp(pc, t[c]); } #endif } static void convert_to_long(struct nv50_pc *pc, struct nv50_program_exec *e) { unsigned q = 0, m = ~0; assert(!is_long(e)); switch (e->inst[0] >> 28) { case 0x1: /* MOV */ q = 0x0403c000; m = 0xffff7fff; break; case 0x8: /* INTERP */ m = ~0x02000000; if (e->inst[0] & 0x02000000) q = 0x00020000; break; case 0x9: /* RCP */ break; case 0xB: /* ADD */ m = ~(127 << 16); q = ((e->inst[0] & (~m)) >> 2); break; case 0xC: /* MUL */ m = ~0x00008000; q = ((e->inst[0] & (~m)) << 12); break; case 0xE: /* MAD (if src2 == dst) */ q = ((e->inst[0] & 0x1fc) << 12); break; default: assert(0); break; } set_long(pc, e); pc->p->exec_size++; e->inst[0] &= m; e->inst[1] |= q; } static boolean negate_supported(const struct tgsi_full_instruction *insn, int i) { switch (insn->Instruction.Opcode) { case TGSI_OPCODE_DP3: case TGSI_OPCODE_DP4: case TGSI_OPCODE_MUL: case TGSI_OPCODE_KIL: case TGSI_OPCODE_ADD: case TGSI_OPCODE_SUB: case TGSI_OPCODE_MAD: return TRUE; case TGSI_OPCODE_POW: return (i == 1) ? TRUE : FALSE; default: return FALSE; } } static struct nv50_reg * tgsi_dst(struct nv50_pc *pc, int c, const struct tgsi_full_dst_register *dst) { switch (dst->DstRegister.File) { case TGSI_FILE_TEMPORARY: return &pc->temp[dst->DstRegister.Index * 4 + c]; case TGSI_FILE_OUTPUT: return &pc->result[dst->DstRegister.Index * 4 + c]; case TGSI_FILE_NULL: return NULL; default: break; } return NULL; } static struct nv50_reg * tgsi_src(struct nv50_pc *pc, int chan, const struct tgsi_full_src_register *src, boolean neg) { struct nv50_reg *r = NULL; struct nv50_reg *temp; unsigned sgn, c; sgn = tgsi_util_get_full_src_register_sign_mode(src, chan); c = tgsi_util_get_full_src_register_extswizzle(src, chan); switch (c) { case TGSI_EXTSWIZZLE_X: case TGSI_EXTSWIZZLE_Y: case TGSI_EXTSWIZZLE_Z: case TGSI_EXTSWIZZLE_W: switch (src->SrcRegister.File) { case TGSI_FILE_INPUT: r = &pc->attr[src->SrcRegister.Index * 4 + c]; break; case TGSI_FILE_TEMPORARY: r = &pc->temp[src->SrcRegister.Index * 4 + c]; break; case TGSI_FILE_CONSTANT: r = &pc->param[src->SrcRegister.Index * 4 + c]; break; case TGSI_FILE_IMMEDIATE: r = &pc->immd[src->SrcRegister.Index * 4 + c]; break; case TGSI_FILE_SAMPLER: break; default: assert(0); break; } break; case TGSI_EXTSWIZZLE_ZERO: r = alloc_immd(pc, 0.0); return r; case TGSI_EXTSWIZZLE_ONE: if (sgn == TGSI_UTIL_SIGN_TOGGLE || sgn == TGSI_UTIL_SIGN_SET) return alloc_immd(pc, -1.0); return alloc_immd(pc, 1.0); default: assert(0); break; } switch (sgn) { case TGSI_UTIL_SIGN_KEEP: break; case TGSI_UTIL_SIGN_CLEAR: temp = temp_temp(pc); emit_abs(pc, temp, r); r = temp; break; case TGSI_UTIL_SIGN_TOGGLE: if (neg) r->neg = 1; else { temp = temp_temp(pc); emit_neg(pc, temp, r); r = temp; } break; case TGSI_UTIL_SIGN_SET: temp = temp_temp(pc); emit_abs(pc, temp, r); if (neg) temp->neg = 1; else emit_neg(pc, temp, temp); r = temp; break; default: assert(0); break; } return r; } /* returns TRUE if instruction can overwrite sources before they're read */ static boolean direct2dest_op(const struct tgsi_full_instruction *insn) { if (insn->Instruction.Saturate) return FALSE; switch (insn->Instruction.Opcode) { case TGSI_OPCODE_COS: case TGSI_OPCODE_DP3: case TGSI_OPCODE_DP4: case TGSI_OPCODE_DPH: case TGSI_OPCODE_KIL: case TGSI_OPCODE_LIT: case TGSI_OPCODE_POW: case TGSI_OPCODE_RCP: case TGSI_OPCODE_RSQ: case TGSI_OPCODE_SCS: case TGSI_OPCODE_SIN: case TGSI_OPCODE_TEX: case TGSI_OPCODE_TXP: return FALSE; default: return TRUE; } } static boolean nv50_program_tx_insn(struct nv50_pc *pc, const union tgsi_full_token *tok) { const struct tgsi_full_instruction *inst = &tok->FullInstruction; struct nv50_reg *rdst[4], *dst[4], *src[3][4], *temp; unsigned mask, sat, unit; boolean assimilate = FALSE; int i, c; mask = inst->FullDstRegisters[0].DstRegister.WriteMask; sat = inst->Instruction.Saturate == TGSI_SAT_ZERO_ONE; for (c = 0; c < 4; c++) { if (mask & (1 << c)) dst[c] = tgsi_dst(pc, c, &inst->FullDstRegisters[0]); else dst[c] = NULL; rdst[c] = NULL; src[0][c] = NULL; src[1][c] = NULL; src[2][c] = NULL; } for (i = 0; i < inst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fs = &inst->FullSrcRegisters[i]; if (fs->SrcRegister.File == TGSI_FILE_SAMPLER) unit = fs->SrcRegister.Index; for (c = 0; c < 4; c++) src[i][c] = tgsi_src(pc, c, fs, negate_supported(inst, i)); } if (sat) { for (c = 0; c < 4; c++) { rdst[c] = dst[c]; dst[c] = temp_temp(pc); } } else if (direct2dest_op(inst)) { for (c = 0; c < 4; c++) { if (!dst[c] || dst[c]->type != P_TEMP) continue; for (i = c + 1; i < 4; i++) { if (dst[c] == src[0][i] || dst[c] == src[1][i] || dst[c] == src[2][i]) break; } if (i == 4) continue; assimilate = TRUE; rdst[c] = dst[c]; dst[c] = alloc_temp(pc, NULL); } } switch (inst->Instruction.Opcode) { case TGSI_OPCODE_ABS: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_abs(pc, dst[c], src[0][c]); } break; case TGSI_OPCODE_ADD: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_add(pc, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_COS: temp = temp_temp(pc); emit_precossin(pc, temp, src[0][0]); emit_flop(pc, 5, temp, temp); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], temp); } break; case TGSI_OPCODE_DP3: temp = temp_temp(pc); emit_mul(pc, temp, src[0][0], src[1][0]); emit_mad(pc, temp, src[0][1], src[1][1], temp); emit_mad(pc, temp, src[0][2], src[1][2], temp); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], temp); } break; case TGSI_OPCODE_DP4: temp = temp_temp(pc); emit_mul(pc, temp, src[0][0], src[1][0]); emit_mad(pc, temp, src[0][1], src[1][1], temp); emit_mad(pc, temp, src[0][2], src[1][2], temp); emit_mad(pc, temp, src[0][3], src[1][3], temp); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], temp); } break; case TGSI_OPCODE_DPH: temp = temp_temp(pc); emit_mul(pc, temp, src[0][0], src[1][0]); emit_mad(pc, temp, src[0][1], src[1][1], temp); emit_mad(pc, temp, src[0][2], src[1][2], temp); emit_add(pc, temp, src[1][3], temp); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], temp); } break; case TGSI_OPCODE_DST: { struct nv50_reg *one = alloc_immd(pc, 1.0); if (mask & (1 << 0)) emit_mov(pc, dst[0], one); if (mask & (1 << 1)) emit_mul(pc, dst[1], src[0][1], src[1][1]); if (mask & (1 << 2)) emit_mov(pc, dst[2], src[0][2]); if (mask & (1 << 3)) emit_mov(pc, dst[3], src[1][3]); FREE(one); } break; case TGSI_OPCODE_EX2: temp = temp_temp(pc); emit_preex2(pc, temp, src[0][0]); emit_flop(pc, 6, temp, temp); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], temp); } break; case TGSI_OPCODE_FLR: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_flr(pc, dst[c], src[0][c]); } break; case TGSI_OPCODE_FRC: temp = temp_temp(pc); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_flr(pc, temp, src[0][c]); emit_sub(pc, dst[c], src[0][c], temp); } break; case TGSI_OPCODE_KIL: emit_kil(pc, src[0][0]); emit_kil(pc, src[0][1]); emit_kil(pc, src[0][2]); emit_kil(pc, src[0][3]); pc->p->cfg.fp.regs[2] |= 0x00100000; break; case TGSI_OPCODE_LIT: emit_lit(pc, &dst[0], mask, &src[0][0]); break; case TGSI_OPCODE_LG2: temp = temp_temp(pc); emit_flop(pc, 3, temp, src[0][0]); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], temp); } break; case TGSI_OPCODE_LRP: temp = temp_temp(pc); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_sub(pc, temp, src[1][c], src[2][c]); emit_mad(pc, dst[c], temp, src[0][c], src[2][c]); } break; case TGSI_OPCODE_MAD: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mad(pc, dst[c], src[0][c], src[1][c], src[2][c]); } break; case TGSI_OPCODE_MAX: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_minmax(pc, 4, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_MIN: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_minmax(pc, 5, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_MOV: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], src[0][c]); } break; case TGSI_OPCODE_MUL: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mul(pc, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_POW: temp = temp_temp(pc); emit_pow(pc, temp, src[0][0], src[1][0]); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], temp); } break; case TGSI_OPCODE_RCP: for (c = 3; c >= 0; c--) { if (!(mask & (1 << c))) continue; emit_flop(pc, 0, dst[c], src[0][0]); } break; case TGSI_OPCODE_RSQ: for (c = 3; c >= 0; c--) { if (!(mask & (1 << c))) continue; emit_flop(pc, 2, dst[c], src[0][0]); } break; case TGSI_OPCODE_SCS: temp = temp_temp(pc); emit_precossin(pc, temp, src[0][0]); if (mask & (1 << 0)) emit_flop(pc, 5, dst[0], temp); if (mask & (1 << 1)) emit_flop(pc, 4, dst[1], temp); if (mask & (1 << 2)) emit_mov_immdval(pc, dst[2], 0.0); if (mask & (1 << 3)) emit_mov_immdval(pc, dst[3], 1.0); break; case TGSI_OPCODE_SGE: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_set(pc, 6, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_SIN: temp = temp_temp(pc); emit_precossin(pc, temp, src[0][0]); emit_flop(pc, 4, temp, temp); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_mov(pc, dst[c], temp); } break; case TGSI_OPCODE_SLT: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_set(pc, 1, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_SUB: for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_sub(pc, dst[c], src[0][c], src[1][c]); } break; case TGSI_OPCODE_TEX: emit_tex(pc, dst, mask, src[0], unit, inst->InstructionExtTexture.Texture, FALSE); break; case TGSI_OPCODE_TXP: emit_tex(pc, dst, mask, src[0], unit, inst->InstructionExtTexture.Texture, TRUE); break; case TGSI_OPCODE_XPD: temp = temp_temp(pc); if (mask & (1 << 0)) { emit_mul(pc, temp, src[0][2], src[1][1]); emit_msb(pc, dst[0], src[0][1], src[1][2], temp); } if (mask & (1 << 1)) { emit_mul(pc, temp, src[0][0], src[1][2]); emit_msb(pc, dst[1], src[0][2], src[1][0], temp); } if (mask & (1 << 2)) { emit_mul(pc, temp, src[0][1], src[1][0]); emit_msb(pc, dst[2], src[0][0], src[1][1], temp); } if (mask & (1 << 3)) emit_mov_immdval(pc, dst[3], 1.0); break; case TGSI_OPCODE_END: break; default: NOUVEAU_ERR("invalid opcode %d\n", inst->Instruction.Opcode); return FALSE; } if (sat) { for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; emit_cvt(pc, rdst[c], dst[c], -1, CVTOP_SAT, CVT_F32_F32); } } else if (assimilate) { for (c = 0; c < 4; c++) if (rdst[c]) assimilate_temp(pc, rdst[c], dst[c]); } for (i = 0; i < inst->Instruction.NumSrcRegs; i++) { for (c = 0; c < 4; c++) { if (!src[i][c]) continue; if (src[i][c]->index == -1 && src[i][c]->type == P_IMMD) FREE(src[i][c]); else if (src[i][c]->acc == pc->insn_cur) release_hw(pc, src[i][c]); } } kill_temp_temp(pc); return TRUE; } /* Adjust a bitmask that indicates what components of a source are used, * we use this in tx_prep so we only load interpolants that are needed. */ static void insn_adjust_mask(const struct tgsi_full_instruction *insn, unsigned *mask) { const struct tgsi_instruction_ext_texture *tex; switch (insn->Instruction.Opcode) { case TGSI_OPCODE_DP3: *mask = 0x7; break; case TGSI_OPCODE_DP4: case TGSI_OPCODE_DPH: *mask = 0xF; break; case TGSI_OPCODE_LIT: *mask = 0xB; break; case TGSI_OPCODE_RCP: case TGSI_OPCODE_RSQ: *mask = 0x1; break; case TGSI_OPCODE_TEX: case TGSI_OPCODE_TXP: assert(insn->Instruction.Extended); tex = &insn->InstructionExtTexture; *mask = 0x7; if (tex->Texture == TGSI_TEXTURE_1D) *mask = 0x1; else if (tex->Texture == TGSI_TEXTURE_2D) *mask = 0x3; if (insn->Instruction.Opcode == TGSI_OPCODE_TXP) *mask |= 0x8; break; default: break; } } static void prep_inspect_insn(struct nv50_pc *pc, const union tgsi_full_token *tok, unsigned *r_usage[2]) { const struct tgsi_full_instruction *insn; const struct tgsi_full_src_register *src; const struct tgsi_dst_register *dst; unsigned i, c, k, n, mask, *acc_p; insn = &tok->FullInstruction; dst = &insn->FullDstRegisters[0].DstRegister; mask = dst->WriteMask; if (!r_usage[0]) r_usage[0] = CALLOC(pc->temp_nr * 4, sizeof(unsigned)); if (!r_usage[1]) r_usage[1] = CALLOC(pc->attr_nr * 4, sizeof(unsigned)); if (dst->File == TGSI_FILE_TEMPORARY) { for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; r_usage[0][dst->Index * 4 + c] = pc->insn_nr; } } for (i = 0; i < insn->Instruction.NumSrcRegs; i++) { src = &insn->FullSrcRegisters[i]; switch (src->SrcRegister.File) { case TGSI_FILE_TEMPORARY: acc_p = r_usage[0]; break; case TGSI_FILE_INPUT: acc_p = r_usage[1]; break; default: continue; } insn_adjust_mask(insn, &mask); for (c = 0; c < 4; c++) { if (!(mask & (1 << c))) continue; k = tgsi_util_get_full_src_register_extswizzle(src, c); switch (k) { case TGSI_EXTSWIZZLE_X: case TGSI_EXTSWIZZLE_Y: case TGSI_EXTSWIZZLE_Z: case TGSI_EXTSWIZZLE_W: n = src->SrcRegister.Index * 4 + k; acc_p[n] = pc->insn_nr; break; default: break; } } } } static unsigned load_fp_attrib(struct nv50_pc *pc, int i, unsigned *acc, int *mid, int *aid, int *p_oid) { struct nv50_reg *iv; int oid, c, n; unsigned mask = 0; iv = (pc->interp_mode[i] & INTERP_CENTROID) ? pc->iv_c : pc->iv_p; for (c = 0, n = i * 4; c < 4; c++, n++) { oid = (*p_oid)++; pc->attr[n].type = P_TEMP; pc->attr[n].index = i; if (pc->attr[n].acc == acc[n]) continue; mask |= (1 << c); pc->attr[n].acc = acc[n]; pc->attr[n].rhw = pc->attr[n].hw = -1; alloc_reg(pc, &pc->attr[n]); pc->attr[n].rhw = (*aid)++; emit_interp(pc, &pc->attr[n], iv, pc->interp_mode[i]); pc->p->cfg.fp.map[(*mid) / 4] |= oid << (8 * ((*mid) % 4)); (*mid)++; pc->p->cfg.fp.regs[1] += 0x00010001; } return mask; } static boolean nv50_program_tx_prep(struct nv50_pc *pc) { struct tgsi_parse_context p; boolean ret = FALSE; unsigned i, c; unsigned fcol, bcol, fcrd, depr; /* count (centroid) perspective interpolations */ unsigned centroid_loads = 0; unsigned perspect_loads = 0; /* track register access for temps and attrs */ unsigned *r_usage[2]; r_usage[0] = NULL; r_usage[1] = NULL; depr = fcol = bcol = fcrd = 0xffff; if (pc->p->type == PIPE_SHADER_FRAGMENT) { pc->p->cfg.fp.regs[0] = 0x01000404; pc->p->cfg.fp.regs[1] = 0x00000400; } tgsi_parse_init(&p, pc->p->pipe.tokens); while (!tgsi_parse_end_of_tokens(&p)) { const union tgsi_full_token *tok = &p.FullToken; tgsi_parse_token(&p); switch (tok->Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: { const struct tgsi_full_immediate *imm = &p.FullToken.FullImmediate; ctor_immd(pc, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float); } break; case TGSI_TOKEN_TYPE_DECLARATION: { const struct tgsi_full_declaration *d; unsigned last, first, mode; d = &p.FullToken.FullDeclaration; first = d->DeclarationRange.First; last = d->DeclarationRange.Last; switch (d->Declaration.File) { case TGSI_FILE_TEMPORARY: if (pc->temp_nr < (last + 1)) pc->temp_nr = last + 1; break; case TGSI_FILE_OUTPUT: if (pc->result_nr < (last + 1)) pc->result_nr = last + 1; if (!d->Declaration.Semantic) break; switch (d->Semantic.SemanticName) { case TGSI_SEMANTIC_POSITION: depr = first; pc->p->cfg.fp.regs[2] |= 0x00000100; pc->p->cfg.fp.regs[3] |= 0x00000011; break; default: break; } break; case TGSI_FILE_INPUT: { if (pc->attr_nr < (last + 1)) pc->attr_nr = last + 1; if (pc->p->type != PIPE_SHADER_FRAGMENT) break; switch (d->Declaration.Interpolate) { case TGSI_INTERPOLATE_CONSTANT: mode = INTERP_FLAT; break; case TGSI_INTERPOLATE_PERSPECTIVE: mode = INTERP_PERSPECTIVE; break; default: mode = INTERP_LINEAR; break; } if (d->Declaration.Semantic) { switch (d->Semantic.SemanticName) { case TGSI_SEMANTIC_POSITION: fcrd = first; break; case TGSI_SEMANTIC_COLOR: fcol = first; mode = INTERP_PERSPECTIVE; break; case TGSI_SEMANTIC_BCOLOR: bcol = first; mode = INTERP_PERSPECTIVE; break; } } if (d->Declaration.Centroid) { mode |= INTERP_CENTROID; if (mode & INTERP_PERSPECTIVE) centroid_loads++; } else if (mode & INTERP_PERSPECTIVE) perspect_loads++; assert(last < 32); for (i = first; i <= last; i++) pc->interp_mode[i] = mode; } break; case TGSI_FILE_CONSTANT: if (pc->param_nr < (last + 1)) pc->param_nr = last + 1; break; case TGSI_FILE_SAMPLER: break; default: NOUVEAU_ERR("bad decl file %d\n", d->Declaration.File); goto out_err; } } break; case TGSI_TOKEN_TYPE_INSTRUCTION: pc->insn_nr++; prep_inspect_insn(pc, tok, r_usage); break; default: break; } } if (pc->temp_nr) { pc->temp = CALLOC(pc->temp_nr * 4, sizeof(struct nv50_reg)); if (!pc->temp) goto out_err; for (i = 0; i < pc->temp_nr; i++) { for (c = 0; c < 4; c++) { pc->temp[i*4+c].type = P_TEMP; pc->temp[i*4+c].hw = -1; pc->temp[i*4+c].rhw = -1; pc->temp[i*4+c].index = i; pc->temp[i*4+c].acc = r_usage[0][i*4+c]; } } } if (pc->attr_nr) { int oid = 4, mid = 4, aid = 0; /* oid = VP output id * aid = FP attribute/interpolant id * mid = VP output mapping field ID */ pc->attr = CALLOC(pc->attr_nr * 4, sizeof(struct nv50_reg)); if (!pc->attr) goto out_err; if (pc->p->type == PIPE_SHADER_FRAGMENT) { /* position should be loaded first */ if (fcrd != 0xffff) { unsigned mask; mid = 0; mask = load_fp_attrib(pc, fcrd, r_usage[1], &mid, &aid, &oid); oid = 0; pc->p->cfg.fp.regs[1] |= (mask << 24); pc->p->cfg.fp.map[0] = 0x04040404 * fcrd; } pc->p->cfg.fp.map[0] += 0x03020100; /* should do MAD fcrd.xy, fcrd, SOME_CONST, fcrd */ if (perspect_loads) { pc->iv_p = alloc_temp(pc, NULL); if (!(pc->p->cfg.fp.regs[1] & 0x08000000)) { pc->p->cfg.fp.regs[1] |= 0x08000000; pc->iv_p->rhw = aid++; emit_interp(pc, pc->iv_p, NULL, INTERP_LINEAR); emit_flop(pc, 0, pc->iv_p, pc->iv_p); } else { pc->iv_p->rhw = aid - 1; emit_flop(pc, 0, pc->iv_p, &pc->attr[fcrd * 4 + 3]); } } if (centroid_loads) { pc->iv_c = alloc_temp(pc, NULL); pc->iv_c->rhw = pc->iv_p ? aid - 1 : aid++; emit_interp(pc, pc->iv_c, NULL, INTERP_CENTROID); emit_flop(pc, 0, pc->iv_c, pc->iv_c); pc->p->cfg.fp.regs[1] |= 0x08000000; } for (c = 0; c < 4; c++) { /* I don't know what these values do, but * let's set them like the blob does: */ if (fcol != 0xffff && r_usage[1][fcol * 4 + c]) pc->p->cfg.fp.regs[0] += 0x00010000; if (bcol != 0xffff && r_usage[1][bcol * 4 + c]) pc->p->cfg.fp.regs[0] += 0x00010000; } for (i = 0; i < pc->attr_nr; i++) load_fp_attrib(pc, i, r_usage[1], &mid, &aid, &oid); if (pc->iv_p) free_temp(pc, pc->iv_p); if (pc->iv_c) free_temp(pc, pc->iv_c); pc->p->cfg.fp.high_map = (mid / 4); pc->p->cfg.fp.high_map += ((mid % 4) ? 1 : 0); } else { /* vertex program */ for (i = 0; i < pc->attr_nr * 4; i++) { pc->p->cfg.vp.attr[aid / 32] |= (1 << (aid % 32)); pc->attr[i].type = P_ATTR; pc->attr[i].hw = aid++; pc->attr[i].index = i / 4; } } } if (pc->result_nr) { int rid = 0; pc->result = CALLOC(pc->result_nr * 4, sizeof(struct nv50_reg)); if (!pc->result) goto out_err; for (i = 0; i < pc->result_nr; i++) { for (c = 0; c < 4; c++) { if (pc->p->type == PIPE_SHADER_FRAGMENT) { pc->result[i*4+c].type = P_TEMP; pc->result[i*4+c].hw = -1; pc->result[i*4+c].rhw = (i == depr) ? -1 : rid++; } else { pc->result[i*4+c].type = P_RESULT; pc->result[i*4+c].hw = rid++; } pc->result[i*4+c].index = i; } if (pc->p->type == PIPE_SHADER_FRAGMENT && depr != 0xffff) { pc->result[depr * 4 + 2].rhw = (pc->result_nr - 1) * 4; } } } if (pc->param_nr) { int rid = 0; pc->param = CALLOC(pc->param_nr * 4, sizeof(struct nv50_reg)); if (!pc->param) goto out_err; for (i = 0; i < pc->param_nr; i++) { for (c = 0; c < 4; c++) { pc->param[i*4+c].type = P_CONST; pc->param[i*4+c].hw = rid++; pc->param[i*4+c].index = i; } } } if (pc->immd_nr) { int rid = 0; pc->immd = CALLOC(pc->immd_nr * 4, sizeof(struct nv50_reg)); if (!pc->immd) goto out_err; for (i = 0; i < pc->immd_nr; i++) { for (c = 0; c < 4; c++) { pc->immd[i*4+c].type = P_IMMD; pc->immd[i*4+c].hw = rid++; pc->immd[i*4+c].index = i; } } } ret = TRUE; out_err: if (r_usage[0]) FREE(r_usage[0]); if (r_usage[1]) FREE(r_usage[1]); tgsi_parse_free(&p); return ret; } static void free_nv50_pc(struct nv50_pc *pc) { if (pc->immd) FREE(pc->immd); if (pc->param) FREE(pc->param); if (pc->result) FREE(pc->result); if (pc->attr) FREE(pc->attr); if (pc->temp) FREE(pc->temp); FREE(pc); } static boolean nv50_program_tx(struct nv50_program *p) { struct tgsi_parse_context parse; struct nv50_pc *pc; unsigned k; boolean ret; pc = CALLOC_STRUCT(nv50_pc); if (!pc) return FALSE; pc->p = p; pc->p->cfg.high_temp = 4; ret = nv50_program_tx_prep(pc); if (ret == FALSE) goto out_cleanup; tgsi_parse_init(&parse, pc->p->pipe.tokens); while (!tgsi_parse_end_of_tokens(&parse)) { const union tgsi_full_token *tok = &parse.FullToken; /* don't allow half insn/immd on first and last instruction */ pc->allow32 = TRUE; if (pc->insn_cur == 0 || pc->insn_cur + 2 == pc->insn_nr) pc->allow32 = FALSE; tgsi_parse_token(&parse); switch (tok->Token.Type) { case TGSI_TOKEN_TYPE_INSTRUCTION: ++pc->insn_cur; ret = nv50_program_tx_insn(pc, tok); if (ret == FALSE) goto out_err; break; default: break; } } if (p->type == PIPE_SHADER_FRAGMENT) { struct nv50_reg out; out.type = P_TEMP; for (k = 0; k < pc->result_nr * 4; k++) { if (pc->result[k].rhw == -1) continue; if (pc->result[k].hw != pc->result[k].rhw) { out.hw = pc->result[k].rhw; emit_mov(pc, &out, &pc->result[k]); } if (pc->p->cfg.high_result < (pc->result[k].rhw + 1)) pc->p->cfg.high_result = pc->result[k].rhw + 1; } } /* look for single half instructions and make them long */ struct nv50_program_exec *e, *e_prev; for (k = 0, e = pc->p->exec_head, e_prev = NULL; e; e = e->next) { if (!is_long(e)) k++; if (!e->next || is_long(e->next)) { if (k & 1) convert_to_long(pc, e); k = 0; } if (e->next) e_prev = e; } if (!is_long(pc->p->exec_tail)) { /* this may occur if moving FP results */ assert(e_prev && !is_long(e_prev)); convert_to_long(pc, e_prev); convert_to_long(pc, pc->p->exec_tail); } assert(is_long(pc->p->exec_tail) && !is_immd(pc->p->exec_head)); pc->p->exec_tail->inst[1] |= 0x00000001; p->param_nr = pc->param_nr * 4; p->immd_nr = pc->immd_nr * 4; p->immd = pc->immd_buf; out_err: tgsi_parse_free(&parse); out_cleanup: free_nv50_pc(pc); return ret; } static void nv50_program_validate(struct nv50_context *nv50, struct nv50_program *p) { if (nv50_program_tx(p) == FALSE) assert(0); p->translated = TRUE; } static void nv50_program_upload_data(struct nv50_context *nv50, float *map, unsigned start, unsigned count, unsigned cbuf) { struct nouveau_channel *chan = nv50->screen->base.channel; struct nouveau_grobj *tesla = nv50->screen->tesla; while (count) { unsigned nr = count > 2047 ? 2047 : count; BEGIN_RING(chan, tesla, 0x00000f00, 1); OUT_RING (chan, (cbuf << 0) | (start << 8)); BEGIN_RING(chan, tesla, 0x40000f04, nr); OUT_RINGp (chan, map, nr); map += nr; start += nr; count -= nr; } } static void nv50_program_validate_data(struct nv50_context *nv50, struct nv50_program *p) { struct pipe_screen *pscreen = nv50->pipe.screen; if (!p->data[0] && p->immd_nr) { struct nouveau_resource *heap = nv50->screen->immd_heap[0]; if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) { while (heap->next && heap->size < p->immd_nr) { struct nv50_program *evict = heap->next->priv; nouveau_resource_free(&evict->data[0]); } if (nouveau_resource_alloc(heap, p->immd_nr, p, &p->data[0])) assert(0); } /* immediates only need to be uploaded again when freed */ nv50_program_upload_data(nv50, p->immd, p->data[0]->start, p->immd_nr, NV50_CB_PMISC); } if (!p->data[1] && p->param_nr) { struct nouveau_resource *heap = nv50->screen->parm_heap[p->type]; if (nouveau_resource_alloc(heap, p->param_nr, p, &p->data[1])) { while (heap->next && heap->size < p->param_nr) { struct nv50_program *evict = heap->next->priv; nouveau_resource_free(&evict->data[1]); } if (nouveau_resource_alloc(heap, p->param_nr, p, &p->data[1])) assert(0); } } if (p->param_nr) { unsigned cbuf = NV50_CB_PVP; float *map = pipe_buffer_map(pscreen, nv50->constbuf[p->type], PIPE_BUFFER_USAGE_CPU_READ); if (p->type == PIPE_SHADER_FRAGMENT) cbuf = NV50_CB_PFP; nv50_program_upload_data(nv50, map, p->data[1]->start, p->param_nr, cbuf); pipe_buffer_unmap(pscreen, nv50->constbuf[p->type]); } } static void nv50_program_validate_code(struct nv50_context *nv50, struct nv50_program *p) { struct nouveau_channel *chan = nv50->screen->base.channel; struct nouveau_grobj *tesla = nv50->screen->tesla; struct nv50_program_exec *e; struct nouveau_stateobj *so; const unsigned flags = NOUVEAU_BO_VRAM | NOUVEAU_BO_WR; unsigned start, count, *up, *ptr; boolean upload = FALSE; if (!p->bo) { nouveau_bo_new(chan->device, NOUVEAU_BO_VRAM, 0x100, p->exec_size * 4, &p->bo); upload = TRUE; } if ((p->data[0] && p->data[0]->start != p->data_start[0]) || (p->data[1] && p->data[1]->start != p->data_start[1])) { for (e = p->exec_head; e; e = e->next) { unsigned ei, ci, bs; if (e->param.index < 0) continue; bs = (e->inst[1] >> 22) & 0x07; assert(bs < 2); ei = e->param.shift >> 5; ci = e->param.index + p->data[bs]->start; e->inst[ei] &= ~e->param.mask; e->inst[ei] |= (ci << e->param.shift); } if (p->data[0]) p->data_start[0] = p->data[0]->start; if (p->data[1]) p->data_start[1] = p->data[1]->start; upload = TRUE; } if (!upload) return; #ifdef NV50_PROGRAM_DUMP NOUVEAU_ERR("-------\n"); for (e = p->exec_head; e; e = e->next) { NOUVEAU_ERR("0x%08x\n", e->inst[0]); if (is_long(e)) NOUVEAU_ERR("0x%08x\n", e->inst[1]); } #endif up = ptr = MALLOC(p->exec_size * 4); for (e = p->exec_head; e; e = e->next) { *(ptr++) = e->inst[0]; if (is_long(e)) *(ptr++) = e->inst[1]; } so = so_new(4,2); so_method(so, nv50->screen->tesla, 0x1280, 3); so_reloc (so, p->bo, 0, flags | NOUVEAU_BO_HIGH, 0, 0); so_reloc (so, p->bo, 0, flags | NOUVEAU_BO_LOW, 0, 0); so_data (so, (NV50_CB_PUPLOAD << 16) | 0x0800); //(p->exec_size * 4)); start = 0; count = p->exec_size; while (count) { struct nouveau_channel *chan = nv50->screen->base.channel; unsigned nr; so_emit(chan, so); nr = MIN2(count, 2047); nr = MIN2(chan->pushbuf->remaining, nr); if (chan->pushbuf->remaining < (nr + 3)) { FIRE_RING(chan); continue; } BEGIN_RING(chan, tesla, 0x0f00, 1); OUT_RING (chan, (start << 8) | NV50_CB_PUPLOAD); BEGIN_RING(chan, tesla, 0x40000f04, nr); OUT_RINGp (chan, up + start, nr); start += nr; count -= nr; } FREE(up); so_ref(NULL, &so); } void nv50_vertprog_validate(struct nv50_context *nv50) { struct nouveau_grobj *tesla = nv50->screen->tesla; struct nv50_program *p = nv50->vertprog; struct nouveau_stateobj *so; if (!p->translated) { nv50_program_validate(nv50, p); if (!p->translated) assert(0); } nv50_program_validate_data(nv50, p); nv50_program_validate_code(nv50, p); so = so_new(13, 2); so_method(so, tesla, NV50TCL_VP_ADDRESS_HIGH, 2); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_HIGH, 0, 0); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_LOW, 0, 0); so_method(so, tesla, 0x1650, 2); so_data (so, p->cfg.vp.attr[0]); so_data (so, p->cfg.vp.attr[1]); so_method(so, tesla, 0x16b8, 1); so_data (so, p->cfg.high_result); so_method(so, tesla, 0x16ac, 2); so_data (so, p->cfg.high_result); //8); so_data (so, p->cfg.high_temp); so_method(so, tesla, 0x140c, 1); so_data (so, 0); /* program start offset */ so_ref(so, &nv50->state.vertprog); so_ref(NULL, &so); } void nv50_fragprog_validate(struct nv50_context *nv50) { struct nouveau_grobj *tesla = nv50->screen->tesla; struct nv50_program *p = nv50->fragprog; struct nouveau_stateobj *so; unsigned i; if (!p->translated) { nv50_program_validate(nv50, p); if (!p->translated) assert(0); } nv50_program_validate_data(nv50, p); nv50_program_validate_code(nv50, p); so = so_new(64, 2); so_method(so, tesla, NV50TCL_FP_ADDRESS_HIGH, 2); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_HIGH, 0, 0); so_reloc (so, p->bo, 0, NOUVEAU_BO_VRAM | NOUVEAU_BO_RD | NOUVEAU_BO_LOW, 0, 0); so_method(so, tesla, 0x1904, 4); so_data (so, p->cfg.fp.regs[0]); /* 0x01000404 / 0x00040404 */ so_data (so, 0x00000004); so_data (so, 0x00000000); so_data (so, 0x00000000); so_method(so, tesla, 0x16bc, p->cfg.fp.high_map); for (i = 0; i < p->cfg.fp.high_map; i++) so_data(so, p->cfg.fp.map[i]); so_method(so, tesla, 0x1988, 2); so_data (so, p->cfg.fp.regs[1]); /* 0x08040404 / 0x0f000401 */ so_data (so, p->cfg.high_temp); so_method(so, tesla, 0x1298, 1); so_data (so, p->cfg.high_result); so_method(so, tesla, 0x19a8, 1); so_data (so, p->cfg.fp.regs[2]); so_method(so, tesla, 0x196c, 1); so_data (so, p->cfg.fp.regs[3]); so_method(so, tesla, 0x1414, 1); so_data (so, 0); /* program start offset */ so_ref(so, &nv50->state.fragprog); so_ref(NULL, &so); } void nv50_program_destroy(struct nv50_context *nv50, struct nv50_program *p) { while (p->exec_head) { struct nv50_program_exec *e = p->exec_head; p->exec_head = e->next; FREE(e); } p->exec_tail = NULL; p->exec_size = 0; nouveau_bo_ref(NULL, &p->bo); nouveau_resource_free(&p->data[0]); nouveau_resource_free(&p->data[1]); p->translated = 0; }