/* * Copyright 2010 Christoph Bumiller * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* #define NV50_TGSI2NC_DEBUG */ #include #include "nv50_context.h" #include "nv50_pc.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_util.h" #include "tgsi/tgsi_dump.h" #define BLD_MAX_TEMPS 64 #define BLD_MAX_ADDRS 4 #define BLD_MAX_PREDS 4 #define BLD_MAX_IMMDS 128 #define BLD_MAX_COND_NESTING 8 #define BLD_MAX_LOOP_NESTING 4 #define BLD_MAX_CALL_NESTING 2 /* collects all values assigned to the same TGSI register */ struct bld_value_stack { struct nv_value *top; struct nv_value **body; unsigned size; uint16_t loop_use; /* 1 bit per loop level, indicates if used/defd */ uint16_t loop_def; }; static INLINE void bld_vals_push_val(struct bld_value_stack *stk, struct nv_value *val) { assert(!stk->size || (stk->body[stk->size - 1] != val)); if (!(stk->size % 8)) { unsigned old_sz = (stk->size + 0) * sizeof(struct nv_value *); unsigned new_sz = (stk->size + 8) * sizeof(struct nv_value *); stk->body = (struct nv_value **)REALLOC(stk->body, old_sz, new_sz); } stk->body[stk->size++] = val; } static INLINE boolean bld_vals_del_val(struct bld_value_stack *stk, struct nv_value *val) { unsigned i; for (i = stk->size; i > 0; --i) if (stk->body[i - 1] == val) break; if (!i) return FALSE; if (i != stk->size) stk->body[i - 1] = stk->body[stk->size - 1]; --stk->size; /* XXX: old size in REALLOC */ return TRUE; } static INLINE void bld_vals_push(struct bld_value_stack *stk) { bld_vals_push_val(stk, stk->top); stk->top = NULL; } static INLINE void bld_push_values(struct bld_value_stack *stacks, int n) { int i, c; for (i = 0; i < n; ++i) for (c = 0; c < 4; ++c) if (stacks[i * 4 + c].top) bld_vals_push(&stacks[i * 4 + c]); } struct bld_context { struct nv50_translation_info *ti; struct nv_pc *pc; struct nv_basic_block *b; struct tgsi_parse_context parse[BLD_MAX_CALL_NESTING]; int call_lvl; struct nv_basic_block *cond_bb[BLD_MAX_COND_NESTING]; struct nv_basic_block *join_bb[BLD_MAX_COND_NESTING]; struct nv_basic_block *else_bb[BLD_MAX_COND_NESTING]; int cond_lvl; struct nv_basic_block *loop_bb[BLD_MAX_LOOP_NESTING]; struct nv_basic_block *brkt_bb[BLD_MAX_LOOP_NESTING]; int loop_lvl; ubyte out_kind; /* CFG_EDGE_FORWARD, or FAKE in case of BREAK/CONT */ struct bld_value_stack tvs[BLD_MAX_TEMPS][4]; /* TGSI_FILE_TEMPORARY */ struct bld_value_stack avs[BLD_MAX_ADDRS][4]; /* TGSI_FILE_ADDRESS */ struct bld_value_stack pvs[BLD_MAX_PREDS][4]; /* TGSI_FILE_PREDICATE */ struct bld_value_stack ovs[PIPE_MAX_SHADER_OUTPUTS][4]; uint32_t outputs_written[(PIPE_MAX_SHADER_OUTPUTS + 7) / 8]; struct nv_value *frgcrd[4]; struct nv_value *sysval[4]; /* wipe on new BB */ struct nv_value *saved_addr[4][2]; struct nv_value *saved_inputs[128]; struct nv_value *saved_immd[BLD_MAX_IMMDS]; uint num_immds; }; static INLINE ubyte bld_stack_file(struct bld_context *bld, struct bld_value_stack *stk) { if (stk < &bld->avs[0][0]) return NV_FILE_GPR; else if (stk < &bld->pvs[0][0]) return NV_FILE_ADDR; else if (stk < &bld->ovs[0][0]) return NV_FILE_FLAGS; else return NV_FILE_OUT; } static INLINE struct nv_value * bld_fetch(struct bld_context *bld, struct bld_value_stack *stk, int i, int c) { stk[i * 4 + c].loop_use |= 1 << bld->loop_lvl; return stk[i * 4 + c].top; } static struct nv_value * bld_loop_phi(struct bld_context *, struct bld_value_stack *, struct nv_value *); /* If a variable is defined in a loop without prior use, we don't need * a phi in the loop header to account for backwards flow. * * However, if this variable is then also used outside the loop, we do * need a phi after all. But we must not use this phi's def inside the * loop, so we can eliminate the phi if it is unused later. */ static INLINE void bld_store(struct bld_context *bld, struct bld_value_stack *stk, int i, int c, struct nv_value *val) { const uint16_t m = 1 << bld->loop_lvl; stk = &stk[i * 4 + c]; if (bld->loop_lvl && !(m & (stk->loop_def | stk->loop_use))) bld_loop_phi(bld, stk, val); stk->top = val; stk->loop_def |= 1 << bld->loop_lvl; } static INLINE void bld_clear_def_use(struct bld_value_stack *stk, int n, int lvl) { int i; const uint16_t mask = ~(1 << lvl); for (i = 0; i < n * 4; ++i) { stk[i].loop_def &= mask; stk[i].loop_use &= mask; } } #define FETCH_TEMP(i, c) bld_fetch(bld, &bld->tvs[0][0], i, c) #define STORE_TEMP(i, c, v) bld_store(bld, &bld->tvs[0][0], i, c, (v)) #define FETCH_ADDR(i, c) bld_fetch(bld, &bld->avs[0][0], i, c) #define STORE_ADDR(i, c, v) bld_store(bld, &bld->avs[0][0], i, c, (v)) #define FETCH_PRED(i, c) bld_fetch(bld, &bld->pvs[0][0], i, c) #define STORE_PRED(i, c, v) bld_store(bld, &bld->pvs[0][0], i, c, (v)) #define STORE_OUTR(i, c, v) \ do { \ bld->ovs[i][c].top = (v); \ bld->outputs_written[(i) / 8] |= 1 << (((i) * 4 + (c)) % 32); \ } while (0) static INLINE void bld_warn_uninitialized(struct bld_context *bld, int kind, struct bld_value_stack *stk, struct nv_basic_block *b) { #ifdef NV50_TGSI2NC_DEBUG long i = (stk - &bld->tvs[0][0]) / 4; long c = (stk - &bld->tvs[0][0]) & 3; if (c == 3) c = -1; debug_printf("WARNING: TEMP[%li].%c %s used uninitialized in BB:%i\n", i, (int)('x' + c), kind ? "may be" : "is", b->id); #endif } static INLINE struct nv_value * bld_def(struct nv_instruction *i, int c, struct nv_value *value) { i->def[c] = value; value->insn = i; return value; } static INLINE struct nv_value * find_by_bb(struct bld_value_stack *stack, struct nv_basic_block *b) { int i; if (stack->top && stack->top->insn->bb == b) return stack->top; for (i = stack->size - 1; i >= 0; --i) if (stack->body[i]->insn->bb == b) return stack->body[i]; return NULL; } /* fetch value from stack that was defined in the specified basic block, * or search for first definitions in all of its predecessors */ static void fetch_by_bb(struct bld_value_stack *stack, struct nv_value **vals, int *n, struct nv_basic_block *b) { int i; struct nv_value *val; assert(*n < 16); /* MAX_COND_NESTING */ val = find_by_bb(stack, b); if (val) { for (i = 0; i < *n; ++i) if (vals[i] == val) return; vals[(*n)++] = val; return; } for (i = 0; i < b->num_in; ++i) if (!IS_WALL_EDGE(b->in_kind[i])) fetch_by_bb(stack, vals, n, b->in[i]); } static INLINE struct nv_value * bld_load_imm_u32(struct bld_context *bld, uint32_t u); static INLINE struct nv_value * bld_undef(struct bld_context *bld, ubyte file) { struct nv_instruction *nvi = new_instruction(bld->pc, NV_OP_UNDEF); return bld_def(nvi, 0, new_value(bld->pc, file, NV_TYPE_U32)); } static struct nv_value * bld_phi(struct bld_context *bld, struct nv_basic_block *b, struct bld_value_stack *stack) { struct nv_basic_block *in; struct nv_value *vals[16] = { 0 }; struct nv_value *val; struct nv_instruction *phi; int i, j, n; do { i = n = 0; fetch_by_bb(stack, vals, &n, b); if (!n) { bld_warn_uninitialized(bld, 0, stack, b); return NULL; } if (n == 1) { if (nvbb_dominated_by(b, vals[0]->insn->bb)) break; bld_warn_uninitialized(bld, 1, stack, b); /* back-tracking to insert missing value of other path */ in = b; while (in->in[0]) { if (in->num_in == 1) { in = in->in[0]; } else { if (!nvbb_reachable_by(in->in[0], vals[0]->insn->bb, b)) in = in->in[0]; else if (!nvbb_reachable_by(in->in[1], vals[0]->insn->bb, b)) in = in->in[1]; else in = in->in[0]; } } bld->pc->current_block = in; /* should make this a no-op */ bld_vals_push_val(stack, bld_undef(bld, vals[0]->reg.file)); continue; } for (i = 0; i < n; ++i) { /* if value dominates b, continue to the redefinitions */ if (nvbb_dominated_by(b, vals[i]->insn->bb)) continue; /* if value dominates any in-block, b should be the dom frontier */ for (j = 0; j < b->num_in; ++j) if (nvbb_dominated_by(b->in[j], vals[i]->insn->bb)) break; /* otherwise, find the dominance frontier and put the phi there */ if (j == b->num_in) { in = nvbb_dom_frontier(vals[i]->insn->bb); val = bld_phi(bld, in, stack); bld_vals_push_val(stack, val); break; } } } while(i < n); bld->pc->current_block = b; if (n == 1) return vals[0]; phi = new_instruction(bld->pc, NV_OP_PHI); bld_def(phi, 0, new_value(bld->pc, vals[0]->reg.file, vals[0]->reg.type)); for (i = 0; i < n; ++i) phi->src[i] = new_ref(bld->pc, vals[i]); return phi->def[0]; } /* Insert a phi function in the loop header. * For nested loops, we need to insert phi functions in all the outer * loop headers if they don't have one yet. * * @def: redefinition from inside loop, or NULL if to be replaced later */ static struct nv_value * bld_loop_phi(struct bld_context *bld, struct bld_value_stack *stack, struct nv_value *def) { struct nv_instruction *phi; struct nv_basic_block *bb = bld->pc->current_block; struct nv_value *val = NULL; if (bld->loop_lvl > 1) { --bld->loop_lvl; if (!((stack->loop_def | stack->loop_use) & (1 << bld->loop_lvl))) val = bld_loop_phi(bld, stack, NULL); ++bld->loop_lvl; } if (!val) val = bld_phi(bld, bld->pc->current_block, stack); /* old definition */ if (!val) { bld->pc->current_block = bld->loop_bb[bld->loop_lvl - 1]->in[0]; val = bld_undef(bld, bld_stack_file(bld, stack)); } bld->pc->current_block = bld->loop_bb[bld->loop_lvl - 1]; phi = new_instruction(bld->pc, NV_OP_PHI); bld_def(phi, 0, new_value_like(bld->pc, val)); if (!def) def = phi->def[0]; bld_vals_push_val(stack, phi->def[0]); phi->target = (struct nv_basic_block *)stack; /* cheat */ nv_reference(bld->pc, &phi->src[0], val); nv_reference(bld->pc, &phi->src[1], def); bld->pc->current_block = bb; return phi->def[0]; } static INLINE struct nv_value * bld_fetch_global(struct bld_context *bld, struct bld_value_stack *stack) { const uint16_t m = 1 << bld->loop_lvl; const uint16_t use = stack->loop_use; stack->loop_use |= m; /* If neither used nor def'd inside the loop, build a phi in foresight, * so we don't have to replace stuff later on, which requires tracking. */ if (bld->loop_lvl && !((use | stack->loop_def) & m)) return bld_loop_phi(bld, stack, NULL); return bld_phi(bld, bld->pc->current_block, stack); } static INLINE struct nv_value * bld_imm_u32(struct bld_context *bld, uint32_t u) { int i; unsigned n = bld->num_immds; for (i = 0; i < n; ++i) if (bld->saved_immd[i]->reg.imm.u32 == u) return bld->saved_immd[i]; assert(n < BLD_MAX_IMMDS); bld->num_immds++; bld->saved_immd[n] = new_value(bld->pc, NV_FILE_IMM, NV_TYPE_U32); bld->saved_immd[n]->reg.imm.u32 = u; return bld->saved_immd[n]; } static void bld_replace_value(struct nv_pc *, struct nv_basic_block *, struct nv_value *, struct nv_value *); /* Replace the source of the phi in the loop header by the last assignment, * or eliminate the phi function if there is no assignment inside the loop. * * Redundancy situation 1 - (used) but (not redefined) value: * %3 = phi %0, %3 = %3 is used * %3 = phi %0, %4 = is new definition * * Redundancy situation 2 - (not used) but (redefined) value: * %3 = phi %0, %2 = %2 is used, %3 could be used outside, deleted by DCE */ static void bld_loop_end(struct bld_context *bld, struct nv_basic_block *bb) { struct nv_basic_block *save = bld->pc->current_block; struct nv_instruction *phi, *next; struct nv_value *val; struct bld_value_stack *stk; int i, s, n; for (phi = bb->phi; phi && phi->opcode == NV_OP_PHI; phi = next) { next = phi->next; stk = (struct bld_value_stack *)phi->target; phi->target = NULL; /* start with s == 1, src[0] is from outside the loop */ for (s = 1, n = 0; n < bb->num_in; ++n) { if (bb->in_kind[n] != CFG_EDGE_BACK) continue; assert(s < 4); bld->pc->current_block = bb->in[n]; val = bld_fetch_global(bld, stk); for (i = 0; i < 4; ++i) if (phi->src[i] && phi->src[i]->value == val) break; if (i == 4) { /* skip values we do not want to replace */ for (; phi->src[s] && phi->src[s]->value != phi->def[0]; ++s); nv_reference(bld->pc, &phi->src[s++], val); } } bld->pc->current_block = save; if (phi->src[0]->value == phi->def[0] || phi->src[0]->value == phi->src[1]->value) s = 1; else if (phi->src[1]->value == phi->def[0]) s = 0; else continue; if (s >= 0) { /* eliminate the phi */ bld_vals_del_val(stk, phi->def[0]); ++bld->pc->pass_seq; bld_replace_value(bld->pc, bb, phi->def[0], phi->src[s]->value); nv_nvi_delete(phi); } } } static INLINE struct nv_value * bld_imm_f32(struct bld_context *bld, float f) { return bld_imm_u32(bld, fui(f)); } #define SET_TYPE(v, t) ((v)->reg.type = (v)->reg.as_type = (t)) static struct nv_value * bld_insn_1(struct bld_context *bld, uint opcode, struct nv_value *src0) { struct nv_instruction *insn = new_instruction(bld->pc, opcode); nv_reference(bld->pc, &insn->src[0], src0); return bld_def(insn, 0, new_value(bld->pc, NV_FILE_GPR, src0->reg.as_type)); } static struct nv_value * bld_insn_2(struct bld_context *bld, uint opcode, struct nv_value *src0, struct nv_value *src1) { struct nv_instruction *insn = new_instruction(bld->pc, opcode); nv_reference(bld->pc, &insn->src[0], src0); nv_reference(bld->pc, &insn->src[1], src1); return bld_def(insn, 0, new_value(bld->pc, NV_FILE_GPR, src0->reg.as_type)); } static struct nv_value * bld_insn_3(struct bld_context *bld, uint opcode, struct nv_value *src0, struct nv_value *src1, struct nv_value *src2) { struct nv_instruction *insn = new_instruction(bld->pc, opcode); nv_reference(bld->pc, &insn->src[0], src0); nv_reference(bld->pc, &insn->src[1], src1); nv_reference(bld->pc, &insn->src[2], src2); return bld_def(insn, 0, new_value(bld->pc, NV_FILE_GPR, src0->reg.as_type)); } static struct nv_value * bld_duplicate_insn(struct bld_context *bld, struct nv_instruction *nvi) { struct nv_instruction *dupi = new_instruction(bld->pc, nvi->opcode); int c; if (nvi->def[0]) bld_def(dupi, 0, new_value_like(bld->pc, nvi->def[0])); if (nvi->flags_def) { dupi->flags_def = new_value_like(bld->pc, nvi->flags_def); dupi->flags_def->insn = dupi; } for (c = 0; c < 5; ++c) if (nvi->src[c]) nv_reference(bld->pc, &dupi->src[c], nvi->src[c]->value); if (nvi->flags_src) nv_reference(bld->pc, &dupi->flags_src, nvi->flags_src->value); dupi->cc = nvi->cc; dupi->saturate = nvi->saturate; dupi->centroid = nvi->centroid; dupi->flat = nvi->flat; return dupi->def[0]; } static void bld_lmem_store(struct bld_context *bld, struct nv_value *ptr, int ofst, struct nv_value *val) { struct nv_instruction *insn = new_instruction(bld->pc, NV_OP_STA); struct nv_value *loc; loc = new_value(bld->pc, NV_FILE_MEM_L, NV_TYPE_U32); loc->reg.id = ofst * 4; nv_reference(bld->pc, &insn->src[0], loc); nv_reference(bld->pc, &insn->src[1], val); nv_reference(bld->pc, &insn->src[4], ptr); } static struct nv_value * bld_lmem_load(struct bld_context *bld, struct nv_value *ptr, int ofst) { struct nv_value *loc, *val; loc = new_value(bld->pc, NV_FILE_MEM_L, NV_TYPE_U32); loc->reg.id = ofst * 4; val = bld_insn_1(bld, NV_OP_LDA, loc); nv_reference(bld->pc, &val->insn->src[4], ptr); return val; } #define BLD_INSN_1_EX(d, op, dt, s0, s0t) \ do { \ (d) = bld_insn_1(bld, (NV_OP_##op), (s0)); \ SET_TYPE(d, NV_TYPE_##dt); \ (d)->insn->src[0]->typecast = NV_TYPE_##s0t; \ } while(0) #define BLD_INSN_2_EX(d, op, dt, s0, s0t, s1, s1t) \ do { \ (d) = bld_insn_2(bld, (NV_OP_##op), (s0), (s1)); \ SET_TYPE(d, NV_TYPE_##dt); \ (d)->insn->src[0]->typecast = NV_TYPE_##s0t; \ (d)->insn->src[1]->typecast = NV_TYPE_##s1t; \ } while(0) static struct nv_value * bld_pow(struct bld_context *bld, struct nv_value *x, struct nv_value *e) { struct nv_value *val; BLD_INSN_1_EX(val, LG2, F32, x, F32); BLD_INSN_2_EX(val, MUL, F32, e, F32, val, F32); val = bld_insn_1(bld, NV_OP_PREEX2, val); val = bld_insn_1(bld, NV_OP_EX2, val); return val; } static INLINE struct nv_value * bld_load_imm_f32(struct bld_context *bld, float f) { struct nv_value *imm = bld_insn_1(bld, NV_OP_MOV, bld_imm_f32(bld, f)); SET_TYPE(imm, NV_TYPE_F32); return imm; } static INLINE struct nv_value * bld_load_imm_u32(struct bld_context *bld, uint32_t u) { return bld_insn_1(bld, NV_OP_MOV, bld_imm_u32(bld, u)); } static struct nv_value * bld_get_address(struct bld_context *bld, int id, struct nv_value *indirect) { int i; struct nv_instruction *nvi; struct nv_value *val; for (i = 0; i < 4; ++i) { if (!bld->saved_addr[i][0]) break; if (bld->saved_addr[i][1] == indirect) { nvi = bld->saved_addr[i][0]->insn; if (nvi->src[0]->value->reg.imm.u32 == id) return bld->saved_addr[i][0]; } } i &= 3; val = bld_imm_u32(bld, id); if (indirect) val = bld_insn_2(bld, NV_OP_ADD, indirect, val); else val = bld_insn_1(bld, NV_OP_MOV, val); bld->saved_addr[i][0] = val; bld->saved_addr[i][0]->reg.file = NV_FILE_ADDR; bld->saved_addr[i][0]->reg.type = NV_TYPE_U16; bld->saved_addr[i][1] = indirect; return bld->saved_addr[i][0]; } static struct nv_value * bld_predicate(struct bld_context *bld, struct nv_value *src, boolean bool_only) { struct nv_instruction *s0i, *nvi = src->insn; if (!nvi) { nvi = bld_insn_1(bld, (src->reg.file == NV_FILE_IMM) ? NV_OP_MOV : NV_OP_LDA, src)->insn; src = nvi->def[0]; } else if (bool_only) { while (nvi->opcode == NV_OP_ABS || nvi->opcode == NV_OP_NEG || nvi->opcode == NV_OP_CVT) { s0i = nvi->src[0]->value->insn; if (!s0i || !nv50_op_can_write_flags(s0i->opcode)) break; nvi = s0i; assert(!nvi->flags_src); } } if (!nv50_op_can_write_flags(nvi->opcode) || nvi->bb != bld->pc->current_block) { nvi = new_instruction(bld->pc, NV_OP_CVT); nv_reference(bld->pc, &nvi->src[0], src); } if (!nvi->flags_def) { nvi->flags_def = new_value(bld->pc, NV_FILE_FLAGS, NV_TYPE_U16); nvi->flags_def->insn = nvi; } return nvi->flags_def; } static void bld_kil(struct bld_context *bld, struct nv_value *src) { struct nv_instruction *nvi; src = bld_predicate(bld, src, FALSE); nvi = new_instruction(bld->pc, NV_OP_KIL); nvi->fixed = 1; nvi->flags_src = new_ref(bld->pc, src); nvi->cc = NV_CC_LT; } static void bld_flow(struct bld_context *bld, uint opcode, ubyte cc, struct nv_value *src, struct nv_basic_block *target, boolean plan_reconverge) { struct nv_instruction *nvi; if (plan_reconverge) new_instruction(bld->pc, NV_OP_JOINAT)->fixed = 1; nvi = new_instruction(bld->pc, opcode); nvi->is_terminator = 1; nvi->cc = cc; nvi->target = target; if (src) nvi->flags_src = new_ref(bld->pc, src); } static ubyte translate_setcc(unsigned opcode) { switch (opcode) { case TGSI_OPCODE_SLT: return NV_CC_LT; case TGSI_OPCODE_SGE: return NV_CC_GE; case TGSI_OPCODE_SEQ: return NV_CC_EQ; case TGSI_OPCODE_SGT: return NV_CC_GT; case TGSI_OPCODE_SLE: return NV_CC_LE; case TGSI_OPCODE_SNE: return NV_CC_NE | NV_CC_U; case TGSI_OPCODE_STR: return NV_CC_TR; case TGSI_OPCODE_SFL: return NV_CC_FL; case TGSI_OPCODE_ISLT: return NV_CC_LT; case TGSI_OPCODE_ISGE: return NV_CC_GE; case TGSI_OPCODE_USEQ: return NV_CC_EQ; case TGSI_OPCODE_USGE: return NV_CC_GE; case TGSI_OPCODE_USLT: return NV_CC_LT; case TGSI_OPCODE_USNE: return NV_CC_NE; default: assert(0); return NV_CC_FL; } } static uint translate_opcode(uint opcode) { switch (opcode) { case TGSI_OPCODE_ABS: return NV_OP_ABS; case TGSI_OPCODE_ADD: case TGSI_OPCODE_SUB: case TGSI_OPCODE_UADD: return NV_OP_ADD; case TGSI_OPCODE_AND: return NV_OP_AND; case TGSI_OPCODE_EX2: return NV_OP_EX2; case TGSI_OPCODE_CEIL: return NV_OP_CEIL; case TGSI_OPCODE_FLR: return NV_OP_FLOOR; case TGSI_OPCODE_TRUNC: return NV_OP_TRUNC; case TGSI_OPCODE_COS: return NV_OP_COS; case TGSI_OPCODE_SIN: return NV_OP_SIN; case TGSI_OPCODE_DDX: return NV_OP_DFDX; case TGSI_OPCODE_DDY: return NV_OP_DFDY; case TGSI_OPCODE_F2I: case TGSI_OPCODE_F2U: case TGSI_OPCODE_I2F: case TGSI_OPCODE_U2F: return NV_OP_CVT; case TGSI_OPCODE_INEG: return NV_OP_NEG; case TGSI_OPCODE_LG2: return NV_OP_LG2; case TGSI_OPCODE_ISHR: case TGSI_OPCODE_USHR: return NV_OP_SHR; case TGSI_OPCODE_MAD: case TGSI_OPCODE_UMAD: return NV_OP_MAD; case TGSI_OPCODE_MAX: case TGSI_OPCODE_IMAX: case TGSI_OPCODE_UMAX: return NV_OP_MAX; case TGSI_OPCODE_MIN: case TGSI_OPCODE_IMIN: case TGSI_OPCODE_UMIN: return NV_OP_MIN; case TGSI_OPCODE_MUL: case TGSI_OPCODE_UMUL: return NV_OP_MUL; case TGSI_OPCODE_OR: return NV_OP_OR; case TGSI_OPCODE_RCP: return NV_OP_RCP; case TGSI_OPCODE_RSQ: return NV_OP_RSQ; case TGSI_OPCODE_SAD: return NV_OP_SAD; case TGSI_OPCODE_SHL: return NV_OP_SHL; case TGSI_OPCODE_SLT: case TGSI_OPCODE_SGE: case TGSI_OPCODE_SEQ: case TGSI_OPCODE_SGT: case TGSI_OPCODE_SLE: case TGSI_OPCODE_SNE: case TGSI_OPCODE_ISLT: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_USGE: case TGSI_OPCODE_USLT: case TGSI_OPCODE_USNE: return NV_OP_SET; case TGSI_OPCODE_TEX: return NV_OP_TEX; case TGSI_OPCODE_TXP: return NV_OP_TEX; case TGSI_OPCODE_TXB: return NV_OP_TXB; case TGSI_OPCODE_TXL: return NV_OP_TXL; case TGSI_OPCODE_XOR: return NV_OP_XOR; default: return NV_OP_NOP; } } static ubyte infer_src_type(unsigned opcode) { switch (opcode) { case TGSI_OPCODE_MOV: case TGSI_OPCODE_AND: case TGSI_OPCODE_OR: case TGSI_OPCODE_XOR: case TGSI_OPCODE_SAD: case TGSI_OPCODE_U2F: case TGSI_OPCODE_UADD: case TGSI_OPCODE_UDIV: case TGSI_OPCODE_UMOD: case TGSI_OPCODE_UMAD: case TGSI_OPCODE_UMUL: case TGSI_OPCODE_UMAX: case TGSI_OPCODE_UMIN: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_USGE: case TGSI_OPCODE_USLT: case TGSI_OPCODE_USNE: case TGSI_OPCODE_USHR: return NV_TYPE_U32; case TGSI_OPCODE_I2F: case TGSI_OPCODE_IDIV: case TGSI_OPCODE_IMAX: case TGSI_OPCODE_IMIN: case TGSI_OPCODE_INEG: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_ISHR: case TGSI_OPCODE_ISLT: return NV_TYPE_S32; default: return NV_TYPE_F32; } } static ubyte infer_dst_type(unsigned opcode) { switch (opcode) { case TGSI_OPCODE_MOV: case TGSI_OPCODE_F2U: case TGSI_OPCODE_AND: case TGSI_OPCODE_OR: case TGSI_OPCODE_XOR: case TGSI_OPCODE_SAD: case TGSI_OPCODE_UADD: case TGSI_OPCODE_UDIV: case TGSI_OPCODE_UMOD: case TGSI_OPCODE_UMAD: case TGSI_OPCODE_UMUL: case TGSI_OPCODE_UMAX: case TGSI_OPCODE_UMIN: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_USGE: case TGSI_OPCODE_USLT: case TGSI_OPCODE_USNE: case TGSI_OPCODE_USHR: return NV_TYPE_U32; case TGSI_OPCODE_F2I: case TGSI_OPCODE_IDIV: case TGSI_OPCODE_IMAX: case TGSI_OPCODE_IMIN: case TGSI_OPCODE_INEG: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_ISHR: case TGSI_OPCODE_ISLT: return NV_TYPE_S32; default: return NV_TYPE_F32; } } static void emit_store(struct bld_context *bld, const struct tgsi_full_instruction *inst, unsigned chan, struct nv_value *value) { struct nv_value *ptr; const struct tgsi_full_dst_register *reg = &inst->Dst[0]; if (reg->Register.Indirect) { ptr = FETCH_ADDR(reg->Indirect.Index, tgsi_util_get_src_register_swizzle(®->Indirect, 0)); } else { ptr = NULL; } assert(chan < 4); if (inst->Instruction.Opcode != TGSI_OPCODE_MOV) value->reg.type = infer_dst_type(inst->Instruction.Opcode); switch (inst->Instruction.Saturate) { case TGSI_SAT_NONE: break; case TGSI_SAT_ZERO_ONE: BLD_INSN_1_EX(value, SAT, F32, value, F32); break; case TGSI_SAT_MINUS_PLUS_ONE: value->reg.as_type = NV_TYPE_F32; value = bld_insn_2(bld, NV_OP_MAX, value, bld_load_imm_f32(bld, -1.0f)); value = bld_insn_2(bld, NV_OP_MIN, value, bld_load_imm_f32(bld, 1.0f)); break; } switch (reg->Register.File) { case TGSI_FILE_OUTPUT: if (!value->insn && (bld->ti->output_file == NV_FILE_OUT)) value = bld_insn_1(bld, NV_OP_MOV, value); value = bld_insn_1(bld, NV_OP_MOV, value); value->reg.file = bld->ti->output_file; if (bld->ti->p->type == PIPE_SHADER_FRAGMENT) { STORE_OUTR(reg->Register.Index, chan, value); } else { value->insn->fixed = 1; value->reg.id = bld->ti->output_map[reg->Register.Index][chan]; } break; case TGSI_FILE_TEMPORARY: assert(reg->Register.Index < BLD_MAX_TEMPS); if (!value->insn || (value->insn->bb != bld->pc->current_block)) value = bld_insn_1(bld, NV_OP_MOV, value); value->reg.file = NV_FILE_GPR; if (bld->ti->store_to_memory) bld_lmem_store(bld, ptr, reg->Register.Index * 4 + chan, value); else STORE_TEMP(reg->Register.Index, chan, value); break; case TGSI_FILE_ADDRESS: assert(reg->Register.Index < BLD_MAX_ADDRS); value->reg.file = NV_FILE_ADDR; value->reg.type = NV_TYPE_U16; STORE_ADDR(reg->Register.Index, chan, value); break; } } static INLINE uint32_t bld_is_output_written(struct bld_context *bld, int i, int c) { if (c < 0) return bld->outputs_written[i / 8] & (0xf << ((i * 4) % 32)); return bld->outputs_written[i / 8] & (1 << ((i * 4 + c) % 32)); } static void bld_export_outputs(struct bld_context *bld) { struct nv_value *vals[4]; struct nv_instruction *nvi; int i, c, n; bld_push_values(&bld->ovs[0][0], PIPE_MAX_SHADER_OUTPUTS); for (i = 0; i < PIPE_MAX_SHADER_OUTPUTS; ++i) { if (!bld_is_output_written(bld, i, -1)) continue; for (n = 0, c = 0; c < 4; ++c) { if (!bld_is_output_written(bld, i, c)) continue; vals[n] = bld_fetch_global(bld, &bld->ovs[i][c]); assert(vals[n]); vals[n] = bld_insn_1(bld, NV_OP_MOV, vals[n]); vals[n++]->reg.id = bld->ti->output_map[i][c]; } assert(n); (nvi = new_instruction(bld->pc, NV_OP_EXPORT))->fixed = 1; for (c = 0; c < n; ++c) nvi->src[c] = new_ref(bld->pc, vals[c]); } } static void bld_new_block(struct bld_context *bld, struct nv_basic_block *b) { int i; bld_push_values(&bld->tvs[0][0], BLD_MAX_TEMPS); bld_push_values(&bld->avs[0][0], BLD_MAX_ADDRS); bld_push_values(&bld->pvs[0][0], BLD_MAX_PREDS); bld_push_values(&bld->ovs[0][0], PIPE_MAX_SHADER_OUTPUTS); bld->pc->current_block = b; for (i = 0; i < 4; ++i) bld->saved_addr[i][0] = NULL; for (i = 0; i < 128; ++i) bld->saved_inputs[i] = NULL; bld->out_kind = CFG_EDGE_FORWARD; } static struct nv_value * bld_saved_input(struct bld_context *bld, unsigned i, unsigned c) { unsigned idx = bld->ti->input_map[i][c]; if (bld->ti->p->type != PIPE_SHADER_FRAGMENT) return NULL; if (bld->saved_inputs[idx]) return bld->saved_inputs[idx]; return NULL; } static struct nv_value * bld_interpolate(struct bld_context *bld, unsigned mode, struct nv_value *val) { if (val->reg.id == 255) { /* gl_FrontFacing: 0/~0 to -1.0/+1.0 */ val = bld_insn_1(bld, NV_OP_LINTERP, val); val = bld_insn_2(bld, NV_OP_SHL, val, bld_imm_u32(bld, 31)); val->insn->src[0]->typecast = NV_TYPE_U32; val = bld_insn_2(bld, NV_OP_XOR, val, bld_imm_f32(bld, -1.0f)); val->insn->src[0]->typecast = NV_TYPE_U32; } else if (mode & (NV50_INTERP_LINEAR | NV50_INTERP_FLAT)) val = bld_insn_1(bld, NV_OP_LINTERP, val); else val = bld_insn_2(bld, NV_OP_PINTERP, val, bld->frgcrd[3]); val->insn->flat = (mode & NV50_INTERP_FLAT) ? 1 : 0; val->insn->centroid = (mode & NV50_INTERP_CENTROID) ? 1 : 0; return val; } static struct nv_value * emit_fetch(struct bld_context *bld, const struct tgsi_full_instruction *insn, const unsigned s, const unsigned chan) { const struct tgsi_full_src_register *src = &insn->Src[s]; struct nv_value *res; struct nv_value *ptr = NULL; unsigned idx, swz, dim_idx, ind_idx, ind_swz, sgn; ubyte type = infer_src_type(insn->Instruction.Opcode); idx = src->Register.Index; swz = tgsi_util_get_full_src_register_swizzle(src, chan); dim_idx = -1; ind_idx = -1; ind_swz = 0; if (src->Register.Indirect) { ind_idx = src->Indirect.Index; ind_swz = tgsi_util_get_src_register_swizzle(&src->Indirect, 0); ptr = FETCH_ADDR(ind_idx, ind_swz); } if (idx >= (128 / 4) && src->Register.File == TGSI_FILE_CONSTANT) ptr = bld_get_address(bld, (idx * 16) & ~0x1ff, ptr); switch (src->Register.File) { case TGSI_FILE_CONSTANT: dim_idx = src->Dimension.Index; assert(dim_idx < 15); res = new_value(bld->pc, NV_FILE_MEM_C(dim_idx), type); SET_TYPE(res, type); res->reg.id = (idx * 4 + swz) & 127; res = bld_insn_1(bld, NV_OP_LDA, res); if (ptr) res->insn->src[4] = new_ref(bld->pc, ptr); break; case TGSI_FILE_IMMEDIATE: assert(idx < bld->ti->immd32_nr); res = bld_load_imm_u32(bld, bld->ti->immd32[idx * 4 + swz]); switch (bld->ti->immd32_ty[idx]) { case TGSI_IMM_FLOAT32: SET_TYPE(res, NV_TYPE_F32); break; case TGSI_IMM_UINT32: SET_TYPE(res, NV_TYPE_U32); break; case TGSI_IMM_INT32: SET_TYPE(res, NV_TYPE_S32); break; default: SET_TYPE(res, type); break; } break; case TGSI_FILE_INPUT: res = bld_saved_input(bld, idx, swz); if (res && (insn->Instruction.Opcode != TGSI_OPCODE_TXP)) break; res = new_value(bld->pc, bld->ti->input_file, type); res->reg.id = bld->ti->input_map[idx][swz]; if (res->reg.file == NV_FILE_MEM_V) { res = bld_interpolate(bld, bld->ti->interp_mode[idx], res); } else { assert(src->Dimension.Dimension == 0); res = bld_insn_1(bld, NV_OP_LDA, res); assert(res->reg.type == type); } bld->saved_inputs[bld->ti->input_map[idx][swz]] = res; break; case TGSI_FILE_TEMPORARY: if (bld->ti->store_to_memory) res = bld_lmem_load(bld, ptr, idx * 4 + swz); else res = bld_fetch_global(bld, &bld->tvs[idx][swz]); break; case TGSI_FILE_ADDRESS: res = bld_fetch_global(bld, &bld->avs[idx][swz]); break; case TGSI_FILE_PREDICATE: res = bld_fetch_global(bld, &bld->pvs[idx][swz]); break; case TGSI_FILE_SYSTEM_VALUE: res = new_value(bld->pc, bld->ti->input_file, NV_TYPE_U32); res->reg.id = bld->ti->sysval_map[idx]; res = bld_insn_1(bld, NV_OP_LDA, res); res = bld_insn_1(bld, NV_OP_CVT, res); res->reg.type = NV_TYPE_F32; break; default: NOUVEAU_ERR("illegal/unhandled src reg file: %d\n", src->Register.File); abort(); break; } if (!res) return bld_undef(bld, NV_FILE_GPR); sgn = tgsi_util_get_full_src_register_sign_mode(src, chan); if (insn->Instruction.Opcode != TGSI_OPCODE_MOV) res->reg.as_type = type; else if (sgn != TGSI_UTIL_SIGN_KEEP) /* apparently "MOV A, -B" assumes float */ res->reg.as_type = NV_TYPE_F32; switch (sgn) { case TGSI_UTIL_SIGN_KEEP: break; case TGSI_UTIL_SIGN_CLEAR: res = bld_insn_1(bld, NV_OP_ABS, res); break; case TGSI_UTIL_SIGN_TOGGLE: res = bld_insn_1(bld, NV_OP_NEG, res); break; case TGSI_UTIL_SIGN_SET: res = bld_insn_1(bld, NV_OP_ABS, res); res = bld_insn_1(bld, NV_OP_NEG, res); break; default: NOUVEAU_ERR("illegal/unhandled src reg sign mode\n"); abort(); break; } return res; } static void bld_lit(struct bld_context *bld, struct nv_value *dst0[4], const struct tgsi_full_instruction *insn) { struct nv_value *val0 = NULL; struct nv_value *zero = NULL; unsigned mask = insn->Dst[0].Register.WriteMask; if (mask & ((1 << 0) | (1 << 3))) dst0[3] = dst0[0] = bld_load_imm_f32(bld, 1.0f); if (mask & (3 << 1)) { zero = bld_load_imm_f32(bld, 0.0f); val0 = bld_insn_2(bld, NV_OP_MAX, emit_fetch(bld, insn, 0, 0), zero); if (mask & (1 << 1)) dst0[1] = val0; } if (mask & (1 << 2)) { struct nv_value *val1, *val3, *src1, *src3; struct nv_value *pos128 = bld_load_imm_f32(bld, 127.999999f); struct nv_value *neg128 = bld_load_imm_f32(bld, -127.999999f); src1 = emit_fetch(bld, insn, 0, 1); src3 = emit_fetch(bld, insn, 0, 3); val0->insn->flags_def = new_value(bld->pc, NV_FILE_FLAGS, NV_TYPE_U16); val0->insn->flags_def->insn = val0->insn; val1 = bld_insn_2(bld, NV_OP_MAX, src1, zero); val3 = bld_insn_2(bld, NV_OP_MAX, src3, neg128); val3 = bld_insn_2(bld, NV_OP_MIN, val3, pos128); val3 = bld_pow(bld, val1, val3); dst0[2] = bld_insn_1(bld, NV_OP_MOV, zero); dst0[2]->insn->cc = NV_CC_LE; dst0[2]->insn->flags_src = new_ref(bld->pc, val0->insn->flags_def); dst0[2] = bld_insn_2(bld, NV_OP_SELECT, val3, dst0[2]); } } static INLINE void get_tex_dim(const struct tgsi_full_instruction *insn, int *dim, int *arg) { switch (insn->Texture.Texture) { case TGSI_TEXTURE_1D: *arg = *dim = 1; break; case TGSI_TEXTURE_SHADOW1D: *dim = 1; *arg = 2; break; case TGSI_TEXTURE_UNKNOWN: case TGSI_TEXTURE_2D: case TGSI_TEXTURE_RECT: *arg = *dim = 2; break; case TGSI_TEXTURE_SHADOW2D: case TGSI_TEXTURE_SHADOWRECT: *dim = 2; *arg = 3; break; case TGSI_TEXTURE_3D: case TGSI_TEXTURE_CUBE: *dim = *arg = 3; break; default: assert(0); break; } } static void load_proj_tex_coords(struct bld_context *bld, struct nv_value *t[4], int dim, int arg, const struct tgsi_full_instruction *insn) { int c, mask; mask = (1 << dim) - 1; if (arg != dim) mask |= 4; /* depth comparison value */ t[3] = emit_fetch(bld, insn, 0, 3); if (t[3]->insn->opcode == NV_OP_PINTERP) { t[3] = bld_duplicate_insn(bld, t[3]->insn); t[3]->insn->opcode = NV_OP_LINTERP; nv_reference(bld->pc, &t[3]->insn->src[1], NULL); } t[3] = bld_insn_1(bld, NV_OP_RCP, t[3]); for (c = 0; c < 4; ++c) { if (!(mask & (1 << c))) continue; t[c] = emit_fetch(bld, insn, 0, c); if (t[c]->insn->opcode != NV_OP_LINTERP && t[c]->insn->opcode != NV_OP_PINTERP) continue; t[c] = bld_duplicate_insn(bld, t[c]->insn); t[c]->insn->opcode = NV_OP_PINTERP; nv_reference(bld->pc, &t[c]->insn->src[1], t[3]); mask &= ~(1 << c); } for (c = 0; mask; ++c, mask >>= 1) { if (!(mask & 1)) continue; t[c] = bld_insn_2(bld, NV_OP_MUL, t[c], t[3]); } } /* For a quad of threads / top left, top right, bottom left, bottom right * pixels, do a different operation, and take src0 from a specific thread. */ #define QOP_ADD 0 #define QOP_SUBR 1 #define QOP_SUB 2 #define QOP_MOV1 3 #define QOP(a, b, c, d) \ ((QOP_##a << 0) | (QOP_##b << 2) | (QOP_##c << 4) | (QOP_##d << 6)) static INLINE struct nv_value * bld_quadop(struct bld_context *bld, ubyte qop, struct nv_value *src0, int lane, struct nv_value *src1, boolean wp) { struct nv_value *val = bld_insn_2(bld, NV_OP_QUADOP, src0, src1); val->insn->lanes = lane; val->insn->quadop = qop; if (wp) { val->insn->flags_def = new_value(bld->pc, NV_FILE_FLAGS, NV_TYPE_U16); val->insn->flags_def->insn = val->insn; } return val; } static INLINE struct nv_value * bld_cmov(struct bld_context *bld, struct nv_value *src, ubyte cc, struct nv_value *cr) { src = bld_insn_1(bld, NV_OP_MOV, src); src->insn->cc = cc; src->insn->flags_src = new_ref(bld->pc, cr); return src; } static struct nv_instruction * emit_tex(struct bld_context *bld, uint opcode, struct nv_value *dst[4], struct nv_value *t_in[4], int argc, int tic, int tsc, int cube) { struct nv_value *t[4]; struct nv_instruction *nvi; int c; /* the inputs to a tex instruction must be separate values */ for (c = 0; c < argc; ++c) { t[c] = bld_insn_1(bld, NV_OP_MOV, t_in[c]); SET_TYPE(t[c], NV_TYPE_F32); t[c]->insn->fixed = 1; } nvi = new_instruction(bld->pc, opcode); for (c = 0; c < 4; ++c) dst[c] = bld_def(nvi, c, new_value(bld->pc, NV_FILE_GPR, NV_TYPE_F32)); for (c = 0; c < argc; ++c) nvi->src[c] = new_ref(bld->pc, t[c]); nvi->tex_t = tic; nvi->tex_s = tsc; nvi->tex_mask = 0xf; nvi->tex_cube = cube; nvi->tex_live = 0; nvi->tex_argc = argc; return nvi; } static void bld_texlod_sequence(struct bld_context *bld, struct nv_value *dst[4], struct nv_value *t[4], int arg, int tic, int tsc, int cube) { emit_tex(bld, NV_OP_TXL, dst, t, arg, tic, tsc, cube); /* TODO */ } /* The lanes of a quad are grouped by the bit in the condition register * they have set, which is selected by differing bias values. * Move the input values for TEX into a new register set for each group * and execute TEX only for a specific group. * We always need to use 4 new registers for the inputs/outputs because * the implicitly calculated derivatives must be correct. */ static void bld_texbias_sequence(struct bld_context *bld, struct nv_value *dst[4], struct nv_value *t[4], int arg, int tic, int tsc, int cube) { struct nv_instruction *sel, *tex; struct nv_value *bit[4], *cr[4], *res[4][4], *val; int l, c; const ubyte cc[4] = { NV_CC_EQ, NV_CC_S, NV_CC_C, NV_CC_O }; for (l = 0; l < 4; ++l) { bit[l] = bld_load_imm_u32(bld, 1 << l); val = bld_quadop(bld, QOP(SUBR, SUBR, SUBR, SUBR), t[arg - 1], l, t[arg - 1], TRUE); cr[l] = bld_cmov(bld, bit[l], NV_CC_EQ, val->insn->flags_def); cr[l]->reg.file = NV_FILE_FLAGS; SET_TYPE(cr[l], NV_TYPE_U16); } sel = new_instruction(bld->pc, NV_OP_SELECT); for (l = 0; l < 4; ++l) sel->src[l] = new_ref(bld->pc, cr[l]); bld_def(sel, 0, new_value(bld->pc, NV_FILE_FLAGS, NV_TYPE_U16)); for (l = 0; l < 4; ++l) { tex = emit_tex(bld, NV_OP_TXB, dst, t, arg, tic, tsc, cube); tex->cc = cc[l]; tex->flags_src = new_ref(bld->pc, sel->def[0]); for (c = 0; c < 4; ++c) res[l][c] = tex->def[c]; } for (l = 0; l < 4; ++l) for (c = 0; c < 4; ++c) res[l][c] = bld_cmov(bld, res[l][c], cc[l], sel->def[0]); for (c = 0; c < 4; ++c) { sel = new_instruction(bld->pc, NV_OP_SELECT); for (l = 0; l < 4; ++l) sel->src[l] = new_ref(bld->pc, res[l][c]); bld_def(sel, 0, (dst[c] = new_value(bld->pc, NV_FILE_GPR, NV_TYPE_F32))); } } static boolean bld_is_constant(struct nv_value *val) { if (val->reg.file == NV_FILE_IMM) return TRUE; return val->insn && nvcg_find_constant(val->insn->src[0]); } static void bld_tex(struct bld_context *bld, struct nv_value *dst0[4], const struct tgsi_full_instruction *insn) { struct nv_value *t[4], *s[3]; uint opcode = translate_opcode(insn->Instruction.Opcode); int arg, dim, c; const int tic = insn->Src[1].Register.Index; const int tsc = tic; const int cube = (insn->Texture.Texture == TGSI_TEXTURE_CUBE) ? 1 : 0; get_tex_dim(insn, &dim, &arg); if (!cube && insn->Instruction.Opcode == TGSI_OPCODE_TXP) load_proj_tex_coords(bld, t, dim, arg, insn); else { for (c = 0; c < dim; ++c) t[c] = emit_fetch(bld, insn, 0, c); if (arg != dim) t[dim] = emit_fetch(bld, insn, 0, 2); } if (cube) { assert(dim >= 3); for (c = 0; c < 3; ++c) s[c] = bld_insn_1(bld, NV_OP_ABS, t[c]); s[0] = bld_insn_2(bld, NV_OP_MAX, s[0], s[1]); s[0] = bld_insn_2(bld, NV_OP_MAX, s[0], s[2]); s[0] = bld_insn_1(bld, NV_OP_RCP, s[0]); for (c = 0; c < 3; ++c) t[c] = bld_insn_2(bld, NV_OP_MUL, t[c], s[0]); } if (opcode == NV_OP_TXB || opcode == NV_OP_TXL) { t[arg++] = emit_fetch(bld, insn, 0, 3); if ((bld->ti->p->type == PIPE_SHADER_FRAGMENT) && !bld_is_constant(t[arg - 1])) { if (opcode == NV_OP_TXB) bld_texbias_sequence(bld, dst0, t, arg, tic, tsc, cube); else bld_texlod_sequence(bld, dst0, t, arg, tic, tsc, cube); return; } } emit_tex(bld, opcode, dst0, t, arg, tic, tsc, cube); } static INLINE struct nv_value * bld_dot(struct bld_context *bld, const struct tgsi_full_instruction *insn, int n) { struct nv_value *dotp, *src0, *src1; int c; src0 = emit_fetch(bld, insn, 0, 0); src1 = emit_fetch(bld, insn, 1, 0); dotp = bld_insn_2(bld, NV_OP_MUL, src0, src1); for (c = 1; c < n; ++c) { src0 = emit_fetch(bld, insn, 0, c); src1 = emit_fetch(bld, insn, 1, c); dotp = bld_insn_3(bld, NV_OP_MAD, src0, src1, dotp); } return dotp; } #define FOR_EACH_DST0_ENABLED_CHANNEL(chan, inst) \ for (chan = 0; chan < 4; ++chan) \ if ((inst)->Dst[0].Register.WriteMask & (1 << chan)) static void bld_instruction(struct bld_context *bld, const struct tgsi_full_instruction *insn) { struct nv_value *src0; struct nv_value *src1; struct nv_value *src2; struct nv_value *dst0[4] = { 0 }; struct nv_value *temp; int c; uint opcode = translate_opcode(insn->Instruction.Opcode); #ifdef NV50_TGSI2NC_DEBUG debug_printf("bld_instruction:"); tgsi_dump_instruction(insn, 1); #endif switch (insn->Instruction.Opcode) { case TGSI_OPCODE_ADD: case TGSI_OPCODE_MAX: case TGSI_OPCODE_MIN: case TGSI_OPCODE_MUL: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); src1 = emit_fetch(bld, insn, 1, c); dst0[c] = bld_insn_2(bld, opcode, src0, src1); } break; case TGSI_OPCODE_ARL: src1 = bld_imm_u32(bld, 4); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); temp = bld_insn_1(bld, NV_OP_FLOOR, src0); SET_TYPE(temp, NV_TYPE_S32); dst0[c] = bld_insn_2(bld, NV_OP_SHL, temp, src1); } break; case TGSI_OPCODE_CMP: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); src1 = emit_fetch(bld, insn, 1, c); src2 = emit_fetch(bld, insn, 2, c); src0 = bld_predicate(bld, src0, FALSE); src1 = bld_insn_1(bld, NV_OP_MOV, src1); src1->insn->flags_src = new_ref(bld->pc, src0); src1->insn->cc = NV_CC_LT; src2 = bld_insn_1(bld, NV_OP_MOV, src2); src2->insn->flags_src = new_ref(bld->pc, src0); src2->insn->cc = NV_CC_GE; dst0[c] = bld_insn_2(bld, NV_OP_SELECT, src1, src2); } break; case TGSI_OPCODE_COS: case TGSI_OPCODE_SIN: src0 = emit_fetch(bld, insn, 0, 0); temp = bld_insn_1(bld, NV_OP_PRESIN, src0); if (insn->Dst[0].Register.WriteMask & 7) temp = bld_insn_1(bld, opcode, temp); for (c = 0; c < 3; ++c) if (insn->Dst[0].Register.WriteMask & (1 << c)) dst0[c] = temp; if (!(insn->Dst[0].Register.WriteMask & (1 << 3))) break; src0 = emit_fetch(bld, insn, 0, 3); temp = bld_insn_1(bld, NV_OP_PRESIN, src0); dst0[3] = bld_insn_1(bld, opcode, temp); break; case TGSI_OPCODE_DP2: temp = bld_dot(bld, insn, 2); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = temp; break; case TGSI_OPCODE_DP3: temp = bld_dot(bld, insn, 3); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = temp; break; case TGSI_OPCODE_DP4: temp = bld_dot(bld, insn, 4); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = temp; break; case TGSI_OPCODE_DPH: src0 = bld_dot(bld, insn, 3); src1 = emit_fetch(bld, insn, 1, 3); temp = bld_insn_2(bld, NV_OP_ADD, src0, src1); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = temp; break; case TGSI_OPCODE_DST: if (insn->Dst[0].Register.WriteMask & 1) dst0[0] = bld_imm_f32(bld, 1.0f); if (insn->Dst[0].Register.WriteMask & 2) { src0 = emit_fetch(bld, insn, 0, 1); src1 = emit_fetch(bld, insn, 1, 1); dst0[1] = bld_insn_2(bld, NV_OP_MUL, src0, src1); } if (insn->Dst[0].Register.WriteMask & 4) dst0[2] = emit_fetch(bld, insn, 0, 2); if (insn->Dst[0].Register.WriteMask & 8) dst0[3] = emit_fetch(bld, insn, 1, 3); break; case TGSI_OPCODE_EXP: src0 = emit_fetch(bld, insn, 0, 0); temp = bld_insn_1(bld, NV_OP_FLOOR, src0); if (insn->Dst[0].Register.WriteMask & 2) dst0[1] = bld_insn_2(bld, NV_OP_SUB, src0, temp); if (insn->Dst[0].Register.WriteMask & 1) { temp = bld_insn_1(bld, NV_OP_PREEX2, temp); dst0[0] = bld_insn_1(bld, NV_OP_EX2, temp); } if (insn->Dst[0].Register.WriteMask & 4) { temp = bld_insn_1(bld, NV_OP_PREEX2, src0); dst0[2] = bld_insn_1(bld, NV_OP_EX2, temp); } if (insn->Dst[0].Register.WriteMask & 8) dst0[3] = bld_imm_f32(bld, 1.0f); break; case TGSI_OPCODE_EX2: src0 = emit_fetch(bld, insn, 0, 0); temp = bld_insn_1(bld, NV_OP_PREEX2, src0); temp = bld_insn_1(bld, NV_OP_EX2, temp); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = temp; break; case TGSI_OPCODE_FRC: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); dst0[c] = bld_insn_1(bld, NV_OP_FLOOR, src0); dst0[c] = bld_insn_2(bld, NV_OP_SUB, src0, dst0[c]); } break; case TGSI_OPCODE_KIL: for (c = 0; c < 4; ++c) { src0 = emit_fetch(bld, insn, 0, c); bld_kil(bld, src0); } break; case TGSI_OPCODE_KILP: (new_instruction(bld->pc, NV_OP_KIL))->fixed = 1; break; case TGSI_OPCODE_IF: { struct nv_basic_block *b = new_basic_block(bld->pc); assert(bld->cond_lvl < BLD_MAX_COND_NESTING); nvbb_attach_block(bld->pc->current_block, b, CFG_EDGE_FORWARD); bld->join_bb[bld->cond_lvl] = bld->pc->current_block; bld->cond_bb[bld->cond_lvl] = bld->pc->current_block; src1 = bld_predicate(bld, emit_fetch(bld, insn, 0, 0), TRUE); bld_flow(bld, NV_OP_BRA, NV_CC_EQ, src1, NULL, (bld->cond_lvl == 0)); ++bld->cond_lvl; bld_new_block(bld, b); } break; case TGSI_OPCODE_ELSE: { struct nv_basic_block *b = new_basic_block(bld->pc); --bld->cond_lvl; nvbb_attach_block(bld->join_bb[bld->cond_lvl], b, CFG_EDGE_FORWARD); bld->cond_bb[bld->cond_lvl]->exit->target = b; bld->cond_bb[bld->cond_lvl] = bld->pc->current_block; new_instruction(bld->pc, NV_OP_BRA)->is_terminator = 1; ++bld->cond_lvl; bld_new_block(bld, b); } break; case TGSI_OPCODE_ENDIF: { struct nv_basic_block *b = new_basic_block(bld->pc); if (bld->pc->current_block->exit && !bld->pc->current_block->exit->is_terminator) bld_flow(bld, NV_OP_BRA, NV_CC_TR, NULL, b, FALSE); --bld->cond_lvl; nvbb_attach_block(bld->pc->current_block, b, bld->out_kind); nvbb_attach_block(bld->cond_bb[bld->cond_lvl], b, CFG_EDGE_FORWARD); bld->cond_bb[bld->cond_lvl]->exit->target = b; bld_new_block(bld, b); if (!bld->cond_lvl && bld->join_bb[bld->cond_lvl]) { bld->join_bb[bld->cond_lvl]->exit->prev->target = b; new_instruction(bld->pc, NV_OP_JOIN)->is_join = TRUE; } } break; case TGSI_OPCODE_BGNLOOP: { struct nv_basic_block *bl = new_basic_block(bld->pc); struct nv_basic_block *bb = new_basic_block(bld->pc); assert(bld->loop_lvl < BLD_MAX_LOOP_NESTING); bld->loop_bb[bld->loop_lvl] = bl; bld->brkt_bb[bld->loop_lvl] = bb; bld_flow(bld, NV_OP_BREAKADDR, NV_CC_TR, NULL, bb, FALSE); nvbb_attach_block(bld->pc->current_block, bl, CFG_EDGE_LOOP_ENTER); bld_new_block(bld, bld->loop_bb[bld->loop_lvl++]); if (bld->loop_lvl == bld->pc->loop_nesting_bound) bld->pc->loop_nesting_bound++; bld_clear_def_use(&bld->tvs[0][0], BLD_MAX_TEMPS, bld->loop_lvl); bld_clear_def_use(&bld->avs[0][0], BLD_MAX_ADDRS, bld->loop_lvl); bld_clear_def_use(&bld->pvs[0][0], BLD_MAX_PREDS, bld->loop_lvl); } break; case TGSI_OPCODE_BRK: { struct nv_basic_block *bb = bld->brkt_bb[bld->loop_lvl - 1]; bld_flow(bld, NV_OP_BREAK, NV_CC_TR, NULL, bb, FALSE); if (bld->out_kind == CFG_EDGE_FORWARD) /* else we already had BRK/CONT */ nvbb_attach_block(bld->pc->current_block, bb, CFG_EDGE_LOOP_LEAVE); bld->out_kind = CFG_EDGE_FAKE; } break; case TGSI_OPCODE_CONT: { struct nv_basic_block *bb = bld->loop_bb[bld->loop_lvl - 1]; bld_flow(bld, NV_OP_BRA, NV_CC_TR, NULL, bb, FALSE); nvbb_attach_block(bld->pc->current_block, bb, CFG_EDGE_BACK); if ((bb = bld->join_bb[bld->cond_lvl - 1])) { bld->join_bb[bld->cond_lvl - 1] = NULL; nv_nvi_delete(bb->exit->prev); } bld->out_kind = CFG_EDGE_FAKE; } break; case TGSI_OPCODE_ENDLOOP: { struct nv_basic_block *bb = bld->loop_bb[bld->loop_lvl - 1]; bld_flow(bld, NV_OP_BRA, NV_CC_TR, NULL, bb, FALSE); nvbb_attach_block(bld->pc->current_block, bb, CFG_EDGE_BACK); bld_loop_end(bld, bb); /* replace loop-side operand of the phis */ bld_new_block(bld, bld->brkt_bb[--bld->loop_lvl]); } break; case TGSI_OPCODE_ABS: case TGSI_OPCODE_CEIL: case TGSI_OPCODE_FLR: case TGSI_OPCODE_TRUNC: case TGSI_OPCODE_DDX: case TGSI_OPCODE_DDY: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); dst0[c] = bld_insn_1(bld, opcode, src0); } break; case TGSI_OPCODE_LIT: bld_lit(bld, dst0, insn); break; case TGSI_OPCODE_LRP: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); src1 = emit_fetch(bld, insn, 1, c); src2 = emit_fetch(bld, insn, 2, c); dst0[c] = bld_insn_2(bld, NV_OP_SUB, src1, src2); dst0[c] = bld_insn_3(bld, NV_OP_MAD, dst0[c], src0, src2); } break; case TGSI_OPCODE_MOV: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = emit_fetch(bld, insn, 0, c); break; case TGSI_OPCODE_MAD: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); src1 = emit_fetch(bld, insn, 1, c); src2 = emit_fetch(bld, insn, 2, c); dst0[c] = bld_insn_3(bld, opcode, src0, src1, src2); } break; case TGSI_OPCODE_POW: src0 = emit_fetch(bld, insn, 0, 0); src1 = emit_fetch(bld, insn, 1, 0); temp = bld_pow(bld, src0, src1); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = temp; break; case TGSI_OPCODE_LOG: src0 = emit_fetch(bld, insn, 0, 0); src0 = bld_insn_1(bld, NV_OP_ABS, src0); temp = bld_insn_1(bld, NV_OP_LG2, src0); dst0[2] = temp; if (insn->Dst[0].Register.WriteMask & 3) { temp = bld_insn_1(bld, NV_OP_FLOOR, temp); dst0[0] = temp; } if (insn->Dst[0].Register.WriteMask & 2) { temp = bld_insn_1(bld, NV_OP_PREEX2, temp); temp = bld_insn_1(bld, NV_OP_EX2, temp); temp = bld_insn_1(bld, NV_OP_RCP, temp); dst0[1] = bld_insn_2(bld, NV_OP_MUL, src0, temp); } if (insn->Dst[0].Register.WriteMask & 8) dst0[3] = bld_imm_f32(bld, 1.0f); break; case TGSI_OPCODE_RCP: case TGSI_OPCODE_LG2: src0 = emit_fetch(bld, insn, 0, 0); temp = bld_insn_1(bld, opcode, src0); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = temp; break; case TGSI_OPCODE_RSQ: src0 = emit_fetch(bld, insn, 0, 0); temp = bld_insn_1(bld, NV_OP_ABS, src0); temp = bld_insn_1(bld, NV_OP_RSQ, temp); FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) dst0[c] = temp; break; case TGSI_OPCODE_SLT: case TGSI_OPCODE_SGE: case TGSI_OPCODE_SEQ: case TGSI_OPCODE_SGT: case TGSI_OPCODE_SLE: case TGSI_OPCODE_SNE: case TGSI_OPCODE_ISLT: case TGSI_OPCODE_ISGE: case TGSI_OPCODE_USEQ: case TGSI_OPCODE_USGE: case TGSI_OPCODE_USLT: case TGSI_OPCODE_USNE: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); src1 = emit_fetch(bld, insn, 1, c); dst0[c] = bld_insn_2(bld, NV_OP_SET, src0, src1); dst0[c]->insn->set_cond = translate_setcc(insn->Instruction.Opcode); SET_TYPE(dst0[c], infer_dst_type(insn->Instruction.Opcode)); dst0[c]->insn->src[0]->typecast = dst0[c]->insn->src[1]->typecast = infer_src_type(insn->Instruction.Opcode); if (dst0[c]->reg.type != NV_TYPE_F32) break; dst0[c]->reg.as_type = NV_TYPE_S32; dst0[c] = bld_insn_1(bld, NV_OP_ABS, dst0[c]); dst0[c] = bld_insn_1(bld, NV_OP_CVT, dst0[c]); SET_TYPE(dst0[c], NV_TYPE_F32); } break; case TGSI_OPCODE_SCS: if (insn->Dst[0].Register.WriteMask & 0x3) { src0 = emit_fetch(bld, insn, 0, 0); temp = bld_insn_1(bld, NV_OP_PRESIN, src0); if (insn->Dst[0].Register.WriteMask & 0x1) dst0[0] = bld_insn_1(bld, NV_OP_COS, temp); if (insn->Dst[0].Register.WriteMask & 0x2) dst0[1] = bld_insn_1(bld, NV_OP_SIN, temp); } if (insn->Dst[0].Register.WriteMask & 0x4) dst0[2] = bld_imm_f32(bld, 0.0f); if (insn->Dst[0].Register.WriteMask & 0x8) dst0[3] = bld_imm_f32(bld, 1.0f); break; case TGSI_OPCODE_SSG: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); src1 = bld_predicate(bld, src0, FALSE); temp = bld_insn_2(bld, NV_OP_AND, src0, bld_imm_u32(bld, 0x80000000)); temp = bld_insn_2(bld, NV_OP_OR, temp, bld_imm_f32(bld, 1.0f)); dst0[c] = bld_insn_2(bld, NV_OP_XOR, temp, temp); dst0[c]->insn->cc = NV_CC_EQ; nv_reference(bld->pc, &dst0[c]->insn->flags_src, src1); dst0[c] = bld_insn_2(bld, NV_OP_SELECT, dst0[c], temp); } break; case TGSI_OPCODE_SUB: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { src0 = emit_fetch(bld, insn, 0, c); src1 = emit_fetch(bld, insn, 1, c); dst0[c] = bld_insn_2(bld, NV_OP_ADD, src0, src1); dst0[c]->insn->src[1]->mod ^= NV_MOD_NEG; } break; case TGSI_OPCODE_TEX: case TGSI_OPCODE_TXB: case TGSI_OPCODE_TXL: case TGSI_OPCODE_TXP: bld_tex(bld, dst0, insn); break; case TGSI_OPCODE_XPD: FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) { if (c == 3) { dst0[3] = bld_imm_f32(bld, 1.0f); break; } src0 = emit_fetch(bld, insn, 1, (c + 1) % 3); src1 = emit_fetch(bld, insn, 0, (c + 2) % 3); dst0[c] = bld_insn_2(bld, NV_OP_MUL, src0, src1); src0 = emit_fetch(bld, insn, 0, (c + 1) % 3); src1 = emit_fetch(bld, insn, 1, (c + 2) % 3); dst0[c] = bld_insn_3(bld, NV_OP_MAD, src0, src1, dst0[c]); dst0[c]->insn->src[2]->mod ^= NV_MOD_NEG; } break; case TGSI_OPCODE_RET: (new_instruction(bld->pc, NV_OP_RET))->fixed = 1; break; case TGSI_OPCODE_END: if (bld->ti->p->type == PIPE_SHADER_FRAGMENT) bld_export_outputs(bld); break; default: NOUVEAU_ERR("unhandled opcode %u\n", insn->Instruction.Opcode); abort(); break; } FOR_EACH_DST0_ENABLED_CHANNEL(c, insn) emit_store(bld, insn, c, dst0[c]); } static INLINE void bld_free_value_trackers(struct bld_value_stack *base, int n) { int i, c; for (i = 0; i < n; ++i) for (c = 0; c < 4; ++c) if (base[i * 4 + c].body) FREE(base[i * 4 + c].body); } int nv50_tgsi_to_nc(struct nv_pc *pc, struct nv50_translation_info *ti) { struct bld_context *bld = CALLOC_STRUCT(bld_context); int c; unsigned ip; pc->root[0] = pc->current_block = new_basic_block(pc); bld->pc = pc; bld->ti = ti; pc->loop_nesting_bound = 1; c = util_bitcount(bld->ti->p->fp.interp >> 24); if (c && ti->p->type == PIPE_SHADER_FRAGMENT) { bld->frgcrd[3] = new_value(pc, NV_FILE_MEM_V, NV_TYPE_F32); bld->frgcrd[3]->reg.id = c - 1; bld->frgcrd[3] = bld_insn_1(bld, NV_OP_LINTERP, bld->frgcrd[3]); bld->frgcrd[3] = bld_insn_1(bld, NV_OP_RCP, bld->frgcrd[3]); } for (ip = 0; ip < ti->inst_nr; ++ip) bld_instruction(bld, &ti->insns[ip]); bld_free_value_trackers(&bld->tvs[0][0], BLD_MAX_TEMPS); bld_free_value_trackers(&bld->avs[0][0], BLD_MAX_ADDRS); bld_free_value_trackers(&bld->pvs[0][0], BLD_MAX_PREDS); bld_free_value_trackers(&bld->ovs[0][0], PIPE_MAX_SHADER_OUTPUTS); FREE(bld); return 0; } /* If a variable is assigned in a loop, replace all references to the value * from outside the loop with a phi value. */ static void bld_replace_value(struct nv_pc *pc, struct nv_basic_block *b, struct nv_value *old_val, struct nv_value *new_val) { struct nv_instruction *nvi; for (nvi = b->phi ? b->phi : b->entry; nvi; nvi = nvi->next) { int s; for (s = 0; s < 5; ++s) { if (!nvi->src[s]) continue; if (nvi->src[s]->value == old_val) nv_reference(pc, &nvi->src[s], new_val); } if (nvi->flags_src && nvi->flags_src->value == old_val) nv_reference(pc, &nvi->flags_src, new_val); } b->pass_seq = pc->pass_seq; if (b->out[0] && b->out[0]->pass_seq < pc->pass_seq) bld_replace_value(pc, b->out[0], old_val, new_val); if (b->out[1] && b->out[1]->pass_seq < pc->pass_seq) bld_replace_value(pc, b->out[1], old_val, new_val); }