#include "pipe/p_context.h" #include "pipe/p_defines.h" #include "pipe/p_state.h" #include "util/u_linkage.h" #include "util/u_debug.h" #include "pipe/p_shader_tokens.h" #include "tgsi/tgsi_parse.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_util.h" #include "nvfx_context.h" #include "nvfx_state.h" #include "nvfx_resource.h" /* TODO (at least...): * 1. Indexed consts + ARL * 3. NV_vp11, NV_vp2, NV_vp3 features * - extra arith opcodes * - branching * - texture sampling * - indexed attribs * - indexed results * 4. bugs */ #include "nv30_vertprog.h" #include "nv40_vertprog.h" #define NVFX_VP_INST_DEST_CLIP(n) ((~0 - 6) + (n)) struct nvfx_loop_entry { unsigned brk_target; unsigned cont_target; }; struct nvfx_vpc { struct nvfx_context* nvfx; struct nvfx_vertex_program *vp; struct nvfx_vertex_program_exec *vpi; unsigned r_temps; unsigned r_temps_discard; struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS]; struct nvfx_reg *r_address; struct nvfx_reg *r_temp; struct nvfx_reg *imm; unsigned nr_imm; unsigned hpos_idx; struct util_dynarray label_relocs; struct util_dynarray loop_stack; }; static struct nvfx_reg temp(struct nvfx_vpc *vpc) { int idx = ffs(~vpc->r_temps) - 1; if (idx < 0) { NOUVEAU_ERR("out of temps!!\n"); assert(0); return nvfx_reg(NVFXSR_TEMP, 0); } vpc->r_temps |= (1 << idx); vpc->r_temps_discard |= (1 << idx); return nvfx_reg(NVFXSR_TEMP, idx); } static inline void release_temps(struct nvfx_vpc *vpc) { vpc->r_temps &= ~vpc->r_temps_discard; vpc->r_temps_discard = 0; } static struct nvfx_reg constant(struct nvfx_vpc *vpc, int pipe, float x, float y, float z, float w) { struct nvfx_vertex_program *vp = vpc->vp; struct nvfx_vertex_program_data *vpd; int idx; if (pipe >= 0) { for (idx = 0; idx < vp->nr_consts; idx++) { if (vp->consts[idx].index == pipe) return nvfx_reg(NVFXSR_CONST, idx); } } idx = vp->nr_consts++; vp->consts = realloc(vp->consts, sizeof(*vpd) * vp->nr_consts); vpd = &vp->consts[idx]; vpd->index = pipe; vpd->value[0] = x; vpd->value[1] = y; vpd->value[2] = z; vpd->value[3] = w; return nvfx_reg(NVFXSR_CONST, idx); } #define arith(s,o,d,m,s0,s1,s2) \ nvfx_insn(0, (NVFX_VP_INST_SLOT_##s << 7) | NVFX_VP_INST_##s##_OP_##o, -1, (d), (m), (s0), (s1), (s2)) static void emit_src(struct nvfx_context* nvfx, struct nvfx_vpc *vpc, uint32_t *hw, int pos, struct nvfx_src src) { struct nvfx_vertex_program *vp = vpc->vp; uint32_t sr = 0; switch (src.reg.type) { case NVFXSR_TEMP: sr |= (NVFX_VP(SRC_REG_TYPE_TEMP) << NVFX_VP(SRC_REG_TYPE_SHIFT)); sr |= (src.reg.index << NVFX_VP(SRC_TEMP_SRC_SHIFT)); break; case NVFXSR_INPUT: sr |= (NVFX_VP(SRC_REG_TYPE_INPUT) << NVFX_VP(SRC_REG_TYPE_SHIFT)); vp->ir |= (1 << src.reg.index); hw[1] |= (src.reg.index << NVFX_VP(INST_INPUT_SRC_SHIFT)); break; case NVFXSR_CONST: sr |= (NVFX_VP(SRC_REG_TYPE_CONST) << NVFX_VP(SRC_REG_TYPE_SHIFT)); assert(vpc->vpi->const_index == -1 || vpc->vpi->const_index == src.reg.index); vpc->vpi->const_index = src.reg.index; break; case NVFXSR_NONE: sr |= (NVFX_VP(SRC_REG_TYPE_INPUT) << NVFX_VP(SRC_REG_TYPE_SHIFT)); break; default: assert(0); } if (src.negate) sr |= NVFX_VP(SRC_NEGATE); if (src.abs) hw[0] |= (1 << (21 + pos)); sr |= ((src.swz[0] << NVFX_VP(SRC_SWZ_X_SHIFT)) | (src.swz[1] << NVFX_VP(SRC_SWZ_Y_SHIFT)) | (src.swz[2] << NVFX_VP(SRC_SWZ_Z_SHIFT)) | (src.swz[3] << NVFX_VP(SRC_SWZ_W_SHIFT))); switch (pos) { case 0: hw[1] |= ((sr & NVFX_VP(SRC0_HIGH_MASK)) >> NVFX_VP(SRC0_HIGH_SHIFT)) << NVFX_VP(INST_SRC0H_SHIFT); hw[2] |= (sr & NVFX_VP(SRC0_LOW_MASK)) << NVFX_VP(INST_SRC0L_SHIFT); break; case 1: hw[2] |= sr << NVFX_VP(INST_SRC1_SHIFT); break; case 2: hw[2] |= ((sr & NVFX_VP(SRC2_HIGH_MASK)) >> NVFX_VP(SRC2_HIGH_SHIFT)) << NVFX_VP(INST_SRC2H_SHIFT); hw[3] |= (sr & NVFX_VP(SRC2_LOW_MASK)) << NVFX_VP(INST_SRC2L_SHIFT); break; default: assert(0); } } static void emit_dst(struct nvfx_context* nvfx, struct nvfx_vpc *vpc, uint32_t *hw, int slot, struct nvfx_reg dst) { struct nvfx_vertex_program *vp = vpc->vp; switch (dst.type) { case NVFXSR_NONE: if(!nvfx->is_nv4x) hw[0] |= NV30_VP_INST_DEST_TEMP_ID_MASK; else { hw[3] |= NV40_VP_INST_DEST_MASK; if (slot == 0) hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK; else hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK; } break; case NVFXSR_TEMP: if(!nvfx->is_nv4x) hw[0] |= (dst.index << NV30_VP_INST_DEST_TEMP_ID_SHIFT); else { hw[3] |= NV40_VP_INST_DEST_MASK; if (slot == 0) hw[0] |= (dst.index << NV40_VP_INST_VEC_DEST_TEMP_SHIFT); else hw[3] |= (dst.index << NV40_VP_INST_SCA_DEST_TEMP_SHIFT); } break; case NVFXSR_OUTPUT: /* TODO: this may be wrong because on nv30 COL0 and BFC0 are swapped */ switch (dst.index) { case NVFX_VP_INST_DEST_CLIP(0): vp->or |= (1 << 6); vp->clip_ctrl |= NV34TCL_VP_CLIP_PLANES_ENABLE_PLANE0; dst.index = NVFX_VP(INST_DEST_FOGC); break; case NVFX_VP_INST_DEST_CLIP(1): vp->or |= (1 << 7); vp->clip_ctrl |= NV34TCL_VP_CLIP_PLANES_ENABLE_PLANE1; dst.index = NVFX_VP(INST_DEST_FOGC); break; case NVFX_VP_INST_DEST_CLIP(2): vp->or |= (1 << 8); vp->clip_ctrl |= NV34TCL_VP_CLIP_PLANES_ENABLE_PLANE2; dst.index = NVFX_VP(INST_DEST_FOGC); break; case NVFX_VP_INST_DEST_CLIP(3): vp->or |= (1 << 9); vp->clip_ctrl |= NV34TCL_VP_CLIP_PLANES_ENABLE_PLANE3; dst.index = NVFX_VP(INST_DEST_PSZ); break; case NVFX_VP_INST_DEST_CLIP(4): vp->or |= (1 << 10); vp->clip_ctrl |= NV34TCL_VP_CLIP_PLANES_ENABLE_PLANE4; dst.index = NVFX_VP(INST_DEST_PSZ); break; case NVFX_VP_INST_DEST_CLIP(5): vp->or |= (1 << 11); vp->clip_ctrl |= NV34TCL_VP_CLIP_PLANES_ENABLE_PLANE5; dst.index = NVFX_VP(INST_DEST_PSZ); break; default: if(!nvfx->is_nv4x) { switch (dst.index) { case NV30_VP_INST_DEST_COL0 : vp->or |= (1 << 0); break; case NV30_VP_INST_DEST_COL1 : vp->or |= (1 << 1); break; case NV30_VP_INST_DEST_BFC0 : vp->or |= (1 << 2); break; case NV30_VP_INST_DEST_BFC1 : vp->or |= (1 << 3); break; case NV30_VP_INST_DEST_FOGC: vp->or |= (1 << 4); break; case NV30_VP_INST_DEST_PSZ : vp->or |= (1 << 5); break; case NV30_VP_INST_DEST_TC(0): vp->or |= (1 << 14); break; case NV30_VP_INST_DEST_TC(1): vp->or |= (1 << 15); break; case NV30_VP_INST_DEST_TC(2): vp->or |= (1 << 16); break; case NV30_VP_INST_DEST_TC(3): vp->or |= (1 << 17); break; case NV30_VP_INST_DEST_TC(4): vp->or |= (1 << 18); break; case NV30_VP_INST_DEST_TC(5): vp->or |= (1 << 19); break; case NV30_VP_INST_DEST_TC(6): vp->or |= (1 << 20); break; case NV30_VP_INST_DEST_TC(7): vp->or |= (1 << 21); break; } } else { switch (dst.index) { case NV40_VP_INST_DEST_COL0 : vp->or |= (1 << 0); break; case NV40_VP_INST_DEST_COL1 : vp->or |= (1 << 1); break; case NV40_VP_INST_DEST_BFC0 : vp->or |= (1 << 2); break; case NV40_VP_INST_DEST_BFC1 : vp->or |= (1 << 3); break; case NV40_VP_INST_DEST_FOGC: vp->or |= (1 << 4); break; case NV40_VP_INST_DEST_PSZ : vp->or |= (1 << 5); break; case NV40_VP_INST_DEST_TC(0): vp->or |= (1 << 14); break; case NV40_VP_INST_DEST_TC(1): vp->or |= (1 << 15); break; case NV40_VP_INST_DEST_TC(2): vp->or |= (1 << 16); break; case NV40_VP_INST_DEST_TC(3): vp->or |= (1 << 17); break; case NV40_VP_INST_DEST_TC(4): vp->or |= (1 << 18); break; case NV40_VP_INST_DEST_TC(5): vp->or |= (1 << 19); break; case NV40_VP_INST_DEST_TC(6): vp->or |= (1 << 20); break; case NV40_VP_INST_DEST_TC(7): vp->or |= (1 << 21); break; } } break; } if(!nvfx->is_nv4x) { hw[3] |= (dst.index << NV30_VP_INST_DEST_SHIFT); hw[0] |= NV30_VP_INST_VEC_DEST_TEMP_MASK; /*XXX: no way this is entirely correct, someone needs to * figure out what exactly it is. */ hw[3] |= 0x800; } else { hw[3] |= (dst.index << NV40_VP_INST_DEST_SHIFT); if (slot == 0) { hw[0] |= NV40_VP_INST_VEC_RESULT; hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK; } else { hw[3] |= NV40_VP_INST_SCA_RESULT; hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK; } } break; default: assert(0); } } static void nvfx_vp_emit(struct nvfx_vpc *vpc, struct nvfx_insn insn) { struct nvfx_context* nvfx = vpc->nvfx; struct nvfx_vertex_program *vp = vpc->vp; unsigned slot = insn.op >> 7; unsigned op = insn.op & 0x7f; uint32_t *hw; vp->insns = realloc(vp->insns, ++vp->nr_insns * sizeof(*vpc->vpi)); vpc->vpi = &vp->insns[vp->nr_insns - 1]; memset(vpc->vpi, 0, sizeof(*vpc->vpi)); vpc->vpi->const_index = -1; hw = vpc->vpi->data; hw[0] |= (insn.cc_test << NVFX_VP(INST_COND_SHIFT)); hw[0] |= ((insn.cc_swz[0] << NVFX_VP(INST_COND_SWZ_X_SHIFT)) | (insn.cc_swz[1] << NVFX_VP(INST_COND_SWZ_Y_SHIFT)) | (insn.cc_swz[2] << NVFX_VP(INST_COND_SWZ_Z_SHIFT)) | (insn.cc_swz[3] << NVFX_VP(INST_COND_SWZ_W_SHIFT))); if(insn.cc_update) hw[0] |= NVFX_VP(INST_COND_UPDATE_ENABLE); if(!nvfx->is_nv4x) { if(slot == 0) hw[1] |= (op << NV30_VP_INST_VEC_OPCODE_SHIFT); else { hw[0] |= ((op >> 4) << NV30_VP_INST_SCA_OPCODEH_SHIFT); hw[1] |= ((op & 0xf) << NV30_VP_INST_SCA_OPCODEL_SHIFT); } // hw[3] |= NVFX_VP(INST_SCA_DEST_TEMP_MASK); // hw[3] |= (mask << NVFX_VP(INST_VEC_WRITEMASK_SHIFT)); if (insn.dst.type == NVFXSR_OUTPUT) { if (slot) hw[3] |= (insn.mask << NV30_VP_INST_SDEST_WRITEMASK_SHIFT); else hw[3] |= (insn.mask << NV30_VP_INST_VDEST_WRITEMASK_SHIFT); } else { if (slot) hw[3] |= (insn.mask << NV30_VP_INST_STEMP_WRITEMASK_SHIFT); else hw[3] |= (insn.mask << NV30_VP_INST_VTEMP_WRITEMASK_SHIFT); } } else { if (slot == 0) { hw[1] |= (op << NV40_VP_INST_VEC_OPCODE_SHIFT); hw[3] |= NV40_VP_INST_SCA_DEST_TEMP_MASK; hw[3] |= (insn.mask << NV40_VP_INST_VEC_WRITEMASK_SHIFT); } else { hw[1] |= (op << NV40_VP_INST_SCA_OPCODE_SHIFT); hw[0] |= NV40_VP_INST_VEC_DEST_TEMP_MASK ; hw[3] |= (insn.mask << NV40_VP_INST_SCA_WRITEMASK_SHIFT); } } emit_dst(nvfx, vpc, hw, slot, insn.dst); emit_src(nvfx, vpc, hw, 0, insn.src[0]); emit_src(nvfx, vpc, hw, 1, insn.src[1]); emit_src(nvfx, vpc, hw, 2, insn.src[2]); } static inline struct nvfx_src tgsi_src(struct nvfx_vpc *vpc, const struct tgsi_full_src_register *fsrc) { struct nvfx_src src; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: src.reg = nvfx_reg(NVFXSR_INPUT, fsrc->Register.Index); break; case TGSI_FILE_CONSTANT: src.reg = constant(vpc, fsrc->Register.Index, 0, 0, 0, 0); break; case TGSI_FILE_IMMEDIATE: src.reg = vpc->imm[fsrc->Register.Index]; break; case TGSI_FILE_TEMPORARY: src.reg = vpc->r_temp[fsrc->Register.Index]; break; default: NOUVEAU_ERR("bad src file\n"); break; } src.abs = fsrc->Register.Absolute; src.negate = fsrc->Register.Negate; src.swz[0] = fsrc->Register.SwizzleX; src.swz[1] = fsrc->Register.SwizzleY; src.swz[2] = fsrc->Register.SwizzleZ; src.swz[3] = fsrc->Register.SwizzleW; return src; } static INLINE struct nvfx_reg tgsi_dst(struct nvfx_vpc *vpc, const struct tgsi_full_dst_register *fdst) { struct nvfx_reg dst; switch (fdst->Register.File) { case TGSI_FILE_NULL: dst = nvfx_reg(NVFXSR_NONE, 0); break; case TGSI_FILE_OUTPUT: dst = vpc->r_result[fdst->Register.Index]; break; case TGSI_FILE_TEMPORARY: dst = vpc->r_temp[fdst->Register.Index]; break; case TGSI_FILE_ADDRESS: dst = vpc->r_address[fdst->Register.Index]; break; default: NOUVEAU_ERR("bad dst file %i\n", fdst->Register.File); break; } return dst; } static inline int tgsi_mask(uint tgsi) { int mask = 0; if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_VP_MASK_X; if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_VP_MASK_Y; if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_VP_MASK_Z; if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_VP_MASK_W; return mask; } static boolean nvfx_vertprog_parse_instruction(struct nvfx_context* nvfx, struct nvfx_vpc *vpc, unsigned idx, const struct tgsi_full_instruction *finst) { struct nvfx_src src[3], tmp; struct nvfx_reg dst; struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0)); struct nvfx_insn insn; struct nvfx_label_relocation reloc; struct nvfx_loop_entry loop; int mask; int ai = -1, ci = -1, ii = -1; int i; if (finst->Instruction.Opcode == TGSI_OPCODE_END) return TRUE; for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; if (fsrc->Register.File == TGSI_FILE_TEMPORARY) { src[i] = tgsi_src(vpc, fsrc); } } for (i = 0; i < finst->Instruction.NumSrcRegs; i++) { const struct tgsi_full_src_register *fsrc; fsrc = &finst->Src[i]; switch (fsrc->Register.File) { case TGSI_FILE_INPUT: if (ai == -1 || ai == fsrc->Register.Index) { ai = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL, tgsi_src(vpc, fsrc), none, none)); } break; case TGSI_FILE_CONSTANT: if ((ci == -1 && ii == -1) || ci == fsrc->Register.Index) { ci = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL, tgsi_src(vpc, fsrc), none, none)); } break; case TGSI_FILE_IMMEDIATE: if ((ci == -1 && ii == -1) || ii == fsrc->Register.Index) { ii = fsrc->Register.Index; src[i] = tgsi_src(vpc, fsrc); } else { src[i] = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(VEC, MOV, src[i].reg, NVFX_VP_MASK_ALL, tgsi_src(vpc, fsrc), none, none)); } break; case TGSI_FILE_TEMPORARY: /* handled above */ break; default: NOUVEAU_ERR("bad src file\n"); return FALSE; } } dst = tgsi_dst(vpc, &finst->Dst[0]); mask = tgsi_mask(finst->Dst[0].Register.WriteMask); switch (finst->Instruction.Opcode) { case TGSI_OPCODE_ABS: nvfx_vp_emit(vpc, arith(VEC, MOV, dst, mask, abs(src[0]), none, none)); break; case TGSI_OPCODE_ADD: nvfx_vp_emit(vpc, arith(VEC, ADD, dst, mask, src[0], none, src[1])); break; case TGSI_OPCODE_ARL: nvfx_vp_emit(vpc, arith(VEC, ARL, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_CMP: insn = arith(VEC, MOV, none.reg, mask, src[0], none, none); insn.cc_update = 1; nvfx_vp_emit(vpc, insn); insn = arith(VEC, MOV, dst, mask, src[2], none, none); insn.cc_test = NVFX_COND_GE; nvfx_vp_emit(vpc, insn); insn = arith(VEC, MOV, dst, mask, src[1], none, none); insn.cc_test = NVFX_COND_LT; nvfx_vp_emit(vpc, insn); break; case TGSI_OPCODE_COS: nvfx_vp_emit(vpc, arith(SCA, COS, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_DP2: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(VEC, MUL, tmp.reg, NVFX_VP_MASK_X | NVFX_VP_MASK_Y, src[0], src[1], none)); nvfx_vp_emit(vpc, arith(VEC, ADD, dst, mask, swz(tmp, X, X, X, X), swz(tmp, Y, Y, Y, Y), none)); break; case TGSI_OPCODE_DP3: nvfx_vp_emit(vpc, arith(VEC, DP3, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DP4: nvfx_vp_emit(vpc, arith(VEC, DP4, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DPH: nvfx_vp_emit(vpc, arith(VEC, DPH, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_DST: nvfx_vp_emit(vpc, arith(VEC, DST, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_EX2: nvfx_vp_emit(vpc, arith(SCA, EX2, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_EXP: nvfx_vp_emit(vpc, arith(SCA, EXP, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_FLR: nvfx_vp_emit(vpc, arith(VEC, FLR, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_FRC: nvfx_vp_emit(vpc, arith(VEC, FRC, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_LG2: nvfx_vp_emit(vpc, arith(SCA, LG2, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_LIT: nvfx_vp_emit(vpc, arith(SCA, LIT, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_LOG: nvfx_vp_emit(vpc, arith(SCA, LOG, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_LRP: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(VEC, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2])); nvfx_vp_emit(vpc, arith(VEC, MAD, dst, mask, src[0], src[1], tmp)); break; case TGSI_OPCODE_MAD: nvfx_vp_emit(vpc, arith(VEC, MAD, dst, mask, src[0], src[1], src[2])); break; case TGSI_OPCODE_MAX: nvfx_vp_emit(vpc, arith(VEC, MAX, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_MIN: nvfx_vp_emit(vpc, arith(VEC, MIN, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_MOV: nvfx_vp_emit(vpc, arith(VEC, MOV, dst, mask, src[0], none, none)); break; case TGSI_OPCODE_MUL: nvfx_vp_emit(vpc, arith(VEC, MUL, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_NOP: break; case TGSI_OPCODE_POW: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(SCA, LG2, tmp.reg, NVFX_VP_MASK_X, none, none, swz(src[0], X, X, X, X))); nvfx_vp_emit(vpc, arith(VEC, MUL, tmp.reg, NVFX_VP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none)); nvfx_vp_emit(vpc, arith(SCA, EX2, dst, mask, none, none, swz(tmp, X, X, X, X))); break; case TGSI_OPCODE_RCP: nvfx_vp_emit(vpc, arith(SCA, RCP, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_RSQ: nvfx_vp_emit(vpc, arith(SCA, RSQ, dst, mask, none, none, abs(src[0]))); break; case TGSI_OPCODE_SEQ: nvfx_vp_emit(vpc, arith(VEC, SEQ, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SFL: nvfx_vp_emit(vpc, arith(VEC, SFL, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SGE: nvfx_vp_emit(vpc, arith(VEC, SGE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SGT: nvfx_vp_emit(vpc, arith(VEC, SGT, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SIN: nvfx_vp_emit(vpc, arith(SCA, SIN, dst, mask, none, none, src[0])); break; case TGSI_OPCODE_SLE: nvfx_vp_emit(vpc, arith(VEC, SLE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SLT: nvfx_vp_emit(vpc, arith(VEC, SLT, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SNE: nvfx_vp_emit(vpc, arith(VEC, SNE, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SSG: nvfx_vp_emit(vpc, arith(VEC, SSG, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_STR: nvfx_vp_emit(vpc, arith(VEC, STR, dst, mask, src[0], src[1], none)); break; case TGSI_OPCODE_SUB: nvfx_vp_emit(vpc, arith(VEC, ADD, dst, mask, src[0], none, neg(src[1]))); break; case TGSI_OPCODE_TRUNC: tmp = nvfx_src(temp(vpc)); insn = arith(VEC, MOV, none.reg, mask, src[0], none, none); insn.cc_update = 1; nvfx_vp_emit(vpc, insn); nvfx_vp_emit(vpc, arith(VEC, FLR, tmp.reg, mask, abs(src[0]), none, none)); nvfx_vp_emit(vpc, arith(VEC, MOV, dst, mask, tmp, none, none)); insn = arith(VEC, MOV, dst, mask, neg(tmp), none, none); insn.cc_test = NVFX_COND_LT; nvfx_vp_emit(vpc, insn); break; case TGSI_OPCODE_XPD: tmp = nvfx_src(temp(vpc)); nvfx_vp_emit(vpc, arith(VEC, MUL, tmp.reg, mask, swz(src[0], Z, X, Y, Y), swz(src[1], Y, Z, X, X), none)); nvfx_vp_emit(vpc, arith(VEC, MAD, dst, (mask & ~NVFX_VP_MASK_W), swz(src[0], Y, Z, X, X), swz(src[1], Z, X, Y, Y), neg(tmp))); break; case TGSI_OPCODE_IF: insn = arith(VEC, MOV, none.reg, NVFX_VP_MASK_X, src[0], none, none); insn.cc_update = 1; nvfx_vp_emit(vpc, insn); reloc.location = vpc->vp->nr_insns; reloc.target = finst->Label.Label + 1; util_dynarray_append(&vpc->label_relocs, struct nvfx_label_relocation, reloc); insn = arith(SCA, BRA, none.reg, 0, none, none, none); insn.cc_test = NVFX_COND_EQ; insn.cc_swz[0] = insn.cc_swz[1] = insn.cc_swz[2] = insn.cc_swz[3] = 0; nvfx_vp_emit(vpc, insn); break; case TGSI_OPCODE_ELSE: case TGSI_OPCODE_BRA: case TGSI_OPCODE_CAL: reloc.location = vpc->vp->nr_insns; reloc.target = finst->Label.Label; util_dynarray_append(&vpc->label_relocs, struct nvfx_label_relocation, reloc); if(finst->Instruction.Opcode == TGSI_OPCODE_CAL) insn = arith(SCA, CAL, none.reg, 0, none, none, none); else insn = arith(SCA, BRA, none.reg, 0, none, none, none); nvfx_vp_emit(vpc, insn); break; case TGSI_OPCODE_RET: tmp = none; tmp.swz[0] = tmp.swz[1] = tmp.swz[2] = tmp.swz[3] = 0; nvfx_vp_emit(vpc, arith(SCA, RET, none.reg, 0, none, none, tmp)); break; case TGSI_OPCODE_BGNSUB: case TGSI_OPCODE_ENDSUB: case TGSI_OPCODE_ENDIF: /* nothing to do here */ break; case TGSI_OPCODE_BGNLOOP: loop.cont_target = idx; loop.brk_target = finst->Label.Label + 1; util_dynarray_append(&vpc->loop_stack, struct nvfx_loop_entry, loop); break; case TGSI_OPCODE_ENDLOOP: loop = util_dynarray_pop(&vpc->loop_stack, struct nvfx_loop_entry); reloc.location = vpc->vp->nr_insns; reloc.target = loop.cont_target; util_dynarray_append(&vpc->label_relocs, struct nvfx_label_relocation, reloc); nvfx_vp_emit(vpc, arith(SCA, BRA, none.reg, 0, none, none, none)); break; case TGSI_OPCODE_CONT: loop = util_dynarray_top(&vpc->loop_stack, struct nvfx_loop_entry); reloc.location = vpc->vp->nr_insns; reloc.target = loop.cont_target; util_dynarray_append(&vpc->label_relocs, struct nvfx_label_relocation, reloc); nvfx_vp_emit(vpc, arith(SCA, BRA, none.reg, 0, none, none, none)); break; case TGSI_OPCODE_BRK: loop = util_dynarray_top(&vpc->loop_stack, struct nvfx_loop_entry); reloc.location = vpc->vp->nr_insns; reloc.target = loop.brk_target; util_dynarray_append(&vpc->label_relocs, struct nvfx_label_relocation, reloc); nvfx_vp_emit(vpc, arith(SCA, BRA, none.reg, 0, none, none, none)); break; default: NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode); return FALSE; } release_temps(vpc); return TRUE; } static boolean nvfx_vertprog_parse_decl_output(struct nvfx_context* nvfx, struct nvfx_vpc *vpc, const struct tgsi_full_declaration *fdec) { unsigned idx = fdec->Range.First; int hw; switch (fdec->Semantic.Name) { case TGSI_SEMANTIC_POSITION: hw = NVFX_VP(INST_DEST_POS); vpc->hpos_idx = idx; break; case TGSI_SEMANTIC_COLOR: if (fdec->Semantic.Index == 0) { hw = NVFX_VP(INST_DEST_COL0); } else if (fdec->Semantic.Index == 1) { hw = NVFX_VP(INST_DEST_COL1); } else { NOUVEAU_ERR("bad colour semantic index\n"); return FALSE; } break; case TGSI_SEMANTIC_BCOLOR: if (fdec->Semantic.Index == 0) { hw = NVFX_VP(INST_DEST_BFC0); } else if (fdec->Semantic.Index == 1) { hw = NVFX_VP(INST_DEST_BFC1); } else { NOUVEAU_ERR("bad bcolour semantic index\n"); return FALSE; } break; case TGSI_SEMANTIC_FOG: hw = NVFX_VP(INST_DEST_FOGC); break; case TGSI_SEMANTIC_PSIZE: hw = NVFX_VP(INST_DEST_PSZ); break; case TGSI_SEMANTIC_GENERIC: hw = (vpc->vp->generic_to_fp_input[fdec->Semantic.Index] & 0xf) + NVFX_VP(INST_DEST_TC(0)) - NVFX_FP_OP_INPUT_SRC_TC(0); break; case TGSI_SEMANTIC_EDGEFLAG: /* not really an error just a fallback */ NOUVEAU_ERR("cannot handle edgeflag output\n"); return FALSE; default: NOUVEAU_ERR("bad output semantic\n"); return FALSE; } vpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw); return TRUE; } static boolean nvfx_vertprog_prepare(struct nvfx_context* nvfx, struct nvfx_vpc *vpc) { struct tgsi_parse_context p; int high_temp = -1, high_addr = -1, nr_imm = 0, i; struct util_semantic_set set; unsigned char sem_layout[8]; unsigned sem_layout_size; unsigned num_outputs; num_outputs = util_semantic_set_from_program_file(&set, vpc->vp->pipe.tokens, TGSI_FILE_OUTPUT); if(num_outputs > 8) { NOUVEAU_ERR("too many vertex program outputs: %i\n", num_outputs); return FALSE; } util_semantic_layout_from_set(sem_layout, &set, 8, 8); /* hope 0xf is (0, 0, 0, 1) initialized; otherwise, we are _probably_ not required to do this */ memset(vpc->vp->generic_to_fp_input, 0x0f, sizeof(vpc->vp->generic_to_fp_input)); vpc->vp->texcoord_ouput_mask = 0; for(int i = 0; i < 8; ++i) { if(sem_layout[i] == 0xff) continue; vpc->vp->texcoord_ouput_mask |= (1 << i); //printf("vp: GENERIC[%i] to fpreg %i\n", sem_layout[i], NVFX_FP_OP_INPUT_SRC_TC(0) + i); vpc->vp->generic_to_fp_input[sem_layout[i]] = 0xf0 | (NVFX_FP_OP_INPUT_SRC_TC(0) + i); } tgsi_parse_init(&p, vpc->vp->pipe.tokens); while (!tgsi_parse_end_of_tokens(&p)) { const union tgsi_full_token *tok = &p.FullToken; tgsi_parse_token(&p); switch(tok->Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: nr_imm++; break; case TGSI_TOKEN_TYPE_DECLARATION: { const struct tgsi_full_declaration *fdec; fdec = &p.FullToken.FullDeclaration; switch (fdec->Declaration.File) { case TGSI_FILE_TEMPORARY: if (fdec->Range.Last > high_temp) { high_temp = fdec->Range.Last; } break; #if 0 /* this would be nice.. except gallium doesn't track it */ case TGSI_FILE_ADDRESS: if (fdec->Range.Last > high_addr) { high_addr = fdec->Range.Last; } break; #endif case TGSI_FILE_OUTPUT: if (!nvfx_vertprog_parse_decl_output(nvfx, vpc, fdec)) return FALSE; break; default: break; } } break; #if 1 /* yay, parse instructions looking for address regs instead */ case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *finst; const struct tgsi_full_dst_register *fdst; finst = &p.FullToken.FullInstruction; fdst = &finst->Dst[0]; if (fdst->Register.File == TGSI_FILE_ADDRESS) { if (fdst->Register.Index > high_addr) high_addr = fdst->Register.Index; } } break; #endif default: break; } } tgsi_parse_free(&p); if (nr_imm) { vpc->imm = CALLOC(nr_imm, sizeof(struct nvfx_reg)); assert(vpc->imm); } if (++high_temp) { vpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg)); for (i = 0; i < high_temp; i++) vpc->r_temp[i] = temp(vpc); } if (++high_addr) { vpc->r_address = CALLOC(high_addr, sizeof(struct nvfx_reg)); for (i = 0; i < high_addr; i++) vpc->r_address[i] = temp(vpc); } vpc->r_temps_discard = 0; return TRUE; } DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_vp, "NVFX_DUMP_VP", FALSE) static void nvfx_vertprog_translate(struct nvfx_context *nvfx, struct nvfx_vertex_program *vp) { struct tgsi_parse_context parse; struct nvfx_vpc *vpc = NULL; struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0)); struct util_dynarray insns; int i; vpc = CALLOC(1, sizeof(struct nvfx_vpc)); if (!vpc) return; vpc->nvfx = nvfx; vpc->vp = vp; if (!nvfx_vertprog_prepare(nvfx, vpc)) { FREE(vpc); return; } /* Redirect post-transform vertex position to a temp if user clip * planes are enabled. We need to append code to the vtxprog * to handle clip planes later. */ if (vp->ucp.nr) { vpc->r_result[vpc->hpos_idx] = temp(vpc); vpc->r_temps_discard = 0; } tgsi_parse_init(&parse, vp->pipe.tokens); util_dynarray_init(&insns); while (!tgsi_parse_end_of_tokens(&parse)) { tgsi_parse_token(&parse); switch (parse.FullToken.Token.Type) { case TGSI_TOKEN_TYPE_IMMEDIATE: { const struct tgsi_full_immediate *imm; imm = &parse.FullToken.FullImmediate; assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32); assert(imm->Immediate.NrTokens == 4 + 1); vpc->imm[vpc->nr_imm++] = constant(vpc, -1, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float); } break; case TGSI_TOKEN_TYPE_INSTRUCTION: { const struct tgsi_full_instruction *finst; unsigned idx = insns.size >> 2; util_dynarray_append(&insns, unsigned, vp->nr_insns); finst = &parse.FullToken.FullInstruction; if (!nvfx_vertprog_parse_instruction(nvfx, vpc, idx, finst)) goto out_err; } break; default: break; } } util_dynarray_append(&insns, unsigned, vp->nr_insns); for(unsigned i = 0; i < vpc->label_relocs.size; i += sizeof(struct nvfx_label_relocation)) { struct nvfx_label_relocation* label_reloc = (struct nvfx_label_relocation*)((char*)vpc->label_relocs.data + i); struct nvfx_label_relocation hw_reloc; hw_reloc.location = label_reloc->location; hw_reloc.target = ((unsigned*)insns.data)[label_reloc->target]; //debug_printf("hw %u -> tgsi %u = hw %u\n", hw_reloc.location, label_reloc->target, hw_reloc.target); util_dynarray_append(&vp->branch_relocs, struct nvfx_label_relocation, hw_reloc); } util_dynarray_fini(&insns); util_dynarray_trim(&vp->branch_relocs); /* XXX: what if we add a RET before?! make sure we jump here...*/ /* Write out HPOS if it was redirected to a temp earlier */ if (vpc->r_result[vpc->hpos_idx].type != NVFXSR_OUTPUT) { struct nvfx_reg hpos = nvfx_reg(NVFXSR_OUTPUT, NVFX_VP(INST_DEST_POS)); struct nvfx_src htmp = nvfx_src(vpc->r_result[vpc->hpos_idx]); nvfx_vp_emit(vpc, arith(VEC, MOV, hpos, NVFX_VP_MASK_ALL, htmp, none, none)); } /* Insert code to handle user clip planes */ for (i = 0; i < vp->ucp.nr; i++) { struct nvfx_reg cdst = nvfx_reg(NVFXSR_OUTPUT, NVFX_VP_INST_DEST_CLIP(i)); struct nvfx_src ceqn = nvfx_src(constant(vpc, -1, nvfx->clip.ucp[i][0], nvfx->clip.ucp[i][1], nvfx->clip.ucp[i][2], nvfx->clip.ucp[i][3])); struct nvfx_src htmp = nvfx_src(vpc->r_result[vpc->hpos_idx]); unsigned mask; switch (i) { case 0: case 3: mask = NVFX_VP_MASK_Y; break; case 1: case 4: mask = NVFX_VP_MASK_Z; break; case 2: case 5: mask = NVFX_VP_MASK_W; break; default: NOUVEAU_ERR("invalid clip dist #%d\n", i); goto out_err; } nvfx_vp_emit(vpc, arith(VEC, DP4, cdst, mask, htmp, ceqn, none)); } //vp->insns[vp->nr_insns - 1].data[3] |= NVFX_VP_INST_LAST; /* Append NOP + END instruction for branches to the end of the program */ nvfx_vp_emit(vpc, arith(VEC, NOP, none.reg, 0, none, none, none)); vp->insns[vp->nr_insns - 1].data[3] |= NVFX_VP_INST_LAST | 0x1000; if(debug_get_option_nvfx_dump_vp()) { debug_printf("\n"); tgsi_dump(vp->pipe.tokens, 0); debug_printf("\n%s vertex program:\n", nvfx->is_nv4x ? "nv4x" : "nv3x"); for (i = 0; i < vp->nr_insns; i++) debug_printf("%3u: %08x %08x %08x %08x\n", i, vp->insns[i].data[0], vp->insns[i].data[1], vp->insns[i].data[2], vp->insns[i].data[3]); debug_printf("\n"); } vp->exec_start = -1; vp->translated = TRUE; out_err: tgsi_parse_free(&parse); util_dynarray_fini(&vpc->label_relocs); util_dynarray_fini(&vpc->loop_stack); if (vpc->r_temp) FREE(vpc->r_temp); if (vpc->r_address) FREE(vpc->r_address); if (vpc->imm) FREE(vpc->imm); FREE(vpc); } boolean nvfx_vertprog_validate(struct nvfx_context *nvfx) { struct pipe_context *pipe = &nvfx->pipe; struct nvfx_screen *screen = nvfx->screen; struct nouveau_channel *chan = screen->base.channel; struct nouveau_grobj *eng3d = screen->eng3d; struct nvfx_vertex_program *vp; struct pipe_resource *constbuf; boolean upload_code = FALSE, upload_data = FALSE; int i; if (nvfx->render_mode == HW) { vp = nvfx->vertprog; constbuf = nvfx->constbuf[PIPE_SHADER_VERTEX]; // TODO: ouch! can't we just use constant slots for these?! if ((nvfx->dirty & NVFX_NEW_UCP) || memcmp(&nvfx->clip, &vp->ucp, sizeof(vp->ucp))) { nvfx_vertprog_destroy(nvfx, vp); memcpy(&vp->ucp, &nvfx->clip, sizeof(vp->ucp)); } } else { vp = nvfx->swtnl.vertprog; constbuf = NULL; } /* Translate TGSI shader into hw bytecode */ if (!vp->translated) { nvfx->fallback_swtnl &= ~NVFX_NEW_VERTPROG; nvfx_vertprog_translate(nvfx, vp); if (!vp->translated) { nvfx->fallback_swtnl |= NVFX_NEW_VERTPROG; return FALSE; } } /* Allocate hw vtxprog exec slots */ if (!vp->exec) { struct nouveau_resource *heap = nvfx->screen->vp_exec_heap; uint vplen = vp->nr_insns; if (nouveau_resource_alloc(heap, vplen, vp, &vp->exec)) { while (heap->next && heap->size < vplen) { struct nvfx_vertex_program *evict; evict = heap->next->priv; nouveau_resource_free(&evict->exec); } if (nouveau_resource_alloc(heap, vplen, vp, &vp->exec)) { debug_printf("Vertex shader too long: %u instructions\n", vplen); nvfx->fallback_swtnl |= NVFX_NEW_VERTPROG; return FALSE; } } upload_code = TRUE; } /* Allocate hw vtxprog const slots */ if (vp->nr_consts && !vp->data) { struct nouveau_resource *heap = nvfx->screen->vp_data_heap; if (nouveau_resource_alloc(heap, vp->nr_consts, vp, &vp->data)) { while (heap->next && heap->size < vp->nr_consts) { struct nvfx_vertex_program *evict; evict = heap->next->priv; nouveau_resource_free(&evict->data); } if (nouveau_resource_alloc(heap, vp->nr_consts, vp, &vp->data)) { debug_printf("Vertex shader uses too many constants: %u constants\n", vp->nr_consts); nvfx->fallback_swtnl |= NVFX_NEW_VERTPROG; return FALSE; } } /*XXX: handle this some day */ assert(vp->data->start >= vp->data_start_min); upload_data = TRUE; if (vp->data_start != vp->data->start) upload_code = TRUE; } /* If exec or data segments moved we need to patch the program to * fixup offsets and register IDs. */ if (vp->exec_start != vp->exec->start) { //printf("vp_relocs %u -> %u\n", vp->exec_start, vp->exec->start); for(unsigned i = 0; i < vp->branch_relocs.size; i += sizeof(struct nvfx_label_relocation)) { struct nvfx_label_relocation* reloc = (struct nvfx_label_relocation*)((char*)vp->branch_relocs.data + i); uint32_t* hw = vp->insns[reloc->location].data; unsigned target = vp->exec->start + reloc->target; //debug_printf("vp_reloc hw %u -> hw %u\n", reloc->location, target); if(!nvfx->is_nv4x) { hw[2] &=~ NV30_VP_INST_IADDR_MASK; hw[2] |= (target & 0x1ff) << NV30_VP_INST_IADDR_SHIFT; } else { hw[3] &=~ NV40_VP_INST_IADDRL_MASK; hw[3] |= (target & 7) << NV40_VP_INST_IADDRL_SHIFT; hw[2] &=~ NV40_VP_INST_IADDRH_MASK; hw[2] |= ((target >> 3) & 0x3f) << NV40_VP_INST_IADDRH_SHIFT; } } vp->exec_start = vp->exec->start; } if (vp->nr_consts && vp->data_start != vp->data->start) { for (i = 0; i < vp->nr_insns; i++) { struct nvfx_vertex_program_exec *vpi = &vp->insns[i]; if (vpi->const_index >= 0) { vpi->data[1] &= ~NVFX_VP(INST_CONST_SRC_MASK); vpi->data[1] |= (vpi->const_index + vp->data->start) << NVFX_VP(INST_CONST_SRC_SHIFT); } } vp->data_start = vp->data->start; } /* Update + Upload constant values */ if (vp->nr_consts) { float *map = NULL; if (constbuf) map = nvfx_buffer(constbuf)->data; for (i = 0; i < vp->nr_consts; i++) { struct nvfx_vertex_program_data *vpd = &vp->consts[i]; if (vpd->index >= 0) { if (!upload_data && !memcmp(vpd->value, &map[vpd->index * 4], 4 * sizeof(float))) continue; memcpy(vpd->value, &map[vpd->index * 4], 4 * sizeof(float)); } BEGIN_RING(chan, eng3d, NV34TCL_VP_UPLOAD_CONST_ID, 5); OUT_RING (chan, i + vp->data->start); OUT_RINGp (chan, (uint32_t *)vpd->value, 4); } } /* Upload vtxprog */ if (upload_code) { BEGIN_RING(chan, eng3d, NV34TCL_VP_UPLOAD_FROM_ID, 1); OUT_RING (chan, vp->exec->start); for (i = 0; i < vp->nr_insns; i++) { BEGIN_RING(chan, eng3d, NV34TCL_VP_UPLOAD_INST(0), 4); OUT_RINGp (chan, vp->insns[i].data, 4); } } if(nvfx->dirty & (NVFX_NEW_VERTPROG | NVFX_NEW_UCP)) { WAIT_RING(chan, 7); OUT_RING(chan, RING_3D(NV34TCL_VP_START_FROM_ID, 1)); OUT_RING(chan, vp->exec->start); if(nvfx->is_nv4x) { OUT_RING(chan, RING_3D(NV40TCL_VP_ATTRIB_EN, 2)); OUT_RING(chan, vp->ir); OUT_RING(chan, vp->or); } OUT_RING(chan, RING_3D(NV34TCL_VP_CLIP_PLANES_ENABLE, 1)); OUT_RING(chan, vp->clip_ctrl); } return TRUE; } void nvfx_vertprog_destroy(struct nvfx_context *nvfx, struct nvfx_vertex_program *vp) { vp->translated = FALSE; if (vp->nr_insns) { FREE(vp->insns); vp->insns = NULL; vp->nr_insns = 0; } if (vp->nr_consts) { FREE(vp->consts); vp->consts = NULL; vp->nr_consts = 0; } nouveau_resource_free(&vp->exec); vp->exec_start = 0; nouveau_resource_free(&vp->data); vp->data_start = 0; vp->data_start_min = 0; vp->ir = vp->or = vp->clip_ctrl = 0; }