/* * Copyright 2008 Corbin Simpson * Copyright 2009 Marek Olšák * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* r300_emit: Functions for emitting state. */ #include "util/u_format.h" #include "util/u_math.h" #include "util/u_mm.h" #include "r300_context.h" #include "r300_cb.h" #include "r300_cs.h" #include "r300_emit.h" #include "r300_fs.h" #include "r300_screen.h" #include "r300_screen_buffer.h" #include "r300_vs.h" void r300_emit_blend_state(struct r300_context* r300, unsigned size, void* state) { struct r300_blend_state* blend = (struct r300_blend_state*)state; struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)r300->fb_state.state; CS_LOCALS(r300); if (fb->nr_cbufs) { if (fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16A16_FLOAT) WRITE_CS_TABLE(blend->cb_noclamp, size); else WRITE_CS_TABLE(blend->cb_clamp, size); } else { WRITE_CS_TABLE(blend->cb_no_readwrite, size); } } void r300_emit_blend_color_state(struct r300_context* r300, unsigned size, void* state) { struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state; CS_LOCALS(r300); WRITE_CS_TABLE(bc->cb, size); } void r300_emit_clip_state(struct r300_context* r300, unsigned size, void* state) { struct r300_clip_state* clip = (struct r300_clip_state*)state; CS_LOCALS(r300); WRITE_CS_TABLE(clip->cb, size); } void r300_emit_dsa_state(struct r300_context* r300, unsigned size, void* state) { struct r300_dsa_state* dsa = (struct r300_dsa_state*)state; struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)r300->fb_state.state; CS_LOCALS(r300); if (fb->zsbuf) { if (fb->nr_cbufs && fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16A16_FLOAT) WRITE_CS_TABLE(&dsa->cb_begin_fp16, size); else WRITE_CS_TABLE(&dsa->cb_begin, size); } else { if (fb->nr_cbufs && fb->cbufs[0]->format == PIPE_FORMAT_R16G16B16A16_FLOAT) WRITE_CS_TABLE(dsa->cb_fp16_zb_no_readwrite, size); else WRITE_CS_TABLE(dsa->cb_zb_no_readwrite, size); } } static void get_rc_constant_state( float vec[4], struct r300_context * r300, struct rc_constant * constant) { struct r300_textures_state* texstate = r300->textures_state.state; struct r300_resource *tex; assert(constant->Type == RC_CONSTANT_STATE); /* vec should either be (0, 0, 0, 1), which should be a relatively safe * RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE * state factors. */ switch (constant->u.State[0]) { /* Factor for converting rectangle coords to * normalized coords. Should only show up on non-r500. */ case RC_STATE_R300_TEXRECT_FACTOR: tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture); vec[0] = 1.0 / tex->tex.width0; vec[1] = 1.0 / tex->tex.height0; vec[2] = 0; vec[3] = 1; break; case RC_STATE_R300_TEXSCALE_FACTOR: tex = r300_resource(texstate->sampler_views[constant->u.State[1]]->base.texture); /* Add a small number to the texture size to work around rounding errors in hw. */ vec[0] = tex->b.b.b.width0 / (tex->tex.width0 + 0.001f); vec[1] = tex->b.b.b.height0 / (tex->tex.height0 + 0.001f); vec[2] = tex->b.b.b.depth0 / (tex->tex.depth0 + 0.001f); vec[3] = 1; break; case RC_STATE_R300_VIEWPORT_SCALE: vec[0] = r300->viewport.scale[0]; vec[1] = r300->viewport.scale[1]; vec[2] = r300->viewport.scale[2]; vec[3] = 1; break; case RC_STATE_R300_VIEWPORT_OFFSET: vec[0] = r300->viewport.translate[0]; vec[1] = r300->viewport.translate[1]; vec[2] = r300->viewport.translate[2]; vec[3] = 1; break; default: fprintf(stderr, "r300: Implementation error: " "Unknown RC_CONSTANT type %d\n", constant->u.State[0]); vec[0] = 0; vec[1] = 0; vec[2] = 0; vec[3] = 1; } } /* Convert a normal single-precision float into the 7.16 format * used by the R300 fragment shader. */ uint32_t pack_float24(float f) { union { float fl; uint32_t u; } u; float mantissa; int exponent; uint32_t float24 = 0; if (f == 0.0) return 0; u.fl = f; mantissa = frexpf(f, &exponent); /* Handle -ve */ if (mantissa < 0) { float24 |= (1 << 23); mantissa = mantissa * -1.0; } /* Handle exponent, bias of 63 */ exponent += 62; float24 |= (exponent << 16); /* Kill 7 LSB of mantissa */ float24 |= (u.u & 0x7FFFFF) >> 7; return float24; } void r300_emit_fs(struct r300_context* r300, unsigned size, void *state) { struct r300_fragment_shader *fs = r300_fs(r300); CS_LOCALS(r300); WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size); } void r300_emit_fs_constants(struct r300_context* r300, unsigned size, void *state) { struct r300_fragment_shader *fs = r300_fs(r300); struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state; unsigned count = fs->shader->externals_count; unsigned i, j; CS_LOCALS(r300); if (count == 0) return; BEGIN_CS(size); OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, count * 4); if (buf->remap_table){ for (i = 0; i < count; i++) { float *data = (float*)&buf->ptr[buf->remap_table[i]*4]; for (j = 0; j < 4; j++) OUT_CS(pack_float24(data[j])); } } else { for (i = 0; i < count; i++) for (j = 0; j < 4; j++) OUT_CS(pack_float24(*(float*)&buf->ptr[i*4+j])); } END_CS; } void r300_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state) { struct r300_fragment_shader *fs = r300_fs(r300); struct rc_constant_list *constants = &fs->shader->code.constants; unsigned i; unsigned count = fs->shader->rc_state_count; unsigned first = fs->shader->externals_count; unsigned end = constants->Count; unsigned j; CS_LOCALS(r300); if (count == 0) return; BEGIN_CS(size); for(i = first; i < end; ++i) { if (constants->Constants[i].Type == RC_CONSTANT_STATE) { float data[4]; get_rc_constant_state(data, r300, &constants->Constants[i]); OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4); for (j = 0; j < 4; j++) OUT_CS(pack_float24(data[j])); } } END_CS; } void r500_emit_fs(struct r300_context* r300, unsigned size, void *state) { struct r300_fragment_shader *fs = r300_fs(r300); CS_LOCALS(r300); WRITE_CS_TABLE(fs->shader->cb_code, fs->shader->cb_code_size); } void r500_emit_fs_constants(struct r300_context* r300, unsigned size, void *state) { struct r300_fragment_shader *fs = r300_fs(r300); struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state; unsigned count = fs->shader->externals_count; CS_LOCALS(r300); if (count == 0) return; BEGIN_CS(size); OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST); OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, count * 4); if (buf->remap_table){ for (unsigned i = 0; i < count; i++) { uint32_t *data = &buf->ptr[buf->remap_table[i]*4]; OUT_CS_TABLE(data, 4); } } else { OUT_CS_TABLE(buf->ptr, count * 4); } END_CS; } void r500_emit_fs_rc_constant_state(struct r300_context* r300, unsigned size, void *state) { struct r300_fragment_shader *fs = r300_fs(r300); struct rc_constant_list *constants = &fs->shader->code.constants; unsigned i; unsigned count = fs->shader->rc_state_count; unsigned first = fs->shader->externals_count; unsigned end = constants->Count; CS_LOCALS(r300); if (count == 0) return; BEGIN_CS(size); for(i = first; i < end; ++i) { if (constants->Constants[i].Type == RC_CONSTANT_STATE) { float data[4]; get_rc_constant_state(data, r300, &constants->Constants[i]); OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST | (i & R500_GA_US_VECTOR_INDEX_MASK)); OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, 4); OUT_CS_TABLE(data, 4); } } END_CS; } void r300_emit_gpu_flush(struct r300_context *r300, unsigned size, void *state) { struct r300_gpu_flush *gpuflush = (struct r300_gpu_flush*)state; struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)r300->fb_state.state; uint32_t height = fb->height; uint32_t width = fb->width; CS_LOCALS(r300); if (r300->cbzb_clear) { struct r300_surface *surf = r300_surface(fb->cbufs[0]); height = surf->cbzb_height; width = surf->cbzb_width; } DBG(r300, DBG_SCISSOR, "r300: Scissor width: %i, height: %i, CBZB clear: %s\n", width, height, r300->cbzb_clear ? "YES" : "NO"); BEGIN_CS(size); /* Set up scissors. * By writing to the SC registers, SC & US assert idle. */ OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2); if (r300->screen->caps.is_r500) { OUT_CS(0); OUT_CS(((width - 1) << R300_SCISSORS_X_SHIFT) | ((height - 1) << R300_SCISSORS_Y_SHIFT)); } else { OUT_CS((1440 << R300_SCISSORS_X_SHIFT) | (1440 << R300_SCISSORS_Y_SHIFT)); OUT_CS(((width + 1440-1) << R300_SCISSORS_X_SHIFT) | ((height + 1440-1) << R300_SCISSORS_Y_SHIFT)); } /* Flush CB & ZB caches and wait until the 3D engine is idle and clean. */ OUT_CS_TABLE(gpuflush->cb_flush_clean, 6); END_CS; } void r300_emit_aa_state(struct r300_context *r300, unsigned size, void *state) { struct r300_aa_state *aa = (struct r300_aa_state*)state; CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_REG(R300_GB_AA_CONFIG, aa->aa_config); if (aa->dest) { OUT_CS_REG(R300_RB3D_AARESOLVE_OFFSET, aa->dest->offset); OUT_CS_RELOC(aa->dest); OUT_CS_REG(R300_RB3D_AARESOLVE_PITCH, aa->dest->pitch); } OUT_CS_REG(R300_RB3D_AARESOLVE_CTL, aa->aaresolve_ctl); END_CS; } void r300_emit_fb_state(struct r300_context* r300, unsigned size, void* state) { struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)state; struct r300_surface* surf; unsigned i; boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ); uint32_t rb3d_cctl = 0; CS_LOCALS(r300); BEGIN_CS(size); /* NUM_MULTIWRITES replicates COLOR[0] to all colorbuffers, which is not * what we usually want. */ if (r300->screen->caps.is_r500) { rb3d_cctl = R300_RB3D_CCTL_INDEPENDENT_COLORFORMAT_ENABLE_ENABLE; } if (fb->nr_cbufs && r300_fragment_shader_writes_all(r300_fs(r300))) { rb3d_cctl |= R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs); } OUT_CS_REG(R300_RB3D_CCTL, rb3d_cctl); /* Set up colorbuffers. */ for (i = 0; i < fb->nr_cbufs; i++) { surf = r300_surface(fb->cbufs[i]); OUT_CS_REG(R300_RB3D_COLOROFFSET0 + (4 * i), surf->offset); OUT_CS_RELOC(surf); OUT_CS_REG(R300_RB3D_COLORPITCH0 + (4 * i), surf->pitch); OUT_CS_RELOC(surf); } /* Set up the ZB part of the CBZB clear. */ if (r300->cbzb_clear) { surf = r300_surface(fb->cbufs[0]); OUT_CS_REG(R300_ZB_FORMAT, surf->cbzb_format); OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->cbzb_midpoint_offset); OUT_CS_RELOC(surf); OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->cbzb_pitch); OUT_CS_RELOC(surf); DBG(r300, DBG_CBZB, "CBZB clearing cbuf %08x %08x\n", surf->cbzb_format, surf->cbzb_pitch); } /* Set up a zbuffer. */ else if (fb->zsbuf) { surf = r300_surface(fb->zsbuf); OUT_CS_REG(R300_ZB_FORMAT, surf->format); OUT_CS_REG(R300_ZB_DEPTHOFFSET, surf->offset); OUT_CS_RELOC(surf); OUT_CS_REG(R300_ZB_DEPTHPITCH, surf->pitch); OUT_CS_RELOC(surf); if (can_hyperz) { /* HiZ RAM. */ OUT_CS_REG(R300_ZB_HIZ_OFFSET, 0); OUT_CS_REG(R300_ZB_HIZ_PITCH, surf->pitch_hiz); /* Z Mask RAM. (compressed zbuffer) */ OUT_CS_REG(R300_ZB_ZMASK_OFFSET, 0); OUT_CS_REG(R300_ZB_ZMASK_PITCH, surf->pitch_zmask); } } END_CS; } void r300_emit_hyperz_state(struct r300_context *r300, unsigned size, void *state) { struct r300_hyperz_state *z = state; CS_LOCALS(r300); if (z->flush) WRITE_CS_TABLE(&z->cb_flush_begin, size); else WRITE_CS_TABLE(&z->cb_begin, size - 2); } void r300_emit_hyperz_end(struct r300_context *r300) { struct r300_hyperz_state z = *(struct r300_hyperz_state*)r300->hyperz_state.state; z.flush = 1; z.zb_bw_cntl = 0; z.zb_depthclearvalue = 0; z.sc_hyperz = R300_SC_HYPERZ_ADJ_2; z.gb_z_peq_config = 0; r300_emit_hyperz_state(r300, r300->hyperz_state.size, &z); } void r300_emit_fb_state_pipelined(struct r300_context *r300, unsigned size, void *state) { struct pipe_framebuffer_state* fb = (struct pipe_framebuffer_state*)r300->fb_state.state; unsigned i, num_cbufs = fb->nr_cbufs; unsigned mspos0, mspos1; CS_LOCALS(r300); /* If we use the multiwrite feature, the colorbuffers 2,3,4 must be * marked as UNUSED in the US block. */ if (r300_fragment_shader_writes_all(r300_fs(r300))) { num_cbufs = MIN2(num_cbufs, 1); } BEGIN_CS(size); /* Colorbuffer format in the US block. * (must be written after unpipelined regs) */ OUT_CS_REG_SEQ(R300_US_OUT_FMT_0, 4); for (i = 0; i < num_cbufs; i++) { OUT_CS(r300_surface(fb->cbufs[i])->format); } for (; i < 4; i++) { OUT_CS(R300_US_OUT_FMT_UNUSED); } /* Multisampling. Depends on framebuffer sample count. * These are pipelined regs and as such cannot be moved * to the AA state. */ mspos0 = 0x66666666; mspos1 = 0x6666666; if (fb->nr_cbufs && fb->cbufs[0]->texture->nr_samples > 1) { /* Subsample placement. These may not be optimal. */ switch (fb->cbufs[0]->texture->nr_samples) { case 2: mspos0 = 0x33996633; mspos1 = 0x6666663; break; case 3: mspos0 = 0x33936933; mspos1 = 0x6666663; break; case 4: mspos0 = 0x33939933; mspos1 = 0x3966663; break; case 6: mspos0 = 0x22a2aa22; mspos1 = 0x2a65672; break; default: debug_printf("r300: Bad number of multisamples!\n"); } } OUT_CS_REG_SEQ(R300_GB_MSPOS0, 2); OUT_CS(mspos0); OUT_CS(mspos1); END_CS; } void r300_emit_query_start(struct r300_context *r300, unsigned size, void*state) { struct r300_query *query = r300->query_current; CS_LOCALS(r300); if (!query) return; BEGIN_CS(size); if (r300->screen->caps.family == CHIP_FAMILY_RV530) { OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL); } else { OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL); } OUT_CS_REG(R300_ZB_ZPASS_DATA, 0); END_CS; query->begin_emitted = TRUE; } static void r300_emit_query_end_frag_pipes(struct r300_context *r300, struct r300_query *query) { struct r300_capabilities* caps = &r300->screen->caps; CS_LOCALS(r300); assert(caps->num_frag_pipes); BEGIN_CS(6 * caps->num_frag_pipes + 2); /* I'm not so sure I like this switch, but it's hard to be elegant * when there's so many special cases... * * So here's the basic idea. For each pipe, enable writes to it only, * then put out the relocation for ZPASS_ADDR, taking into account a * 4-byte offset for each pipe. RV380 and older are special; they have * only two pipes, and the second pipe's enable is on bit 3, not bit 1, * so there's a chipset cap for that. */ switch (caps->num_frag_pipes) { case 4: /* pipe 3 only */ OUT_CS_REG(R300_SU_REG_DEST, 1 << 3); OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 3) * 4); OUT_CS_RELOC(r300->query_current); case 3: /* pipe 2 only */ OUT_CS_REG(R300_SU_REG_DEST, 1 << 2); OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 2) * 4); OUT_CS_RELOC(r300->query_current); case 2: /* pipe 1 only */ /* As mentioned above, accomodate RV380 and older. */ OUT_CS_REG(R300_SU_REG_DEST, 1 << (caps->high_second_pipe ? 3 : 1)); OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4); OUT_CS_RELOC(r300->query_current); case 1: /* pipe 0 only */ OUT_CS_REG(R300_SU_REG_DEST, 1 << 0); OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4); OUT_CS_RELOC(r300->query_current); break; default: fprintf(stderr, "r300: Implementation error: Chipset reports %d" " pixel pipes!\n", caps->num_frag_pipes); abort(); } /* And, finally, reset it to normal... */ OUT_CS_REG(R300_SU_REG_DEST, 0xF); END_CS; } static void rv530_emit_query_end_single_z(struct r300_context *r300, struct r300_query *query) { CS_LOCALS(r300); BEGIN_CS(8); OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0); OUT_CS_REG(R300_ZB_ZPASS_ADDR, query->num_results * 4); OUT_CS_RELOC(r300->query_current); OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL); END_CS; } static void rv530_emit_query_end_double_z(struct r300_context *r300, struct r300_query *query) { CS_LOCALS(r300); BEGIN_CS(14); OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0); OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 0) * 4); OUT_CS_RELOC(r300->query_current); OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1); OUT_CS_REG(R300_ZB_ZPASS_ADDR, (query->num_results + 1) * 4); OUT_CS_RELOC(r300->query_current); OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL); END_CS; } void r300_emit_query_end(struct r300_context* r300) { struct r300_capabilities *caps = &r300->screen->caps; struct r300_query *query = r300->query_current; if (!query) return; if (query->begin_emitted == FALSE) return; if (caps->family == CHIP_FAMILY_RV530) { if (caps->num_z_pipes == 2) rv530_emit_query_end_double_z(r300, query); else rv530_emit_query_end_single_z(r300, query); } else r300_emit_query_end_frag_pipes(r300, query); query->begin_emitted = FALSE; query->num_results += query->num_pipes; /* XXX grab all the results and reset the counter. */ if (query->num_results >= query->buffer_size / 4 - 4) { query->num_results = (query->buffer_size / 4) / 2; fprintf(stderr, "r300: Rewinding OQBO...\n"); } } void r300_emit_invariant_state(struct r300_context *r300, unsigned size, void *state) { CS_LOCALS(r300); WRITE_CS_TABLE(state, size); } void r300_emit_rs_state(struct r300_context* r300, unsigned size, void* state) { struct r300_rs_state* rs = state; CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_TABLE(rs->cb_main, RS_STATE_MAIN_SIZE); if (rs->polygon_offset_enable) { if (r300->zbuffer_bpp == 16) { OUT_CS_TABLE(rs->cb_poly_offset_zb16, 5); } else { OUT_CS_TABLE(rs->cb_poly_offset_zb24, 5); } } END_CS; } void r300_emit_rs_block_state(struct r300_context* r300, unsigned size, void* state) { struct r300_rs_block* rs = (struct r300_rs_block*)state; unsigned i; /* It's the same for both INST and IP tables */ unsigned count = (rs->inst_count & R300_RS_INST_COUNT_MASK) + 1; CS_LOCALS(r300); if (DBG_ON(r300, DBG_RS_BLOCK)) { r500_dump_rs_block(rs); fprintf(stderr, "r300: RS emit:\n"); for (i = 0; i < count; i++) fprintf(stderr, " : ip %d: 0x%08x\n", i, rs->ip[i]); for (i = 0; i < count; i++) fprintf(stderr, " : inst %d: 0x%08x\n", i, rs->inst[i]); fprintf(stderr, " : count: 0x%08x inst_count: 0x%08x\n", rs->count, rs->inst_count); } BEGIN_CS(size); OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2); OUT_CS(rs->vap_vtx_state_cntl); OUT_CS(rs->vap_vsm_vtx_assm); OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2); OUT_CS(rs->vap_out_vtx_fmt[0]); OUT_CS(rs->vap_out_vtx_fmt[1]); OUT_CS_REG_SEQ(R300_GB_ENABLE, 1); OUT_CS(rs->gb_enable); if (r300->screen->caps.is_r500) { OUT_CS_REG_SEQ(R500_RS_IP_0, count); } else { OUT_CS_REG_SEQ(R300_RS_IP_0, count); } OUT_CS_TABLE(rs->ip, count); OUT_CS_REG_SEQ(R300_RS_COUNT, 2); OUT_CS(rs->count); OUT_CS(rs->inst_count); if (r300->screen->caps.is_r500) { OUT_CS_REG_SEQ(R500_RS_INST_0, count); } else { OUT_CS_REG_SEQ(R300_RS_INST_0, count); } OUT_CS_TABLE(rs->inst, count); END_CS; } void r300_emit_scissor_state(struct r300_context* r300, unsigned size, void* state) { struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state; CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_REG_SEQ(R300_SC_CLIPRECT_TL_0, 2); if (r300->screen->caps.is_r500) { OUT_CS((scissor->minx << R300_CLIPRECT_X_SHIFT) | (scissor->miny << R300_CLIPRECT_Y_SHIFT)); OUT_CS(((scissor->maxx - 1) << R300_CLIPRECT_X_SHIFT) | ((scissor->maxy - 1) << R300_CLIPRECT_Y_SHIFT)); } else { OUT_CS(((scissor->minx + 1440) << R300_CLIPRECT_X_SHIFT) | ((scissor->miny + 1440) << R300_CLIPRECT_Y_SHIFT)); OUT_CS(((scissor->maxx + 1440-1) << R300_CLIPRECT_X_SHIFT) | ((scissor->maxy + 1440-1) << R300_CLIPRECT_Y_SHIFT)); } END_CS; } void r300_emit_textures_state(struct r300_context *r300, unsigned size, void *state) { struct r300_textures_state *allstate = (struct r300_textures_state*)state; struct r300_texture_sampler_state *texstate; struct r300_resource *tex; unsigned i; CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_REG(R300_TX_ENABLE, allstate->tx_enable); for (i = 0; i < allstate->count; i++) { if ((1 << i) & allstate->tx_enable) { texstate = &allstate->regs[i]; tex = r300_resource(allstate->sampler_views[i]->base.texture); OUT_CS_REG(R300_TX_FILTER0_0 + (i * 4), texstate->filter0); OUT_CS_REG(R300_TX_FILTER1_0 + (i * 4), texstate->filter1); OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (i * 4), texstate->border_color); OUT_CS_REG(R300_TX_FORMAT0_0 + (i * 4), texstate->format.format0); OUT_CS_REG(R300_TX_FORMAT1_0 + (i * 4), texstate->format.format1); OUT_CS_REG(R300_TX_FORMAT2_0 + (i * 4), texstate->format.format2); OUT_CS_REG(R300_TX_OFFSET_0 + (i * 4), texstate->format.tile_config); OUT_CS_RELOC(tex); } } END_CS; } void r300_emit_vertex_arrays(struct r300_context* r300, int offset, boolean indexed, int instance_id) { struct pipe_vertex_buffer *vbuf = r300->vbuf_mgr->vertex_buffer; struct pipe_resource **valid_vbuf = r300->vbuf_mgr->real_vertex_buffer; struct pipe_vertex_element *velem = r300->velems->velem; struct r300_resource *buf; int i; unsigned vertex_array_count = r300->velems->count; unsigned packet_size = (vertex_array_count * 3 + 1) / 2; struct pipe_vertex_buffer *vb1, *vb2; unsigned *hw_format_size = r300->velems->format_size; unsigned size1, size2, offset1, offset2, stride1, stride2; CS_LOCALS(r300); BEGIN_CS(2 + packet_size + vertex_array_count * 2); OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size); OUT_CS(vertex_array_count | (!indexed ? R300_VC_FORCE_PREFETCH : 0)); if (instance_id == -1) { /* Non-instanced arrays. This ignores instance_divisor and instance_id. */ for (i = 0; i < vertex_array_count - 1; i += 2) { vb1 = &vbuf[velem[i].vertex_buffer_index]; vb2 = &vbuf[velem[i+1].vertex_buffer_index]; size1 = hw_format_size[i]; size2 = hw_format_size[i+1]; OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) | R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride)); OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride); OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride); } if (vertex_array_count & 1) { vb1 = &vbuf[velem[i].vertex_buffer_index]; size1 = hw_format_size[i]; OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride)); OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride); } for (i = 0; i < vertex_array_count; i++) { buf = r300_resource(valid_vbuf[velem[i].vertex_buffer_index]); OUT_CS_RELOC(buf); } } else { /* Instanced arrays. */ for (i = 0; i < vertex_array_count - 1; i += 2) { vb1 = &vbuf[velem[i].vertex_buffer_index]; vb2 = &vbuf[velem[i+1].vertex_buffer_index]; size1 = hw_format_size[i]; size2 = hw_format_size[i+1]; if (velem[i].instance_divisor) { stride1 = 0; offset1 = vb1->buffer_offset + velem[i].src_offset + (instance_id / velem[i].instance_divisor) * vb1->stride; } else { stride1 = vb1->stride; offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride; } if (velem[i+1].instance_divisor) { stride2 = 0; offset2 = vb2->buffer_offset + velem[i+1].src_offset + (instance_id / velem[i+1].instance_divisor) * vb2->stride; } else { stride2 = vb2->stride; offset2 = vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride; } OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1) | R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(stride2)); OUT_CS(offset1); OUT_CS(offset2); } if (vertex_array_count & 1) { vb1 = &vbuf[velem[i].vertex_buffer_index]; size1 = hw_format_size[i]; if (velem[i].instance_divisor) { stride1 = 0; offset1 = vb1->buffer_offset + velem[i].src_offset + (instance_id / velem[i].instance_divisor) * vb1->stride; } else { stride1 = vb1->stride; offset1 = vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride; } OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(stride1)); OUT_CS(offset1); } for (i = 0; i < vertex_array_count; i++) { buf = r300_resource(valid_vbuf[velem[i].vertex_buffer_index]); OUT_CS_RELOC(buf); } } END_CS; } void r300_emit_vertex_arrays_swtcl(struct r300_context *r300, boolean indexed) { CS_LOCALS(r300); DBG(r300, DBG_SWTCL, "r300: Preparing vertex buffer %p for render, " "vertex size %d\n", r300->vbo, r300->vertex_info.size); /* Set the pointer to our vertex buffer. The emitted values are this: * PACKET3 [3D_LOAD_VBPNTR] * COUNT [1] * FORMAT [size | stride << 8] * OFFSET [offset into BO] * VBPNTR [relocated BO] */ BEGIN_CS(7); OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, 3); OUT_CS(1 | (!indexed ? R300_VC_FORCE_PREFETCH : 0)); OUT_CS(r300->vertex_info.size | (r300->vertex_info.size << 8)); OUT_CS(r300->draw_vbo_offset); OUT_CS(0); OUT_CS_RELOC(r300_resource(r300->vbo)); END_CS; } void r300_emit_vertex_stream_state(struct r300_context* r300, unsigned size, void* state) { struct r300_vertex_stream_state *streams = (struct r300_vertex_stream_state*)state; unsigned i; CS_LOCALS(r300); if (DBG_ON(r300, DBG_PSC)) { fprintf(stderr, "r300: PSC emit:\n"); for (i = 0; i < streams->count; i++) { fprintf(stderr, " : prog_stream_cntl%d: 0x%08x\n", i, streams->vap_prog_stream_cntl[i]); } for (i = 0; i < streams->count; i++) { fprintf(stderr, " : prog_stream_cntl_ext%d: 0x%08x\n", i, streams->vap_prog_stream_cntl_ext[i]); } } BEGIN_CS(size); OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, streams->count); OUT_CS_TABLE(streams->vap_prog_stream_cntl, streams->count); OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, streams->count); OUT_CS_TABLE(streams->vap_prog_stream_cntl_ext, streams->count); END_CS; } void r300_emit_pvs_flush(struct r300_context* r300, unsigned size, void* state) { CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0); END_CS; } void r300_emit_vap_invariant_state(struct r300_context *r300, unsigned size, void *state) { CS_LOCALS(r300); WRITE_CS_TABLE(state, size); } void r300_emit_vs_state(struct r300_context* r300, unsigned size, void* state) { struct r300_vertex_shader* vs = (struct r300_vertex_shader*)state; struct r300_vertex_program_code* code = &vs->code; struct r300_screen* r300screen = r300->screen; unsigned instruction_count = code->length / 4; unsigned vtx_mem_size = r300screen->caps.is_r500 ? 128 : 72; unsigned input_count = MAX2(util_bitcount(code->InputsRead), 1); unsigned output_count = MAX2(util_bitcount(code->OutputsWritten), 1); unsigned temp_count = MAX2(code->num_temporaries, 1); unsigned pvs_num_slots = MIN3(vtx_mem_size / input_count, vtx_mem_size / output_count, 10); unsigned pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 5); CS_LOCALS(r300); BEGIN_CS(size); /* R300_VAP_PVS_CODE_CNTL_0 * R300_VAP_PVS_CONST_CNTL * R300_VAP_PVS_CODE_CNTL_1 * See the r5xx docs for instructions on how to use these. */ OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_0, R300_PVS_FIRST_INST(0) | R300_PVS_XYZW_VALID_INST(instruction_count - 1) | R300_PVS_LAST_INST(instruction_count - 1)); OUT_CS_REG(R300_VAP_PVS_CODE_CNTL_1, instruction_count - 1); OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0); OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length); OUT_CS_TABLE(code->body.d, code->length); OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) | R300_PVS_NUM_CNTLRS(pvs_num_controllers) | R300_PVS_NUM_FPUS(r300screen->caps.num_vert_fpus) | R300_PVS_VF_MAX_VTX_NUM(12) | (r300screen->caps.is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0)); /* Emit flow control instructions. */ if (code->num_fc_ops) { OUT_CS_REG(R300_VAP_PVS_FLOW_CNTL_OPC, code->fc_ops); if (r300screen->caps.is_r500) { OUT_CS_REG_SEQ(R500_VAP_PVS_FLOW_CNTL_ADDRS_LW_0, code->num_fc_ops * 2); OUT_CS_TABLE(code->fc_op_addrs.r500, code->num_fc_ops * 2); } else { OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_ADDRS_0, code->num_fc_ops); OUT_CS_TABLE(code->fc_op_addrs.r300, code->num_fc_ops); } OUT_CS_REG_SEQ(R300_VAP_PVS_FLOW_CNTL_LOOP_INDEX_0, code->num_fc_ops); OUT_CS_TABLE(code->fc_loop_index, code->num_fc_ops); } END_CS; } void r300_emit_vs_constants(struct r300_context* r300, unsigned size, void *state) { unsigned count = ((struct r300_vertex_shader*)r300->vs_state.state)->externals_count; struct r300_constant_buffer *buf = (struct r300_constant_buffer*)state; struct r300_vertex_shader *vs = (struct r300_vertex_shader*)r300->vs_state.state; unsigned i; int imm_first = vs->externals_count; int imm_end = vs->code.constants.Count; int imm_count = vs->immediates_count; CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_REG(R300_VAP_PVS_CONST_CNTL, R300_PVS_CONST_BASE_OFFSET(buf->buffer_base) | R300_PVS_MAX_CONST_ADDR(MAX2(imm_end - 1, 0))); if (vs->externals_count) { OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, (r300->screen->caps.is_r500 ? R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base); OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, count * 4); if (buf->remap_table){ for (i = 0; i < count; i++) { uint32_t *data = &buf->ptr[buf->remap_table[i]*4]; OUT_CS_TABLE(data, 4); } } else { OUT_CS_TABLE(buf->ptr, count * 4); } } /* Emit immediates. */ if (imm_count) { OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, (r300->screen->caps.is_r500 ? R500_PVS_CONST_START : R300_PVS_CONST_START) + buf->buffer_base + imm_first); OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, imm_count * 4); for (i = imm_first; i < imm_end; i++) { const float *data = vs->code.constants.Constants[i].u.Immediate; OUT_CS_TABLE(data, 4); } } END_CS; } void r300_emit_viewport_state(struct r300_context* r300, unsigned size, void* state) { struct r300_viewport_state* viewport = (struct r300_viewport_state*)state; CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6); OUT_CS_TABLE(&viewport->xscale, 6); OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control); END_CS; } void r300_emit_hiz_clear(struct r300_context *r300, unsigned size, void *state) { struct pipe_framebuffer_state *fb = (struct pipe_framebuffer_state*)r300->fb_state.state; struct r300_resource* tex; CS_LOCALS(r300); tex = r300_resource(fb->zsbuf->texture); BEGIN_CS(size); OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_HIZ, 2); OUT_CS(0); OUT_CS(tex->tex.hiz_dwords[fb->zsbuf->u.tex.level]); OUT_CS(r300->hiz_clear_value); END_CS; /* Mark the current zbuffer's hiz ram as in use. */ r300->hiz_in_use = TRUE; r300->hiz_func = HIZ_FUNC_NONE; r300_mark_atom_dirty(r300, &r300->hyperz_state); } void r300_emit_zmask_clear(struct r300_context *r300, unsigned size, void *state) { struct pipe_framebuffer_state *fb = (struct pipe_framebuffer_state*)r300->fb_state.state; struct r300_resource *tex; CS_LOCALS(r300); tex = r300_resource(fb->zsbuf->texture); BEGIN_CS(size); OUT_CS_PKT3(R300_PACKET3_3D_CLEAR_ZMASK, 2); OUT_CS(0); OUT_CS(tex->tex.zmask_dwords[fb->zsbuf->u.tex.level]); OUT_CS(0); END_CS; /* Mark the current zbuffer's zmask as in use. */ r300->zmask_in_use = TRUE; r300_mark_atom_dirty(r300, &r300->hyperz_state); } void r300_emit_ztop_state(struct r300_context* r300, unsigned size, void* state) { struct r300_ztop_state* ztop = (struct r300_ztop_state*)state; CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top); END_CS; } void r300_emit_texture_cache_inval(struct r300_context* r300, unsigned size, void* state) { CS_LOCALS(r300); BEGIN_CS(size); OUT_CS_REG(R300_TX_INVALTAGS, 0); END_CS; } boolean r300_emit_buffer_validate(struct r300_context *r300, boolean do_validate_vertex_buffers, struct pipe_resource *index_buffer) { struct pipe_framebuffer_state *fb = (struct pipe_framebuffer_state*)r300->fb_state.state; struct r300_textures_state *texstate = (struct r300_textures_state*)r300->textures_state.state; struct r300_resource *tex; unsigned i; boolean flushed = FALSE; validate: if (r300->fb_state.dirty) { /* Color buffers... */ for (i = 0; i < fb->nr_cbufs; i++) { tex = r300_resource(fb->cbufs[i]->texture); assert(tex && tex->buf && "cbuf is marked, but NULL!"); r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, 0, r300_surface(fb->cbufs[i])->domain); } /* ...depth buffer... */ if (fb->zsbuf) { tex = r300_resource(fb->zsbuf->texture); assert(tex && tex->buf && "zsbuf is marked, but NULL!"); r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, 0, r300_surface(fb->zsbuf)->domain); } } if (r300->textures_state.dirty) { /* ...textures... */ for (i = 0; i < texstate->count; i++) { if (!(texstate->tx_enable & (1 << i))) { continue; } tex = r300_resource(texstate->sampler_views[i]->base.texture); r300->rws->cs_add_reloc(r300->cs, tex->cs_buf, tex->domain, 0); } } /* ...occlusion query buffer... */ if (r300->query_current) r300->rws->cs_add_reloc(r300->cs, r300->query_current->cs_buf, 0, r300->query_current->domain); /* ...vertex buffer for SWTCL path... */ if (r300->vbo) r300->rws->cs_add_reloc(r300->cs, r300_resource(r300->vbo)->cs_buf, r300_resource(r300->vbo)->domain, 0); /* ...vertex buffers for HWTCL path... */ if (do_validate_vertex_buffers && r300->vertex_arrays_dirty) { struct pipe_resource **buf = r300->vbuf_mgr->real_vertex_buffer; struct pipe_resource **last = r300->vbuf_mgr->real_vertex_buffer + r300->vbuf_mgr->nr_real_vertex_buffers; for (; buf != last; buf++) { if (!*buf) continue; r300->rws->cs_add_reloc(r300->cs, r300_resource(*buf)->cs_buf, r300_resource(*buf)->domain, 0); } } /* ...and index buffer for HWTCL path. */ if (index_buffer) r300->rws->cs_add_reloc(r300->cs, r300_resource(index_buffer)->cs_buf, r300_resource(index_buffer)->domain, 0); /* Now do the validation. */ if (!r300->rws->cs_validate(r300->cs)) { /* Ooops, an infinite loop, give up. */ if (flushed) return FALSE; r300_flush(&r300->context, R300_FLUSH_ASYNC, NULL); flushed = TRUE; goto validate; } return TRUE; } unsigned r300_get_num_dirty_dwords(struct r300_context *r300) { struct r300_atom* atom; unsigned dwords = 0; foreach_dirty_atom(r300, atom) { if (atom->dirty) { dwords += atom->size; } } /* let's reserve some more, just in case */ dwords += 32; return dwords; } unsigned r300_get_num_cs_end_dwords(struct r300_context *r300) { unsigned dwords = 0; /* Emitted in flush. */ dwords += 26; /* emit_query_end */ dwords += r300->hyperz_state.size + 2; /* emit_hyperz_end + zcache flush */ if (r300->screen->caps.is_r500) dwords += 2; return dwords; } /* Emit all dirty state. */ void r300_emit_dirty_state(struct r300_context* r300) { struct r300_atom *atom; foreach_dirty_atom(r300, atom) { if (atom->dirty) { atom->emit(r300, atom->size, atom->state); atom->dirty = FALSE; } } r300->first_dirty = NULL; r300->last_dirty = NULL; r300->dirty_hw++; }