/* * Copyright 2008 Corbin Simpson * Joakim Sindholt * Copyright 2009 Marek Olšák * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "util/u_math.h" #include "util/u_memory.h" #include "tgsi/tgsi_dump.h" #include "tgsi/tgsi_ureg.h" #include "r300_cb.h" #include "r300_context.h" #include "r300_emit.h" #include "r300_screen.h" #include "r300_fs.h" #include "r300_reg.h" #include "r300_tgsi_to_rc.h" #include "radeon_code.h" #include "radeon_compiler.h" /* Convert info about FS input semantics to r300_shader_semantics. */ void r300_shader_read_fs_inputs(struct tgsi_shader_info* info, struct r300_shader_semantics* fs_inputs) { int i; unsigned index; r300_shader_semantics_reset(fs_inputs); for (i = 0; i < info->num_inputs; i++) { index = info->input_semantic_index[i]; switch (info->input_semantic_name[i]) { case TGSI_SEMANTIC_COLOR: assert(index < ATTR_COLOR_COUNT); fs_inputs->color[index] = i; break; case TGSI_SEMANTIC_GENERIC: assert(index < ATTR_GENERIC_COUNT); fs_inputs->generic[index] = i; break; case TGSI_SEMANTIC_FOG: assert(index == 0); fs_inputs->fog = i; break; case TGSI_SEMANTIC_POSITION: assert(index == 0); fs_inputs->wpos = i; break; case TGSI_SEMANTIC_FACE: assert(index == 0); fs_inputs->face = i; break; default: fprintf(stderr, "r300: FP: Unknown input semantic: %i\n", info->input_semantic_name[i]); } } } static void find_output_registers(struct r300_fragment_program_compiler * compiler, struct r300_fragment_shader_code *shader) { unsigned i, colorbuf_count = 0; /* Mark the outputs as not present initially */ compiler->OutputColor[0] = shader->info.num_outputs; compiler->OutputColor[1] = shader->info.num_outputs; compiler->OutputColor[2] = shader->info.num_outputs; compiler->OutputColor[3] = shader->info.num_outputs; compiler->OutputDepth = shader->info.num_outputs; /* Now see where they really are. */ for(i = 0; i < shader->info.num_outputs; ++i) { switch(shader->info.output_semantic_name[i]) { case TGSI_SEMANTIC_COLOR: compiler->OutputColor[colorbuf_count] = i; colorbuf_count++; break; case TGSI_SEMANTIC_POSITION: compiler->OutputDepth = i; break; } } } static void allocate_hardware_inputs( struct r300_fragment_program_compiler * c, void (*allocate)(void * data, unsigned input, unsigned hwreg), void * mydata) { struct r300_shader_semantics* inputs = (struct r300_shader_semantics*)c->UserData; int i, reg = 0; /* Allocate input registers. */ for (i = 0; i < ATTR_COLOR_COUNT; i++) { if (inputs->color[i] != ATTR_UNUSED) { allocate(mydata, inputs->color[i], reg++); } } if (inputs->face != ATTR_UNUSED) { allocate(mydata, inputs->face, reg++); } for (i = 0; i < ATTR_GENERIC_COUNT; i++) { if (inputs->generic[i] != ATTR_UNUSED) { allocate(mydata, inputs->generic[i], reg++); } } if (inputs->fog != ATTR_UNUSED) { allocate(mydata, inputs->fog, reg++); } if (inputs->wpos != ATTR_UNUSED) { allocate(mydata, inputs->wpos, reg++); } } static void get_external_state( struct r300_context* r300, struct r300_fragment_program_external_state* state) { struct r300_textures_state *texstate = r300->textures_state.state; unsigned i; unsigned char *swizzle; for (i = 0; i < texstate->sampler_state_count; i++) { struct r300_sampler_state* s = texstate->sampler_states[i]; if (!s) { continue; } if (s->state.compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) { state->unit[i].compare_mode_enabled = 1; /* Pass depth texture swizzling to the compiler. */ if (texstate->sampler_views[i]) { swizzle = texstate->sampler_views[i]->swizzle; state->unit[i].depth_texture_swizzle = RC_MAKE_SWIZZLE(swizzle[0], swizzle[1], swizzle[2], swizzle[3]); } else { state->unit[i].depth_texture_swizzle = RC_SWIZZLE_XYZW; } /* Fortunately, no need to translate this. */ state->unit[i].texture_compare_func = s->state.compare_func; } state->unit[i].non_normalized_coords = !s->state.normalized_coords; if (texstate->sampler_views[i]) { struct r300_texture *t; t = (struct r300_texture*)texstate->sampler_views[i]->base.texture; /* XXX this should probably take into account STR, not just S. */ if (t->desc.is_npot) { switch (s->state.wrap_s) { case PIPE_TEX_WRAP_REPEAT: state->unit[i].wrap_mode = RC_WRAP_REPEAT; state->unit[i].fake_npot = TRUE; break; case PIPE_TEX_WRAP_MIRROR_REPEAT: state->unit[i].wrap_mode = RC_WRAP_MIRRORED_REPEAT; state->unit[i].fake_npot = TRUE; break; case PIPE_TEX_WRAP_MIRROR_CLAMP: case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE: case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER: state->unit[i].wrap_mode = RC_WRAP_MIRRORED_CLAMP; state->unit[i].fake_npot = TRUE; break; default: state->unit[i].wrap_mode = RC_WRAP_NONE; break; } } } } } static void r300_translate_fragment_shader( struct r300_context* r300, struct r300_fragment_shader_code* shader, const struct tgsi_token *tokens); static void r300_dummy_fragment_shader( struct r300_context* r300, struct r300_fragment_shader_code* shader) { struct pipe_shader_state state; struct ureg_program *ureg; struct ureg_dst out; struct ureg_src imm; /* Make a simple fragment shader which outputs (0, 0, 0, 1) */ ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT); out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0); imm = ureg_imm4f(ureg, 0, 0, 0, 1); ureg_MOV(ureg, out, imm); ureg_END(ureg); state.tokens = ureg_finalize(ureg); shader->dummy = TRUE; r300_translate_fragment_shader(r300, shader, state.tokens); ureg_destroy(ureg); } static void r300_emit_fs_code_to_buffer( struct r300_context *r300, struct r300_fragment_shader_code *shader) { struct rX00_fragment_program_code *generic_code = &shader->code; unsigned imm_count = shader->immediates_count; unsigned imm_first = shader->externals_count; unsigned imm_end = generic_code->constants.Count; struct rc_constant *constants = generic_code->constants.Constants; unsigned i; CB_LOCALS; if (r300->screen->caps.is_r500) { struct r500_fragment_program_code *code = &generic_code->code.r500; shader->cb_code_size = 19 + ((code->inst_end + 1) * 6) + imm_count * 7 + code->int_constant_count * 2; NEW_CB(shader->cb_code, shader->cb_code_size); OUT_CB_REG(R500_US_CONFIG, R500_ZERO_TIMES_ANYTHING_EQUALS_ZERO); OUT_CB_REG(R500_US_PIXSIZE, code->max_temp_idx); OUT_CB_REG(R500_US_FC_CTRL, code->us_fc_ctrl); for(i = 0; i < code->int_constant_count; i++){ OUT_CB_REG(R500_US_FC_INT_CONST_0 + (i * 4), code->int_constants[i]); } OUT_CB_REG(R500_US_CODE_RANGE, R500_US_CODE_RANGE_ADDR(0) | R500_US_CODE_RANGE_SIZE(code->inst_end)); OUT_CB_REG(R500_US_CODE_OFFSET, 0); OUT_CB_REG(R500_US_CODE_ADDR, R500_US_CODE_START_ADDR(0) | R500_US_CODE_END_ADDR(code->inst_end)); OUT_CB_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_INSTR); OUT_CB_ONE_REG(R500_GA_US_VECTOR_DATA, (code->inst_end + 1) * 6); for (i = 0; i <= code->inst_end; i++) { OUT_CB(code->inst[i].inst0); OUT_CB(code->inst[i].inst1); OUT_CB(code->inst[i].inst2); OUT_CB(code->inst[i].inst3); OUT_CB(code->inst[i].inst4); OUT_CB(code->inst[i].inst5); } /* Emit immediates. */ if (imm_count) { for(i = imm_first; i < imm_end; ++i) { if (constants[i].Type == RC_CONSTANT_IMMEDIATE) { const float *data = constants[i].u.Immediate; OUT_CB_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST | (i & R500_GA_US_VECTOR_INDEX_MASK)); OUT_CB_ONE_REG(R500_GA_US_VECTOR_DATA, 4); OUT_CB_TABLE(data, 4); } } } } else { /* r300 */ struct r300_fragment_program_code *code = &generic_code->code.r300; shader->cb_code_size = 19 + (r300->screen->caps.is_r400 ? 2 : 0) + code->alu.length * 4 + (code->tex.length ? (1 + code->tex.length) : 0) + imm_count * 5; NEW_CB(shader->cb_code, shader->cb_code_size); if (r300->screen->caps.is_r400) OUT_CB_REG(R400_US_CODE_BANK, 0); OUT_CB_REG(R300_US_CONFIG, code->config); OUT_CB_REG(R300_US_PIXSIZE, code->pixsize); OUT_CB_REG(R300_US_CODE_OFFSET, code->code_offset); OUT_CB_REG_SEQ(R300_US_CODE_ADDR_0, 4); OUT_CB_TABLE(code->code_addr, 4); OUT_CB_REG_SEQ(R300_US_ALU_RGB_INST_0, code->alu.length); for (i = 0; i < code->alu.length; i++) OUT_CB(code->alu.inst[i].rgb_inst); OUT_CB_REG_SEQ(R300_US_ALU_RGB_ADDR_0, code->alu.length); for (i = 0; i < code->alu.length; i++) OUT_CB(code->alu.inst[i].rgb_addr); OUT_CB_REG_SEQ(R300_US_ALU_ALPHA_INST_0, code->alu.length); for (i = 0; i < code->alu.length; i++) OUT_CB(code->alu.inst[i].alpha_inst); OUT_CB_REG_SEQ(R300_US_ALU_ALPHA_ADDR_0, code->alu.length); for (i = 0; i < code->alu.length; i++) OUT_CB(code->alu.inst[i].alpha_addr); if (code->tex.length) { OUT_CB_REG_SEQ(R300_US_TEX_INST_0, code->tex.length); OUT_CB_TABLE(code->tex.inst, code->tex.length); } /* Emit immediates. */ if (imm_count) { for(i = imm_first; i < imm_end; ++i) { if (constants[i].Type == RC_CONSTANT_IMMEDIATE) { const float *data = constants[i].u.Immediate; OUT_CB_REG_SEQ(R300_PFS_PARAM_0_X + i * 16, 4); OUT_CB(pack_float24(data[0])); OUT_CB(pack_float24(data[1])); OUT_CB(pack_float24(data[2])); OUT_CB(pack_float24(data[3])); } } } } OUT_CB_REG(R300_FG_DEPTH_SRC, shader->fg_depth_src); OUT_CB_REG(R300_US_W_FMT, shader->us_out_w); END_CB; } static void r300_translate_fragment_shader( struct r300_context* r300, struct r300_fragment_shader_code* shader, const struct tgsi_token *tokens) { struct r300_fragment_program_compiler compiler; struct tgsi_to_rc ttr; int wpos, face; unsigned i; tgsi_scan_shader(tokens, &shader->info); r300_shader_read_fs_inputs(&shader->info, &shader->inputs); wpos = shader->inputs.wpos; face = shader->inputs.face; /* Setup the compiler. */ memset(&compiler, 0, sizeof(compiler)); rc_init(&compiler.Base); compiler.Base.Debug = DBG_ON(r300, DBG_FP); compiler.code = &shader->code; compiler.state = shader->compare_state; compiler.Base.is_r500 = r300->screen->caps.is_r500; compiler.Base.disable_optimizations = DBG_ON(r300, DBG_NO_OPT); compiler.Base.has_half_swizzles = TRUE; compiler.Base.has_presub = TRUE; compiler.Base.max_temp_regs = compiler.Base.is_r500 ? 128 : 32; compiler.Base.max_constants = compiler.Base.is_r500 ? 256 : 32; compiler.Base.max_alu_insts = compiler.Base.is_r500 ? 512 : 64; compiler.Base.remove_unused_constants = TRUE; compiler.AllocateHwInputs = &allocate_hardware_inputs; compiler.UserData = &shader->inputs; find_output_registers(&compiler, shader); if (compiler.Base.Debug) { DBG(r300, DBG_FP, "r300: Initial fragment program\n"); tgsi_dump(tokens, 0); } /* Translate TGSI to our internal representation */ ttr.compiler = &compiler.Base; ttr.info = &shader->info; ttr.use_half_swizzles = TRUE; r300_tgsi_to_rc(&ttr, tokens); /** * Transform the program to support WPOS. * * Introduce a small fragment at the start of the program that will be * the only code that directly reads the WPOS input. * All other code pieces that reference that input will be rewritten * to read from a newly allocated temporary. */ if (wpos != ATTR_UNUSED) { /* Moving the input to some other reg is not really necessary. */ rc_transform_fragment_wpos(&compiler.Base, wpos, wpos, TRUE); } if (face != ATTR_UNUSED) { rc_transform_fragment_face(&compiler.Base, face); } /* Invoke the compiler */ r3xx_compile_fragment_program(&compiler); if (compiler.Base.Error) { fprintf(stderr, "r300 FP: Compiler Error:\n%sUsing a dummy shader" " instead.\n", compiler.Base.ErrorMsg); if (shader->dummy) { fprintf(stderr, "r300 FP: Cannot compile the dummy shader! " "Giving up...\n"); abort(); } rc_destroy(&compiler.Base); r300_dummy_fragment_shader(r300, shader); return; } /* Shaders with zero instructions are invalid, * use the dummy shader instead. */ if (shader->code.code.r500.inst_end == -1) { rc_destroy(&compiler.Base); r300_dummy_fragment_shader(r300, shader); return; } /* Initialize numbers of constants for each type. */ shader->externals_count = 0; for (i = 0; i < shader->code.constants.Count && shader->code.constants.Constants[i].Type == RC_CONSTANT_EXTERNAL; i++) { shader->externals_count = i+1; } shader->immediates_count = 0; shader->rc_state_count = 0; for (i = shader->externals_count; i < shader->code.constants.Count; i++) { switch (shader->code.constants.Constants[i].Type) { case RC_CONSTANT_IMMEDIATE: ++shader->immediates_count; break; case RC_CONSTANT_STATE: ++shader->rc_state_count; break; default: assert(0); } } /* Setup shader depth output. */ if (shader->code.writes_depth) { shader->fg_depth_src = R300_FG_DEPTH_SRC_SHADER; shader->us_out_w = R300_W_FMT_W24 | R300_W_SRC_US; } else { shader->fg_depth_src = R300_FG_DEPTH_SRC_SCAN; shader->us_out_w = R300_W_FMT_W0 | R300_W_SRC_US; } /* And, finally... */ rc_destroy(&compiler.Base); /* Build the command buffer. */ r300_emit_fs_code_to_buffer(r300, shader); } boolean r300_pick_fragment_shader(struct r300_context* r300) { struct r300_fragment_shader* fs = r300_fs(r300); struct r300_fragment_program_external_state state = {{{ 0 }}}; struct r300_fragment_shader_code* ptr; get_external_state(r300, &state); if (!fs->first) { /* Build the fragment shader for the first time. */ fs->first = fs->shader = CALLOC_STRUCT(r300_fragment_shader_code); memcpy(&fs->shader->compare_state, &state, sizeof(struct r300_fragment_program_external_state)); r300_translate_fragment_shader(r300, fs->shader, fs->state.tokens); return TRUE; } else { /* Check if the currently-bound shader has been compiled * with the texture-compare state we need. */ if (memcmp(&fs->shader->compare_state, &state, sizeof(state)) != 0) { /* Search for the right shader. */ ptr = fs->first; while (ptr) { if (memcmp(&ptr->compare_state, &state, sizeof(state)) == 0) { if (fs->shader != ptr) { fs->shader = ptr; return TRUE; } /* The currently-bound one is OK. */ return FALSE; } ptr = ptr->next; } /* Not found, gotta compile a new one. */ ptr = CALLOC_STRUCT(r300_fragment_shader_code); ptr->next = fs->first; fs->first = fs->shader = ptr; ptr->compare_state = state; r300_translate_fragment_shader(r300, ptr, fs->state.tokens); return TRUE; } } return FALSE; }