/* * Copyright 2008 Corbin Simpson * Copyright 2009 Marek Olšák * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "draw/draw_context.h" #include "util/u_framebuffer.h" #include "util/u_math.h" #include "util/u_mm.h" #include "util/u_memory.h" #include "util/u_pack_color.h" #include "tgsi/tgsi_parse.h" #include "pipe/p_config.h" #include "r300_cb.h" #include "r300_context.h" #include "r300_emit.h" #include "r300_reg.h" #include "r300_screen.h" #include "r300_screen_buffer.h" #include "r300_state_inlines.h" #include "r300_fs.h" #include "r300_texture.h" #include "r300_vs.h" #include "r300_winsys.h" #include "r300_hyperz.h" /* r300_state: Functions used to intialize state context by translating * Gallium state objects into semi-native r300 state objects. */ #define UPDATE_STATE(cso, atom) \ if (cso != atom.state) { \ atom.state = cso; \ atom.dirty = TRUE; \ } static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA, unsigned dstRGB, unsigned dstA) { /* If the blend equation is ADD or REVERSE_SUBTRACT, * SRC_ALPHA == 0, and the following state is set, the colorbuffer * will not be changed. * Notice that the dst factors are the src factors inverted. */ return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA || srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || srcRGB == PIPE_BLENDFACTOR_ZERO) && (srcA == PIPE_BLENDFACTOR_SRC_COLOR || srcA == PIPE_BLENDFACTOR_SRC_ALPHA || srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || srcA == PIPE_BLENDFACTOR_ZERO) && (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || dstRGB == PIPE_BLENDFACTOR_ONE) && (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || dstA == PIPE_BLENDFACTOR_ONE); } static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA, unsigned dstRGB, unsigned dstA) { /* If the blend equation is ADD or REVERSE_SUBTRACT, * SRC_ALPHA == 1, and the following state is set, the colorbuffer * will not be changed. * Notice that the dst factors are the src factors inverted. */ return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || srcRGB == PIPE_BLENDFACTOR_ZERO) && (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR || srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || srcA == PIPE_BLENDFACTOR_ZERO) && (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || dstRGB == PIPE_BLENDFACTOR_ONE) && (dstA == PIPE_BLENDFACTOR_SRC_COLOR || dstA == PIPE_BLENDFACTOR_SRC_ALPHA || dstA == PIPE_BLENDFACTOR_ONE); } static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA, unsigned dstRGB, unsigned dstA) { /* If the blend equation is ADD or REVERSE_SUBTRACT, * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer * will not be changed. * Notice that the dst factors are the src factors inverted. */ return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR || srcRGB == PIPE_BLENDFACTOR_ZERO) && (srcA == PIPE_BLENDFACTOR_ZERO) && (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || dstRGB == PIPE_BLENDFACTOR_ONE) && (dstA == PIPE_BLENDFACTOR_ONE); } static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA, unsigned dstRGB, unsigned dstA) { /* If the blend equation is ADD or REVERSE_SUBTRACT, * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer * will not be changed. * Notice that the dst factors are the src factors inverted. */ return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || srcRGB == PIPE_BLENDFACTOR_ZERO) && (srcA == PIPE_BLENDFACTOR_ZERO) && (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR || dstRGB == PIPE_BLENDFACTOR_ONE) && (dstA == PIPE_BLENDFACTOR_ONE); } static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA, unsigned dstRGB, unsigned dstA) { /* If the blend equation is ADD or REVERSE_SUBTRACT, * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set, * the colorbuffer will not be changed. * Notice that the dst factors are the src factors inverted. */ return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR || srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA || srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || srcRGB == PIPE_BLENDFACTOR_ZERO) && (srcA == PIPE_BLENDFACTOR_SRC_COLOR || srcA == PIPE_BLENDFACTOR_SRC_ALPHA || srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE || srcA == PIPE_BLENDFACTOR_ZERO) && (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || dstRGB == PIPE_BLENDFACTOR_ONE) && (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || dstA == PIPE_BLENDFACTOR_ONE); } static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA, unsigned dstRGB, unsigned dstA) { /* If the blend equation is ADD or REVERSE_SUBTRACT, * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set, * the colorbuffer will not be changed. * Notice that the dst factors are the src factors inverted. */ return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR || srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || srcRGB == PIPE_BLENDFACTOR_ZERO) && (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR || srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || srcA == PIPE_BLENDFACTOR_ZERO) && (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR || dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || dstRGB == PIPE_BLENDFACTOR_ONE) && (dstA == PIPE_BLENDFACTOR_SRC_COLOR || dstA == PIPE_BLENDFACTOR_SRC_ALPHA || dstA == PIPE_BLENDFACTOR_ONE); } static unsigned bgra_cmask(unsigned mask) { /* Gallium uses RGBA color ordering while R300 expects BGRA. */ return ((mask & PIPE_MASK_R) << 2) | ((mask & PIPE_MASK_B) >> 2) | (mask & (PIPE_MASK_G | PIPE_MASK_A)); } /* Create a new blend state based on the CSO blend state. * * This encompasses alpha blending, logic/raster ops, and blend dithering. */ static void* r300_create_blend_state(struct pipe_context* pipe, const struct pipe_blend_state* state) { struct r300_screen* r300screen = r300_screen(pipe->screen); struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state); uint32_t blend_control = 0; /* R300_RB3D_CBLEND: 0x4e04 */ uint32_t alpha_blend_control = 0; /* R300_RB3D_ABLEND: 0x4e08 */ uint32_t color_channel_mask = 0; /* R300_RB3D_COLOR_CHANNEL_MASK: 0x4e0c */ uint32_t rop = 0; /* R300_RB3D_ROPCNTL: 0x4e18 */ uint32_t dither = 0; /* R300_RB3D_DITHER_CTL: 0x4e50 */ CB_LOCALS; if (state->rt[0].blend_enable) { unsigned eqRGB = state->rt[0].rgb_func; unsigned srcRGB = state->rt[0].rgb_src_factor; unsigned dstRGB = state->rt[0].rgb_dst_factor; unsigned eqA = state->rt[0].alpha_func; unsigned srcA = state->rt[0].alpha_src_factor; unsigned dstA = state->rt[0].alpha_dst_factor; /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha, * this is just the crappy D3D naming */ blend_control = R300_ALPHA_BLEND_ENABLE | r300_translate_blend_function(eqRGB) | ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) | ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT); /* Optimization: some operations do not require the destination color. * * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled, * otherwise blending gives incorrect results. It seems to be * a hardware bug. */ if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN || eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX || dstRGB != PIPE_BLENDFACTOR_ZERO || dstA != PIPE_BLENDFACTOR_ZERO || srcRGB == PIPE_BLENDFACTOR_DST_COLOR || srcRGB == PIPE_BLENDFACTOR_DST_ALPHA || srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR || srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA || srcA == PIPE_BLENDFACTOR_DST_COLOR || srcA == PIPE_BLENDFACTOR_DST_ALPHA || srcA == PIPE_BLENDFACTOR_INV_DST_COLOR || srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA || srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) { /* Enable reading from the colorbuffer. */ blend_control |= R300_READ_ENABLE; if (r300screen->caps.is_r500) { /* Optimization: Depending on incoming pixels, we can * conditionally disable the reading in hardware... */ if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN && eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) { /* Disable reading if SRC_ALPHA == 0. */ if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA || dstRGB == PIPE_BLENDFACTOR_ZERO) && (dstA == PIPE_BLENDFACTOR_SRC_COLOR || dstA == PIPE_BLENDFACTOR_SRC_ALPHA || dstA == PIPE_BLENDFACTOR_ZERO)) { blend_control |= R500_SRC_ALPHA_0_NO_READ; } /* Disable reading if SRC_ALPHA == 1. */ if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA || dstRGB == PIPE_BLENDFACTOR_ZERO) && (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR || dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA || dstA == PIPE_BLENDFACTOR_ZERO)) { blend_control |= R500_SRC_ALPHA_1_NO_READ; } } } } /* Optimization: discard pixels which don't change the colorbuffer. * * The code below is non-trivial and some math is involved. * * Discarding pixels must be disabled when FP16 AA is enabled. * This is a hardware bug. Also, this implementation wouldn't work * with FP blending enabled and equation clamping disabled. * * Equations other than ADD are rarely used and therefore won't be * optimized. */ if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) && (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) { /* ADD: X+Y * REVERSE_SUBTRACT: Y-X * * The idea is: * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1, * then CB will not be changed. * * Given the srcFactor and dstFactor variables, we can derive * what src and dst should be equal to and discard appropriate * pixels. */ if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) { blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0; } else if (blend_discard_if_src_alpha_1(srcRGB, srcA, dstRGB, dstA)) { blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1; } else if (blend_discard_if_src_color_0(srcRGB, srcA, dstRGB, dstA)) { blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0; } else if (blend_discard_if_src_color_1(srcRGB, srcA, dstRGB, dstA)) { blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1; } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA, dstRGB, dstA)) { blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0; } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA, dstRGB, dstA)) { blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1; } } /* separate alpha */ if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { blend_control |= R300_SEPARATE_ALPHA_ENABLE; alpha_blend_control = r300_translate_blend_function(eqA) | (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) | (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT); } } /* PIPE_LOGICOP_* don't need to be translated, fortunately. */ if (state->logicop_enable) { rop = R300_RB3D_ROPCNTL_ROP_ENABLE | (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT; } /* Color channel masks for all MRTs. */ color_channel_mask = bgra_cmask(state->rt[0].colormask); if (r300screen->caps.is_r500 && state->independent_blend_enable) { if (state->rt[1].blend_enable) { color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4; } if (state->rt[2].blend_enable) { color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8; } if (state->rt[3].blend_enable) { color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12; } } /* Neither fglrx nor classic r300 ever set this, regardless of dithering * state. Since it's an optional implementation detail, we can leave it * out and never dither. * * This could be revisited if we ever get quality or conformance hints. * if (state->dither) { dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT | R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT; } */ /* Build a command buffer. */ BEGIN_CB(blend->cb, 8); OUT_CB_REG(R300_RB3D_ROPCNTL, rop); OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); OUT_CB(blend_control); OUT_CB(alpha_blend_control); OUT_CB(color_channel_mask); OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); END_CB; /* The same as above, but with no colorbuffer reads and writes. */ BEGIN_CB(blend->cb_no_readwrite, 8); OUT_CB_REG(R300_RB3D_ROPCNTL, rop); OUT_CB_REG_SEQ(R300_RB3D_CBLEND, 3); OUT_CB(0); OUT_CB(0); OUT_CB(0); OUT_CB_REG(R300_RB3D_DITHER_CTL, dither); END_CB; return (void*)blend; } /* Bind blend state. */ static void r300_bind_blend_state(struct pipe_context* pipe, void* state) { struct r300_context* r300 = r300_context(pipe); UPDATE_STATE(state, r300->blend_state); } /* Free blend state. */ static void r300_delete_blend_state(struct pipe_context* pipe, void* state) { FREE(state); } /* Convert float to 10bit integer */ static unsigned float_to_fixed10(float f) { return CLAMP((unsigned)(f * 1023.9f), 0, 1023); } /* Set blend color. * Setup both R300 and R500 registers, figure out later which one to write. */ static void r300_set_blend_color(struct pipe_context* pipe, const struct pipe_blend_color* color) { struct r300_context* r300 = r300_context(pipe); struct r300_blend_color_state* state = (struct r300_blend_color_state*)r300->blend_color_state.state; CB_LOCALS; if (r300->screen->caps.is_r500) { /* XXX if FP16 blending is enabled, we should use the FP16 format */ BEGIN_CB(state->cb, 3); OUT_CB_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2); OUT_CB(float_to_fixed10(color->color[0]) | (float_to_fixed10(color->color[3]) << 16)); OUT_CB(float_to_fixed10(color->color[2]) | (float_to_fixed10(color->color[1]) << 16)); END_CB; } else { union util_color uc; util_pack_color(color->color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc); BEGIN_CB(state->cb, 2); OUT_CB_REG(R300_RB3D_BLEND_COLOR, uc.ui); END_CB; } r300->blend_color_state.dirty = TRUE; } static void r300_set_clip_state(struct pipe_context* pipe, const struct pipe_clip_state* state) { struct r300_context* r300 = r300_context(pipe); struct r300_clip_state *clip = (struct r300_clip_state*)r300->clip_state.state; CB_LOCALS; clip->clip = *state; if (r300->screen->caps.has_tcl) { r300->clip_state.size = 2 + !!state->nr * 3 + state->nr * 4; BEGIN_CB(clip->cb, r300->clip_state.size); if (state->nr) { OUT_CB_REG(R300_VAP_PVS_VECTOR_INDX_REG, (r300->screen->caps.is_r500 ? R500_PVS_UCP_START : R300_PVS_UCP_START)); OUT_CB_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, state->nr * 4); OUT_CB_TABLE(state->ucp, state->nr * 4); } OUT_CB_REG(R300_VAP_CLIP_CNTL, ((1 << state->nr) - 1) | R300_PS_UCP_MODE_CLIP_AS_TRIFAN | (state->depth_clamp ? R300_CLIP_DISABLE : 0)); END_CB; r300->clip_state.dirty = TRUE; } else { draw_set_clip_state(r300->draw, state); } } static void r300_set_sample_mask(struct pipe_context *pipe, unsigned sample_mask) { } /* Create a new depth, stencil, and alpha state based on the CSO dsa state. * * This contains the depth buffer, stencil buffer, alpha test, and such. * On the Radeon, depth and stencil buffer setup are intertwined, which is * the reason for some of the strange-looking assignments across registers. */ static void* r300_create_dsa_state(struct pipe_context* pipe, const struct pipe_depth_stencil_alpha_state* state) { struct r300_capabilities *caps = &r300_screen(pipe->screen)->caps; struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state); CB_LOCALS; dsa->dsa = *state; /* Depth test setup. - separate write mask depth for decomp flush */ if (state->depth.writemask) { dsa->z_buffer_control |= R300_Z_WRITE_ENABLE; } if (state->depth.enabled) { dsa->z_buffer_control |= R300_Z_ENABLE; dsa->z_stencil_control |= (r300_translate_depth_stencil_function(state->depth.func) << R300_Z_FUNC_SHIFT); } /* Stencil buffer setup. */ if (state->stencil[0].enabled) { dsa->z_buffer_control |= R300_STENCIL_ENABLE; dsa->z_stencil_control |= (r300_translate_depth_stencil_function(state->stencil[0].func) << R300_S_FRONT_FUNC_SHIFT) | (r300_translate_stencil_op(state->stencil[0].fail_op) << R300_S_FRONT_SFAIL_OP_SHIFT) | (r300_translate_stencil_op(state->stencil[0].zpass_op) << R300_S_FRONT_ZPASS_OP_SHIFT) | (r300_translate_stencil_op(state->stencil[0].zfail_op) << R300_S_FRONT_ZFAIL_OP_SHIFT); dsa->stencil_ref_mask = (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) | (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT); if (state->stencil[1].enabled) { dsa->two_sided = TRUE; dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK; dsa->z_stencil_control |= (r300_translate_depth_stencil_function(state->stencil[1].func) << R300_S_BACK_FUNC_SHIFT) | (r300_translate_stencil_op(state->stencil[1].fail_op) << R300_S_BACK_SFAIL_OP_SHIFT) | (r300_translate_stencil_op(state->stencil[1].zpass_op) << R300_S_BACK_ZPASS_OP_SHIFT) | (r300_translate_stencil_op(state->stencil[1].zfail_op) << R300_S_BACK_ZFAIL_OP_SHIFT); dsa->stencil_ref_bf = (state->stencil[1].valuemask << R300_STENCILMASK_SHIFT) | (state->stencil[1].writemask << R300_STENCILWRITEMASK_SHIFT); if (caps->is_r500) { dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK; } else { dsa->two_sided_stencil_ref = (state->stencil[0].valuemask != state->stencil[1].valuemask || state->stencil[0].writemask != state->stencil[1].writemask); } } } /* Alpha test setup. */ if (state->alpha.enabled) { dsa->alpha_function = r300_translate_alpha_function(state->alpha.func) | R300_FG_ALPHA_FUNC_ENABLE; /* We could use 10bit alpha ref but who needs that? */ dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value); if (caps->is_r500) dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT; } BEGIN_CB(&dsa->cb_begin, 8); OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function); OUT_CB_REG_SEQ(R300_ZB_CNTL, 3); OUT_CB(dsa->z_buffer_control); OUT_CB(dsa->z_stencil_control); OUT_CB(dsa->stencil_ref_mask); OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf); END_CB; BEGIN_CB(dsa->cb_no_readwrite, 8); OUT_CB_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function); OUT_CB_REG_SEQ(R300_ZB_CNTL, 3); OUT_CB(0); OUT_CB(0); OUT_CB(0); OUT_CB_REG(R500_ZB_STENCILREFMASK_BF, 0); END_CB; return (void*)dsa; } static void r300_dsa_inject_stencilref(struct r300_context *r300) { struct r300_dsa_state *dsa = (struct r300_dsa_state*)r300->dsa_state.state; if (!dsa) return; dsa->stencil_ref_mask = (dsa->stencil_ref_mask & ~R300_STENCILREF_MASK) | r300->stencil_ref.ref_value[0]; dsa->stencil_ref_bf = (dsa->stencil_ref_bf & ~R300_STENCILREF_MASK) | r300->stencil_ref.ref_value[1]; } /* Bind DSA state. */ static void r300_bind_dsa_state(struct pipe_context* pipe, void* state) { struct r300_context* r300 = r300_context(pipe); if (!state) { return; } UPDATE_STATE(state, r300->dsa_state); r300->hyperz_state.dirty = TRUE; /* Will be updated before the emission. */ r300_dsa_inject_stencilref(r300); } /* Free DSA state. */ static void r300_delete_dsa_state(struct pipe_context* pipe, void* state) { FREE(state); } static void r300_set_stencil_ref(struct pipe_context* pipe, const struct pipe_stencil_ref* sr) { struct r300_context* r300 = r300_context(pipe); r300->stencil_ref = *sr; r300_dsa_inject_stencilref(r300); r300->dsa_state.dirty = TRUE; } static void r300_tex_set_tiling_flags(struct r300_context *r300, struct r300_texture *tex, unsigned level) { /* Check if the macrotile flag needs to be changed. * Skip changing the flags otherwise. */ if (tex->desc.macrotile[tex->surface_level] != tex->desc.macrotile[level]) { /* Tiling determines how DRM treats the buffer data. * We must flush CS when changing it if the buffer is referenced. */ if (r300->rws->cs_is_buffer_referenced(r300->cs, tex->cs_buffer, R300_REF_CS)) r300->context.flush(&r300->context, 0, NULL); r300->rws->buffer_set_tiling(r300->rws, tex->buffer, tex->desc.microtile, tex->desc.macrotile[level], tex->desc.stride_in_bytes[0]); tex->surface_level = level; } } /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */ static void r300_fb_set_tiling_flags(struct r300_context *r300, const struct pipe_framebuffer_state *state) { unsigned i; /* Set tiling flags for new surfaces. */ for (i = 0; i < state->nr_cbufs; i++) { r300_tex_set_tiling_flags(r300, r300_texture(state->cbufs[i]->texture), state->cbufs[i]->u.tex.level); } if (state->zsbuf) { r300_tex_set_tiling_flags(r300, r300_texture(state->zsbuf->texture), state->zsbuf->u.tex.level); } } static void r300_print_fb_surf_info(struct pipe_surface *surf, unsigned index, const char *binding) { struct pipe_resource *tex = surf->texture; struct r300_texture *rtex = r300_texture(tex); fprintf(stderr, "r300: %s[%i] Dim: %ix%i, Firstlayer: %i, " "Lastlayer: %i, Level: %i, Format: %s\n" "r300: TEX: Macro: %s, Micro: %s, Pitch: %i, " "Dim: %ix%ix%i, LastLevel: %i, Format: %s\n", binding, index, surf->width, surf->height, surf->u.tex.first_layer, surf->u.tex.last_layer, surf->u.tex.level, util_format_short_name(surf->format), rtex->desc.macrotile[0] ? "YES" : " NO", rtex->desc.microtile ? "YES" : " NO", rtex->desc.stride_in_pixels[0], tex->width0, tex->height0, tex->depth0, tex->last_level, util_format_short_name(tex->format)); } void r300_mark_fb_state_dirty(struct r300_context *r300, enum r300_fb_state_change change) { struct pipe_framebuffer_state *state = r300->fb_state.state; boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ); /* What is marked as dirty depends on the enum r300_fb_state_change. */ r300->gpu_flush.dirty = TRUE; r300->fb_state.dirty = TRUE; r300->hyperz_state.dirty = TRUE; if (change == R300_CHANGED_FB_STATE) { r300->aa_state.dirty = TRUE; r300->fb_state_pipelined.dirty = TRUE; } /* Now compute the fb_state atom size. */ r300->fb_state.size = 2 + (8 * state->nr_cbufs); if (r300->cbzb_clear) r300->fb_state.size += 10; else if (state->zsbuf) { r300->fb_state.size += 10; if (can_hyperz) r300->fb_state.size += r300->screen->caps.hiz_ram ? 8 : 4; } /* The size of the rest of atoms stays the same. */ } static void r300_set_framebuffer_state(struct pipe_context* pipe, const struct pipe_framebuffer_state* state) { struct r300_context* r300 = r300_context(pipe); struct r300_aa_state *aa = (struct r300_aa_state*)r300->aa_state.state; struct pipe_framebuffer_state *old_state = r300->fb_state.state; boolean can_hyperz = r300->rws->get_value(r300->rws, R300_CAN_HYPERZ); unsigned max_width, max_height, i; uint32_t zbuffer_bpp = 0; int blocksize; if (r300->screen->caps.is_r500) { max_width = max_height = 4096; } else if (r300->screen->caps.is_r400) { max_width = max_height = 4021; } else { max_width = max_height = 2560; } if (state->width > max_width || state->height > max_height) { fprintf(stderr, "r300: Implementation error: Render targets are too " "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__); return; } /* If nr_cbufs is changed from zero to non-zero or vice versa... */ if (!!old_state->nr_cbufs != !!state->nr_cbufs) { r300->blend_state.dirty = TRUE; } /* If zsbuf is set from NULL to non-NULL or vice versa.. */ if (!!old_state->zsbuf != !!state->zsbuf) { r300->dsa_state.dirty = TRUE; } /* The tiling flags are dependent on the surface miplevel, unfortunately. */ r300_fb_set_tiling_flags(r300, state); util_copy_framebuffer_state(r300->fb_state.state, state); r300_mark_fb_state_dirty(r300, R300_CHANGED_FB_STATE); r300->z_compression = false; if (state->zsbuf) { blocksize = util_format_get_blocksize(state->zsbuf->texture->format); switch (blocksize) { case 2: zbuffer_bpp = 16; break; case 4: zbuffer_bpp = 24; break; } if (can_hyperz) { struct r300_surface *zs_surf = r300_surface(state->zsbuf); struct r300_texture *tex; int compress = r300->screen->caps.is_rv350 ? RV350_Z_COMPRESS_88 : R300_Z_COMPRESS_44; int level = zs_surf->base.u.tex.level; tex = r300_texture(zs_surf->base.texture); /* work out whether we can support hiz on this buffer */ r300_hiz_alloc_block(r300, zs_surf); /* work out whether we can support zmask features on this buffer */ r300_zmask_alloc_block(r300, zs_surf, compress); if (tex->zmask_mem[level]) { /* compression causes hangs on 16-bit */ if (zbuffer_bpp == 24) r300->z_compression = compress; } DBG(r300, DBG_HYPERZ, "hyper-z features: hiz: %d @ %08x z-compression: %d z-fastfill: %d @ %08x\n", tex->hiz_mem[level] ? 1 : 0, tex->hiz_mem[level] ? tex->hiz_mem[level]->ofs : 0xdeadbeef, r300->z_compression, tex->zmask_mem[level] ? 1 : 0, tex->zmask_mem[level] ? tex->zmask_mem[level]->ofs : 0xdeadbeef); } /* Polygon offset depends on the zbuffer bit depth. */ if (r300->zbuffer_bpp != zbuffer_bpp) { r300->zbuffer_bpp = zbuffer_bpp; if (r300->polygon_offset_enabled) r300->rs_state.dirty = TRUE; } } /* Set up AA config. */ if (r300->rws->get_value(r300->rws, R300_VID_DRM_2_3_0)) { if (state->nr_cbufs && state->cbufs[0]->texture->nr_samples > 1) { aa->aa_config = R300_GB_AA_CONFIG_AA_ENABLE; switch (state->cbufs[0]->texture->nr_samples) { case 2: aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_2; break; case 3: aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_3; break; case 4: aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_4; break; case 6: aa->aa_config |= R300_GB_AA_CONFIG_NUM_AA_SUBSAMPLES_6; break; } } else { aa->aa_config = 0; } } if (DBG_ON(r300, DBG_FB)) { fprintf(stderr, "r300: set_framebuffer_state:\n"); for (i = 0; i < state->nr_cbufs; i++) { r300_print_fb_surf_info(state->cbufs[i], i, "CB"); } if (state->zsbuf) { r300_print_fb_surf_info(state->zsbuf, 0, "ZB"); } } } /* Create fragment shader state. */ static void* r300_create_fs_state(struct pipe_context* pipe, const struct pipe_shader_state* shader) { struct r300_fragment_shader* fs = NULL; fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader); /* Copy state directly into shader. */ fs->state = *shader; fs->state.tokens = tgsi_dup_tokens(shader->tokens); return (void*)fs; } void r300_mark_fs_code_dirty(struct r300_context *r300) { struct r300_fragment_shader* fs = r300_fs(r300); r300->fs.dirty = TRUE; r300->fs_rc_constant_state.dirty = TRUE; r300->fs_constants.dirty = TRUE; r300->fs.size = fs->shader->cb_code_size; if (r300->screen->caps.is_r500) { r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 7; r300->fs_constants.size = fs->shader->externals_count * 4 + 3; } else { r300->fs_rc_constant_state.size = fs->shader->rc_state_count * 5; r300->fs_constants.size = fs->shader->externals_count * 4 + 1; } ((struct r300_constant_buffer*)r300->fs_constants.state)->remap_table = fs->shader->code.constants_remap_table; } /* Bind fragment shader state. */ static void r300_bind_fs_state(struct pipe_context* pipe, void* shader) { struct r300_context* r300 = r300_context(pipe); struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader; if (fs == NULL) { r300->fs.state = NULL; return; } r300->fs.state = fs; r300_pick_fragment_shader(r300); r300_mark_fs_code_dirty(r300); r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */ } /* Delete fragment shader state. */ static void r300_delete_fs_state(struct pipe_context* pipe, void* shader) { struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader; struct r300_fragment_shader_code *tmp, *ptr = fs->first; while (ptr) { tmp = ptr; ptr = ptr->next; rc_constants_destroy(&tmp->code.constants); FREE(tmp->cb_code); FREE(tmp); } FREE((void*)fs->state.tokens); FREE(shader); } static void r300_set_polygon_stipple(struct pipe_context* pipe, const struct pipe_poly_stipple* state) { /* XXX no idea how to set this up, but not terribly important */ } /* Create a new rasterizer state based on the CSO rasterizer state. * * This is a very large chunk of state, and covers most of the graphics * backend (GB), geometry assembly (GA), and setup unit (SU) blocks. * * In a not entirely unironic sidenote, this state has nearly nothing to do * with the actual block on the Radeon called the rasterizer (RS). */ static void* r300_create_rs_state(struct pipe_context* pipe, const struct pipe_rasterizer_state* state) { struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state); float psiz; uint32_t vap_control_status; /* R300_VAP_CNTL_STATUS: 0x2140 */ uint32_t point_size; /* R300_GA_POINT_SIZE: 0x421c */ uint32_t point_minmax; /* R300_GA_POINT_MINMAX: 0x4230 */ uint32_t line_control; /* R300_GA_LINE_CNTL: 0x4234 */ uint32_t polygon_offset_enable; /* R300_SU_POLY_OFFSET_ENABLE: 0x42b4 */ uint32_t cull_mode; /* R300_SU_CULL_MODE: 0x42b8 */ uint32_t line_stipple_config; /* R300_GA_LINE_STIPPLE_CONFIG: 0x4328 */ uint32_t line_stipple_value; /* R300_GA_LINE_STIPPLE_VALUE: 0x4260 */ uint32_t polygon_mode; /* R300_GA_POLY_MODE: 0x4288 */ uint32_t clip_rule; /* R300_SC_CLIP_RULE: 0x43D0 */ /* Point sprites texture coordinates, 0: lower left, 1: upper right */ float point_texcoord_left = 0; /* R300_GA_POINT_S0: 0x4200 */ float point_texcoord_bottom = 0;/* R300_GA_POINT_T0: 0x4204 */ float point_texcoord_right = 1; /* R300_GA_POINT_S1: 0x4208 */ float point_texcoord_top = 0; /* R300_GA_POINT_T1: 0x420c */ CB_LOCALS; /* Copy rasterizer state. */ rs->rs = *state; rs->rs_draw = *state; rs->rs.sprite_coord_enable = state->point_quad_rasterization * state->sprite_coord_enable; /* Override some states for Draw. */ rs->rs_draw.sprite_coord_enable = 0; /* We can do this in HW. */ #ifdef PIPE_ARCH_LITTLE_ENDIAN vap_control_status = R300_VC_NO_SWAP; #else vap_control_status = R300_VC_32BIT_SWAP; #endif /* If no TCL engine is present, turn off the HW TCL. */ if (!r300_screen(pipe->screen)->caps.has_tcl) { vap_control_status |= R300_VAP_TCL_BYPASS; } /* Point size width and height. */ point_size = pack_float_16_6x(state->point_size) | (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT); /* Point size clamping. */ if (state->point_size_per_vertex) { /* Per-vertex point size. * Clamp to [0, max FB size] */ psiz = pipe->screen->get_paramf(pipe->screen, PIPE_CAP_MAX_POINT_WIDTH); point_minmax = pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT; } else { /* We cannot disable the point-size vertex output, * so clamp it. */ psiz = state->point_size; point_minmax = (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MIN_SHIFT) | (pack_float_16_6x(psiz) << R300_GA_POINT_MINMAX_MAX_SHIFT); } /* Line control. */ line_control = pack_float_16_6x(state->line_width) | R300_GA_LINE_CNTL_END_TYPE_COMP; /* Enable polygon mode */ polygon_mode = 0; if (state->fill_front != PIPE_POLYGON_MODE_FILL || state->fill_back != PIPE_POLYGON_MODE_FILL) { polygon_mode = R300_GA_POLY_MODE_DUAL; } /* Front face */ if (state->front_ccw) cull_mode = R300_FRONT_FACE_CCW; else cull_mode = R300_FRONT_FACE_CW; /* Polygon offset */ polygon_offset_enable = 0; if (util_get_offset(state, state->fill_front)) { polygon_offset_enable |= R300_FRONT_ENABLE; } if (util_get_offset(state, state->fill_back)) { polygon_offset_enable |= R300_BACK_ENABLE; } rs->polygon_offset_enable = polygon_offset_enable != 0; /* Polygon mode */ if (polygon_mode) { polygon_mode |= r300_translate_polygon_mode_front(state->fill_front); polygon_mode |= r300_translate_polygon_mode_back(state->fill_back); } if (state->cull_face & PIPE_FACE_FRONT) { cull_mode |= R300_CULL_FRONT; } if (state->cull_face & PIPE_FACE_BACK) { cull_mode |= R300_CULL_BACK; } if (state->line_stipple_enable) { line_stipple_config = R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE | (fui((float)state->line_stipple_factor) & R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK); /* XXX this might need to be scaled up */ line_stipple_value = state->line_stipple_pattern; } else { line_stipple_config = 0; line_stipple_value = 0; } if (state->flatshade) { rs->color_control = R300_SHADE_MODEL_FLAT; } else { rs->color_control = R300_SHADE_MODEL_SMOOTH; } clip_rule = state->scissor ? 0xAAAA : 0xFFFF; /* Point sprites coord mode */ if (rs->rs.sprite_coord_enable) { switch (state->sprite_coord_mode) { case PIPE_SPRITE_COORD_UPPER_LEFT: point_texcoord_top = 0.0f; point_texcoord_bottom = 1.0f; break; case PIPE_SPRITE_COORD_LOWER_LEFT: point_texcoord_top = 1.0f; point_texcoord_bottom = 0.0f; break; } } /* Build the main command buffer. */ BEGIN_CB(rs->cb_main, RS_STATE_MAIN_SIZE); OUT_CB_REG(R300_VAP_CNTL_STATUS, vap_control_status); OUT_CB_REG(R300_GA_POINT_SIZE, point_size); OUT_CB_REG_SEQ(R300_GA_POINT_MINMAX, 2); OUT_CB(point_minmax); OUT_CB(line_control); OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2); OUT_CB(polygon_offset_enable); rs->cull_mode_index = 9; OUT_CB(cull_mode); OUT_CB_REG(R300_GA_LINE_STIPPLE_CONFIG, line_stipple_config); OUT_CB_REG(R300_GA_LINE_STIPPLE_VALUE, line_stipple_value); OUT_CB_REG(R300_GA_POLY_MODE, polygon_mode); OUT_CB_REG(R300_SC_CLIP_RULE, clip_rule); OUT_CB_REG_SEQ(R300_GA_POINT_S0, 4); OUT_CB_32F(point_texcoord_left); OUT_CB_32F(point_texcoord_bottom); OUT_CB_32F(point_texcoord_right); OUT_CB_32F(point_texcoord_top); END_CB; /* Build the two command buffers for polygon offset setup. */ if (polygon_offset_enable) { float scale = state->offset_scale * 12; float offset = state->offset_units * 4; BEGIN_CB(rs->cb_poly_offset_zb16, 5); OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4); OUT_CB_32F(scale); OUT_CB_32F(offset); OUT_CB_32F(scale); OUT_CB_32F(offset); END_CB; offset = state->offset_units * 2; BEGIN_CB(rs->cb_poly_offset_zb24, 5); OUT_CB_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4); OUT_CB_32F(scale); OUT_CB_32F(offset); OUT_CB_32F(scale); OUT_CB_32F(offset); END_CB; } return (void*)rs; } /* Bind rasterizer state. */ static void r300_bind_rs_state(struct pipe_context* pipe, void* state) { struct r300_context* r300 = r300_context(pipe); struct r300_rs_state* rs = (struct r300_rs_state*)state; int last_sprite_coord_enable = r300->sprite_coord_enable; boolean last_two_sided_color = r300->two_sided_color; if (r300->draw && rs) { draw_set_rasterizer_state(r300->draw, &rs->rs_draw, state); } if (rs) { r300->polygon_offset_enabled = rs->polygon_offset_enable; r300->sprite_coord_enable = rs->rs.sprite_coord_enable; r300->two_sided_color = rs->rs.light_twoside; } else { r300->polygon_offset_enabled = FALSE; r300->sprite_coord_enable = 0; r300->two_sided_color = FALSE; } UPDATE_STATE(state, r300->rs_state); r300->rs_state.size = RS_STATE_MAIN_SIZE + (r300->polygon_offset_enabled ? 5 : 0); if (last_sprite_coord_enable != r300->sprite_coord_enable || last_two_sided_color != r300->two_sided_color) { r300->rs_block_state.dirty = TRUE; } } /* Free rasterizer state. */ static void r300_delete_rs_state(struct pipe_context* pipe, void* state) { FREE(state); } static void* r300_create_sampler_state(struct pipe_context* pipe, const struct pipe_sampler_state* state) { struct r300_context* r300 = r300_context(pipe); struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state); boolean is_r500 = r300->screen->caps.is_r500; int lod_bias; sampler->state = *state; /* r300 doesn't handle CLAMP and MIRROR_CLAMP correctly when either MAG * or MIN filter is NEAREST. Since texwrap produces same results * for CLAMP and CLAMP_TO_EDGE, we use them instead. */ if (sampler->state.min_img_filter == PIPE_TEX_FILTER_NEAREST || sampler->state.mag_img_filter == PIPE_TEX_FILTER_NEAREST) { /* Wrap S. */ if (sampler->state.wrap_s == PIPE_TEX_WRAP_CLAMP) sampler->state.wrap_s = PIPE_TEX_WRAP_CLAMP_TO_EDGE; else if (sampler->state.wrap_s == PIPE_TEX_WRAP_MIRROR_CLAMP) sampler->state.wrap_s = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; /* Wrap T. */ if (sampler->state.wrap_t == PIPE_TEX_WRAP_CLAMP) sampler->state.wrap_t = PIPE_TEX_WRAP_CLAMP_TO_EDGE; else if (sampler->state.wrap_t == PIPE_TEX_WRAP_MIRROR_CLAMP) sampler->state.wrap_t = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; /* Wrap R. */ if (sampler->state.wrap_r == PIPE_TEX_WRAP_CLAMP) sampler->state.wrap_r = PIPE_TEX_WRAP_CLAMP_TO_EDGE; else if (sampler->state.wrap_r == PIPE_TEX_WRAP_MIRROR_CLAMP) sampler->state.wrap_r = PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE; } sampler->filter0 |= (r300_translate_wrap(sampler->state.wrap_s) << R300_TX_WRAP_S_SHIFT) | (r300_translate_wrap(sampler->state.wrap_t) << R300_TX_WRAP_T_SHIFT) | (r300_translate_wrap(sampler->state.wrap_r) << R300_TX_WRAP_R_SHIFT); sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter, state->mag_img_filter, state->min_mip_filter, state->max_anisotropy > 0); sampler->filter0 |= r300_anisotropy(state->max_anisotropy); /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */ /* We must pass these to the merge function to clamp them properly. */ sampler->min_lod = (unsigned)MAX2(state->min_lod, 0); sampler->max_lod = (unsigned)MAX2(ceilf(state->max_lod), 0); lod_bias = CLAMP((int)(state->lod_bias * 32 + 1), -(1 << 9), (1 << 9) - 1); sampler->filter1 |= (lod_bias << R300_LOD_BIAS_SHIFT) & R300_LOD_BIAS_MASK; /* This is very high quality anisotropic filtering for R5xx. * It's good for benchmarking the performance of texturing but * in practice we don't want to slow down the driver because it's * a pretty good performance killer. Feel free to play with it. */ if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) { sampler->filter1 |= r500_anisotropy(state->max_anisotropy); } /* R500-specific fixups and optimizations */ if (r300->screen->caps.is_r500) { sampler->filter1 |= R500_BORDER_FIX; } return (void*)sampler; } static void r300_bind_sampler_states(struct pipe_context* pipe, unsigned count, void** states) { struct r300_context* r300 = r300_context(pipe); struct r300_textures_state* state = (struct r300_textures_state*)r300->textures_state.state; unsigned tex_units = r300->screen->caps.num_tex_units; if (count > tex_units) { return; } memcpy(state->sampler_states, states, sizeof(void*) * count); state->sampler_state_count = count; r300->textures_state.dirty = TRUE; } static void r300_lacks_vertex_textures(struct pipe_context* pipe, unsigned count, void** states) { } static void r300_delete_sampler_state(struct pipe_context* pipe, void* state) { FREE(state); } static uint32_t r300_assign_texture_cache_region(unsigned index, unsigned num) { /* This looks like a hack, but I believe it's suppose to work like * that. To illustrate how this works, let's assume you have 5 textures. * From docs, 5 and the successive numbers are: * * FOURTH_1 = 5 * FOURTH_2 = 6 * FOURTH_3 = 7 * EIGHTH_0 = 8 * EIGHTH_1 = 9 * * First 3 textures will get 3/4 of size of the cache, divived evenly * between them. The last 1/4 of the cache must be divided between * the last 2 textures, each will therefore get 1/8 of the cache. * Why not just to use "5 + texture_index" ? * * This simple trick works for all "num" <= 16. */ if (num <= 1) return R300_TX_CACHE(R300_TX_CACHE_WHOLE); else return R300_TX_CACHE(num + index); } static void r300_set_fragment_sampler_views(struct pipe_context* pipe, unsigned count, struct pipe_sampler_view** views) { struct r300_context* r300 = r300_context(pipe); struct r300_textures_state* state = (struct r300_textures_state*)r300->textures_state.state; struct r300_texture *texture; unsigned i, real_num_views = 0, view_index = 0; unsigned tex_units = r300->screen->caps.num_tex_units; boolean dirty_tex = FALSE; if (count > tex_units) { return; } /* Calculate the real number of views. */ for (i = 0; i < count; i++) { if (views[i]) real_num_views++; } for (i = 0; i < count; i++) { if (&state->sampler_views[i]->base != views[i]) { pipe_sampler_view_reference( (struct pipe_sampler_view**)&state->sampler_views[i], views[i]); if (!views[i]) { continue; } /* A new sampler view (= texture)... */ dirty_tex = TRUE; /* Set the texrect factor in the fragment shader. * Needed for RECT and NPOT fallback. */ texture = r300_texture(views[i]->texture); if (texture->desc.is_npot) { r300->fs_rc_constant_state.dirty = TRUE; } state->sampler_views[i]->texcache_region = r300_assign_texture_cache_region(view_index, real_num_views); view_index++; } } for (i = count; i < tex_units; i++) { if (state->sampler_views[i]) { pipe_sampler_view_reference( (struct pipe_sampler_view**)&state->sampler_views[i], NULL); } } state->sampler_view_count = count; r300->textures_state.dirty = TRUE; if (dirty_tex) { r300->texture_cache_inval.dirty = TRUE; } } static struct pipe_sampler_view * r300_create_sampler_view(struct pipe_context *pipe, struct pipe_resource *texture, const struct pipe_sampler_view *templ) { struct r300_sampler_view *view = CALLOC_STRUCT(r300_sampler_view); struct r300_texture *tex = r300_texture(texture); boolean is_r500 = r300_screen(pipe->screen)->caps.is_r500; boolean dxtc_swizzle = r300_screen(pipe->screen)->caps.dxtc_swizzle; if (view) { view->base = *templ; view->base.reference.count = 1; view->base.context = pipe; view->base.texture = NULL; pipe_resource_reference(&view->base.texture, texture); view->swizzle[0] = templ->swizzle_r; view->swizzle[1] = templ->swizzle_g; view->swizzle[2] = templ->swizzle_b; view->swizzle[3] = templ->swizzle_a; view->format = tex->tx_format; view->format.format1 |= r300_translate_texformat(templ->format, view->swizzle, is_r500, dxtc_swizzle); if (is_r500) { view->format.format2 |= r500_tx_format_msb_bit(templ->format); } } return (struct pipe_sampler_view*)view; } static void r300_sampler_view_destroy(struct pipe_context *pipe, struct pipe_sampler_view *view) { pipe_resource_reference(&view->texture, NULL); FREE(view); } static void r300_set_scissor_state(struct pipe_context* pipe, const struct pipe_scissor_state* state) { struct r300_context* r300 = r300_context(pipe); memcpy(r300->scissor_state.state, state, sizeof(struct pipe_scissor_state)); r300->scissor_state.dirty = TRUE; } static void r300_set_viewport_state(struct pipe_context* pipe, const struct pipe_viewport_state* state) { struct r300_context* r300 = r300_context(pipe); struct r300_viewport_state* viewport = (struct r300_viewport_state*)r300->viewport_state.state; r300->viewport = *state; if (r300->draw) { draw_set_viewport_state(r300->draw, state); viewport->vte_control = R300_VTX_XY_FMT | R300_VTX_Z_FMT; return; } /* Do the transform in HW. */ viewport->vte_control = R300_VTX_W0_FMT; if (state->scale[0] != 1.0f) { viewport->xscale = state->scale[0]; viewport->vte_control |= R300_VPORT_X_SCALE_ENA; } if (state->scale[1] != 1.0f) { viewport->yscale = state->scale[1]; viewport->vte_control |= R300_VPORT_Y_SCALE_ENA; } if (state->scale[2] != 1.0f) { viewport->zscale = state->scale[2]; viewport->vte_control |= R300_VPORT_Z_SCALE_ENA; } if (state->translate[0] != 0.0f) { viewport->xoffset = state->translate[0]; viewport->vte_control |= R300_VPORT_X_OFFSET_ENA; } if (state->translate[1] != 0.0f) { viewport->yoffset = state->translate[1]; viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA; } if (state->translate[2] != 0.0f) { viewport->zoffset = state->translate[2]; viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA; } r300->viewport_state.dirty = TRUE; if (r300->fs.state && r300_fs(r300)->shader->inputs.wpos != ATTR_UNUSED) { r300->fs_rc_constant_state.dirty = TRUE; } } static void r300_set_vertex_buffers(struct pipe_context* pipe, unsigned count, const struct pipe_vertex_buffer* buffers) { struct r300_context* r300 = r300_context(pipe); struct pipe_vertex_buffer *vbo; unsigned i, max_index = (1 << 24) - 1; boolean any_user_buffer = FALSE; struct pipe_vertex_buffer dummy_vb = {0}; /* There must be at least one vertex buffer set, otherwise it locks up. */ if (!count) { dummy_vb.buffer = r300->dummy_vb; dummy_vb.max_index = r300->dummy_vb->width0 / 4; buffers = &dummy_vb; count = 1; } if (count == r300->vertex_buffer_count && memcmp(r300->vertex_buffer, buffers, sizeof(struct pipe_vertex_buffer) * count) == 0) { return; } if (r300->screen->caps.has_tcl) { /* HW TCL. */ r300->incompatible_vb_layout = FALSE; /* Check if the strides and offsets are aligned to the size of DWORD. */ for (i = 0; i < count; i++) { if (buffers[i].buffer) { if (buffers[i].stride % 4 != 0 || buffers[i].buffer_offset % 4 != 0) { r300->incompatible_vb_layout = TRUE; break; } } } for (i = 0; i < count; i++) { /* Why, yes, I AM casting away constness. How did you know? */ vbo = (struct pipe_vertex_buffer*)&buffers[i]; /* Skip NULL buffers */ if (!buffers[i].buffer) { continue; } if (r300_buffer_is_user_buffer(vbo->buffer)) { any_user_buffer = TRUE; } if (vbo->max_index == ~0) { /* if no VBO stride then only one vertex value so max index is 1 */ /* should think about converting to VS constants like svga does */ if (!vbo->stride) vbo->max_index = 1; else vbo->max_index = (vbo->buffer->width0 - vbo->buffer_offset) / vbo->stride; } max_index = MIN2(vbo->max_index, max_index); } r300->any_user_vbs = any_user_buffer; r300->vertex_buffer_max_index = max_index; } else { /* SW TCL. */ draw_set_vertex_buffers(r300->draw, count, buffers); } /* Common code. */ for (i = 0; i < count; i++) { /* Reference our buffer. */ pipe_resource_reference(&r300->vertex_buffer[i].buffer, buffers[i].buffer); } for (; i < r300->vertex_buffer_count; i++) { /* Dereference any old buffers. */ pipe_resource_reference(&r300->vertex_buffer[i].buffer, NULL); } memcpy(r300->vertex_buffer, buffers, sizeof(struct pipe_vertex_buffer) * count); r300->vertex_buffer_count = count; } static void r300_set_index_buffer(struct pipe_context* pipe, const struct pipe_index_buffer *ib) { struct r300_context* r300 = r300_context(pipe); if (ib) { pipe_resource_reference(&r300->index_buffer.buffer, ib->buffer); memcpy(&r300->index_buffer, ib, sizeof(r300->index_buffer)); } else { pipe_resource_reference(&r300->index_buffer.buffer, NULL); memset(&r300->index_buffer, 0, sizeof(r300->index_buffer)); } if (r300->screen->caps.has_tcl) { /* TODO make this more like a state */ } else { draw_set_index_buffer(r300->draw, ib); } } /* Initialize the PSC tables. */ static void r300_vertex_psc(struct r300_vertex_element_state *velems) { struct r300_vertex_stream_state *vstream = &velems->vertex_stream; uint16_t type, swizzle; enum pipe_format format; unsigned i; if (velems->count > 16) { fprintf(stderr, "r300: More than 16 vertex elements are not supported," " requested %i, using 16.\n", velems->count); velems->count = 16; } /* Vertex shaders have no semantics on their inputs, * so PSC should just route stuff based on the vertex elements, * and not on attrib information. */ for (i = 0; i < velems->count; i++) { format = velems->hw_format[i]; type = r300_translate_vertex_data_type(format); if (type == R300_INVALID_FORMAT) { fprintf(stderr, "r300: Bad vertex format %s.\n", util_format_short_name(format)); assert(0); abort(); } type |= i << R300_DST_VEC_LOC_SHIFT; swizzle = r300_translate_vertex_data_swizzle(format); if (i & 1) { vstream->vap_prog_stream_cntl[i >> 1] |= type << 16; vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16; } else { vstream->vap_prog_stream_cntl[i >> 1] |= type; vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle; } } /* Set the last vector in the PSC. */ if (i) { i -= 1; } vstream->vap_prog_stream_cntl[i >> 1] |= (R300_LAST_VEC << (i & 1 ? 16 : 0)); vstream->count = (i >> 1) + 1; } #define FORMAT_REPLACE(what, withwhat) \ case PIPE_FORMAT_##what: *format = PIPE_FORMAT_##withwhat; break static void* r300_create_vertex_elements_state(struct pipe_context* pipe, unsigned count, const struct pipe_vertex_element* attribs) { struct r300_vertex_element_state *velems; unsigned i; enum pipe_format *format; struct pipe_vertex_element dummy_attrib = {0}; /* R300 Programmable Stream Control (PSC) doesn't support 0 vertex elements. */ if (!count) { dummy_attrib.src_format = PIPE_FORMAT_R8G8B8A8_UNORM; attribs = &dummy_attrib; count = 1; } assert(count <= PIPE_MAX_ATTRIBS); velems = CALLOC_STRUCT(r300_vertex_element_state); if (velems != NULL) { velems->count = count; memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count); if (r300_screen(pipe->screen)->caps.has_tcl) { /* Set the best hw format in case the original format is not * supported by hw. */ for (i = 0; i < count; i++) { velems->hw_format[i] = velems->velem[i].src_format; format = &velems->hw_format[i]; /* This is basically the list of unsupported formats. * For now we don't care about the alignment, that's going to * be sorted out after the PSC setup. */ switch (*format) { FORMAT_REPLACE(R64_FLOAT, R32_FLOAT); FORMAT_REPLACE(R64G64_FLOAT, R32G32_FLOAT); FORMAT_REPLACE(R64G64B64_FLOAT, R32G32B32_FLOAT); FORMAT_REPLACE(R64G64B64A64_FLOAT, R32G32B32A32_FLOAT); FORMAT_REPLACE(R32_UNORM, R32_FLOAT); FORMAT_REPLACE(R32G32_UNORM, R32G32_FLOAT); FORMAT_REPLACE(R32G32B32_UNORM, R32G32B32_FLOAT); FORMAT_REPLACE(R32G32B32A32_UNORM, R32G32B32A32_FLOAT); FORMAT_REPLACE(R32_USCALED, R32_FLOAT); FORMAT_REPLACE(R32G32_USCALED, R32G32_FLOAT); FORMAT_REPLACE(R32G32B32_USCALED, R32G32B32_FLOAT); FORMAT_REPLACE(R32G32B32A32_USCALED,R32G32B32A32_FLOAT); FORMAT_REPLACE(R32_SNORM, R32_FLOAT); FORMAT_REPLACE(R32G32_SNORM, R32G32_FLOAT); FORMAT_REPLACE(R32G32B32_SNORM, R32G32B32_FLOAT); FORMAT_REPLACE(R32G32B32A32_SNORM, R32G32B32A32_FLOAT); FORMAT_REPLACE(R32_SSCALED, R32_FLOAT); FORMAT_REPLACE(R32G32_SSCALED, R32G32_FLOAT); FORMAT_REPLACE(R32G32B32_SSCALED, R32G32B32_FLOAT); FORMAT_REPLACE(R32G32B32A32_SSCALED,R32G32B32A32_FLOAT); FORMAT_REPLACE(R32_FIXED, R32_FLOAT); FORMAT_REPLACE(R32G32_FIXED, R32G32_FLOAT); FORMAT_REPLACE(R32G32B32_FIXED, R32G32B32_FLOAT); FORMAT_REPLACE(R32G32B32A32_FIXED, R32G32B32A32_FLOAT); default:; } velems->incompatible_layout = velems->incompatible_layout || velems->velem[i].src_format != velems->hw_format[i] || velems->velem[i].src_offset % 4 != 0; } /* Now setup PSC. * The unused components will be replaced by (..., 0, 1). */ r300_vertex_psc(velems); /* Align the formats to the size of DWORD. * We only care about the blocksizes of the formats since * swizzles are already set up. * Also compute the vertex size. */ for (i = 0; i < count; i++) { /* This is OK because we check for aligned strides too * elsewhere. */ velems->hw_format_size[i] = align(util_format_get_blocksize(velems->hw_format[i]), 4); velems->vertex_size_dwords += velems->hw_format_size[i] / 4; } } } return velems; } static void r300_bind_vertex_elements_state(struct pipe_context *pipe, void *state) { struct r300_context *r300 = r300_context(pipe); struct r300_vertex_element_state *velems = state; if (velems == NULL) { return; } r300->velems = velems; if (r300->draw) { draw_set_vertex_elements(r300->draw, velems->count, velems->velem); return; } UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state); r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2; } static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state) { FREE(state); } static void* r300_create_vs_state(struct pipe_context* pipe, const struct pipe_shader_state* shader) { struct r300_context* r300 = r300_context(pipe); struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader); /* Copy state directly into shader. */ vs->state = *shader; vs->state.tokens = tgsi_dup_tokens(shader->tokens); if (r300->screen->caps.has_tcl) { r300_init_vs_outputs(vs); r300_translate_vertex_shader(r300, vs); } else { r300_draw_init_vertex_shader(r300->draw, vs); } return vs; } static void r300_bind_vs_state(struct pipe_context* pipe, void* shader) { struct r300_context* r300 = r300_context(pipe); struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader; if (vs == NULL) { r300->vs_state.state = NULL; return; } if (vs == r300->vs_state.state) { return; } r300->vs_state.state = vs; /* The majority of the RS block bits is dependent on the vertex shader. */ r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */ if (r300->screen->caps.has_tcl) { unsigned fc_op_dwords = r300->screen->caps.is_r500 ? 3 : 2; r300->vs_state.dirty = TRUE; r300->vs_state.size = vs->code.length + 9 + (vs->immediates_count ? vs->immediates_count * 4 + 3 : 0) + (vs->code.num_fc_ops ? vs->code.num_fc_ops * fc_op_dwords + 4 : 0); if (vs->externals_count) { r300->vs_constants.dirty = TRUE; r300->vs_constants.size = vs->externals_count * 4 + 3; } else { r300->vs_constants.size = 0; } ((struct r300_constant_buffer*)r300->vs_constants.state)->remap_table = vs->code.constants_remap_table; r300->pvs_flush.dirty = TRUE; } else { draw_bind_vertex_shader(r300->draw, (struct draw_vertex_shader*)vs->draw_vs); } } static void r300_delete_vs_state(struct pipe_context* pipe, void* shader) { struct r300_context* r300 = r300_context(pipe); struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader; if (r300->screen->caps.has_tcl) { rc_constants_destroy(&vs->code.constants); if (vs->code.constants_remap_table) FREE(vs->code.constants_remap_table); } else { draw_delete_vertex_shader(r300->draw, (struct draw_vertex_shader*)vs->draw_vs); } FREE((void*)vs->state.tokens); FREE(shader); } static void r300_set_constant_buffer(struct pipe_context *pipe, uint shader, uint index, struct pipe_resource *buf) { struct r300_context* r300 = r300_context(pipe); struct r300_constant_buffer *cbuf; uint32_t *mapped; switch (shader) { case PIPE_SHADER_VERTEX: cbuf = (struct r300_constant_buffer*)r300->vs_constants.state; break; case PIPE_SHADER_FRAGMENT: cbuf = (struct r300_constant_buffer*)r300->fs_constants.state; break; default: assert(0); return; } if (buf == NULL || buf->width0 == 0 || (mapped = r300_buffer(buf)->constant_buffer) == NULL) { return; } if (shader == PIPE_SHADER_FRAGMENT || (shader == PIPE_SHADER_VERTEX && r300->screen->caps.has_tcl)) { assert((buf->width0 % (4 * sizeof(float))) == 0); cbuf->ptr = mapped + index*4; } if (shader == PIPE_SHADER_VERTEX) { if (r300->screen->caps.has_tcl) { if (r300->vs_constants.size) { r300->vs_constants.dirty = TRUE; } r300->pvs_flush.dirty = TRUE; } else if (r300->draw) { draw_set_mapped_constant_buffer(r300->draw, PIPE_SHADER_VERTEX, 0, mapped, buf->width0); } } else if (shader == PIPE_SHADER_FRAGMENT) { r300->fs_constants.dirty = TRUE; } } void r300_init_state_functions(struct r300_context* r300) { r300->context.create_blend_state = r300_create_blend_state; r300->context.bind_blend_state = r300_bind_blend_state; r300->context.delete_blend_state = r300_delete_blend_state; r300->context.set_blend_color = r300_set_blend_color; r300->context.set_clip_state = r300_set_clip_state; r300->context.set_sample_mask = r300_set_sample_mask; r300->context.set_constant_buffer = r300_set_constant_buffer; r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state; r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state; r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state; r300->context.set_stencil_ref = r300_set_stencil_ref; r300->context.set_framebuffer_state = r300_set_framebuffer_state; r300->context.create_fs_state = r300_create_fs_state; r300->context.bind_fs_state = r300_bind_fs_state; r300->context.delete_fs_state = r300_delete_fs_state; r300->context.set_polygon_stipple = r300_set_polygon_stipple; r300->context.create_rasterizer_state = r300_create_rs_state; r300->context.bind_rasterizer_state = r300_bind_rs_state; r300->context.delete_rasterizer_state = r300_delete_rs_state; r300->context.create_sampler_state = r300_create_sampler_state; r300->context.bind_fragment_sampler_states = r300_bind_sampler_states; r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures; r300->context.delete_sampler_state = r300_delete_sampler_state; r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views; r300->context.create_sampler_view = r300_create_sampler_view; r300->context.sampler_view_destroy = r300_sampler_view_destroy; r300->context.set_scissor_state = r300_set_scissor_state; r300->context.set_viewport_state = r300_set_viewport_state; r300->context.set_vertex_buffers = r300_set_vertex_buffers; r300->context.set_index_buffer = r300_set_index_buffer; r300->context.create_vertex_elements_state = r300_create_vertex_elements_state; r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state; r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state; r300->context.create_vs_state = r300_create_vs_state; r300->context.bind_vs_state = r300_bind_vs_state; r300->context.delete_vs_state = r300_delete_vs_state; }