/* * Copyright 2008 Corbin Simpson * Copyright 2009 Marek Olšák * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * on the rights to use, copy, modify, merge, publish, distribute, sub * license, and/or sell copies of the Software, and to permit persons to whom * the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "draw/draw_context.h" #include "util/u_math.h" #include "util/u_memory.h" #include "r300_context.h" #include "r300_fs.h" #include "r300_screen.h" #include "r300_shader_semantics.h" #include "r300_state_derived.h" #include "r300_state_inlines.h" #include "r300_vs.h" /* r300_state_derived: Various bits of state which are dependent upon * currently bound CSO data. */ struct r300_shader_key { struct r300_vertex_shader* vs; struct r300_fragment_shader* fs; }; struct r300_shader_derived_value { struct r300_vertex_format* vformat; struct r300_rs_block* rs_block; }; unsigned r300_shader_key_hash(void* key) { struct r300_shader_key* shader_key = (struct r300_shader_key*)key; unsigned vs = (intptr_t)shader_key->vs; unsigned fs = (intptr_t)shader_key->fs; return (vs << 16) | (fs & 0xffff); } int r300_shader_key_compare(void* key1, void* key2) { struct r300_shader_key* shader_key1 = (struct r300_shader_key*)key1; struct r300_shader_key* shader_key2 = (struct r300_shader_key*)key2; return (shader_key1->vs == shader_key2->vs) && (shader_key1->fs == shader_key2->fs); } static void r300_draw_emit_attrib(struct r300_context* r300, enum attrib_emit emit, enum interp_mode interp, int index) { struct tgsi_shader_info* info = &r300->vs->info; int output; output = draw_find_vs_output(r300->draw, info->output_semantic_name[index], info->output_semantic_index[index]); draw_emit_vertex_attr(&r300->vertex_info->vinfo, emit, interp, output); } static void r300_draw_emit_all_attribs(struct r300_context* r300) { struct r300_shader_semantics* vs_outputs = &r300->vs->outputs; int i, gen_count; /* Position. */ if (vs_outputs->pos != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE, vs_outputs->pos); } else { assert(0); } /* Point size. */ if (vs_outputs->psize != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_1F_PSIZE, INTERP_POS, vs_outputs->psize); } /* Colors. */ for (i = 0; i < ATTR_COLOR_COUNT; i++) { if (vs_outputs->color[i] != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR, vs_outputs->color[i]); } } /* XXX Back-face colors. */ /* Texture coordinates. */ gen_count = 0; for (i = 0; i < ATTR_GENERIC_COUNT; i++) { if (vs_outputs->generic[i] != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE, vs_outputs->generic[i]); gen_count++; } } /* Fog coordinates. */ if (vs_outputs->fog != ATTR_UNUSED) { r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE, vs_outputs->fog); gen_count++; } /* XXX magic */ assert(gen_count <= 8); } /* Update the PSC tables. */ static void r300_vertex_psc(struct r300_context* r300) { struct r300_vertex_info *vformat = r300->vertex_info; uint16_t type, swizzle; enum pipe_format format; unsigned i; int identity[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; int* stream_tab; /* If TCL is bypassed, map vertex streams to equivalent VS output * locations. */ if (r300->rs_state->enable_vte) { stream_tab = identity; } else { stream_tab = r300->vs->stream_loc_notcl; } /* Vertex shaders have no semantics on their inputs, * so PSC should just route stuff based on the vertex elements, * and not on attrib information. */ DBG(r300, DBG_DRAW, "r300: vs expects %d attribs, routing %d elements" " in psc\n", r300->vs->info.num_inputs, r300->vertex_element_count); for (i = 0; i < r300->vertex_element_count; i++) { format = r300->vertex_element[i].src_format; type = r300_translate_vertex_data_type(format) | (stream_tab[i] << R300_DST_VEC_LOC_SHIFT); swizzle = r300_translate_vertex_data_swizzle(format); if (i & 1) { vformat->vap_prog_stream_cntl[i >> 1] |= type << 16; vformat->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16; } else { vformat->vap_prog_stream_cntl[i >> 1] |= type; vformat->vap_prog_stream_cntl_ext[i >> 1] |= swizzle; } } assert(i <= 15); /* Set the last vector in the PSC. */ if (i) { i -= 1; } vformat->vap_prog_stream_cntl[i >> 1] |= (R300_LAST_VEC << (i & 1 ? 16 : 0)); } /* Update the PSC tables for SW TCL, using Draw. */ static void r300_swtcl_vertex_psc(struct r300_context* r300) { struct r300_vertex_info *vformat = r300->vertex_info; struct vertex_info* vinfo = &vformat->vinfo; uint16_t type, swizzle; enum pipe_format format; unsigned i, attrib_count; int* vs_output_tab = r300->vs->stream_loc_notcl; /* For each Draw attribute, route it to the fragment shader according * to the vs_output_tab. */ attrib_count = vinfo->num_attribs; DBG(r300, DBG_DRAW, "r300: attrib count: %d\n", attrib_count); for (i = 0; i < attrib_count; i++) { DBG(r300, DBG_DRAW, "r300: attrib: offset %d, interp %d, size %d," " vs_output_tab %d\n", vinfo->attrib[i].src_index, vinfo->attrib[i].interp_mode, vinfo->attrib[i].emit, vs_output_tab[i]); } for (i = 0; i < attrib_count; i++) { /* Make sure we have a proper destination for our attribute. */ assert(vs_output_tab[i] != -1); format = draw_translate_vinfo_format(vinfo->attrib[i].emit); /* Obtain the type of data in this attribute. */ type = r300_translate_vertex_data_type(format) | vs_output_tab[i] << R300_DST_VEC_LOC_SHIFT; /* Obtain the swizzle for this attribute. Note that the default * swizzle in the hardware is not XYZW! */ swizzle = r300_translate_vertex_data_swizzle(format); /* Add the attribute to the PSC table. */ if (i & 1) { vformat->vap_prog_stream_cntl[i >> 1] |= type << 16; vformat->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16; } else { vformat->vap_prog_stream_cntl[i >> 1] |= type; vformat->vap_prog_stream_cntl_ext[i >> 1] |= swizzle; } } /* Set the last vector in the PSC. */ if (i) { i -= 1; } vformat->vap_prog_stream_cntl[i >> 1] |= (R300_LAST_VEC << (i & 1 ? 16 : 0)); } static void r300_rs_col(struct r300_rs_block* rs, int id, int ptr, boolean swizzle_0001) { rs->ip[id] |= R300_RS_COL_PTR(ptr); if (swizzle_0001) { rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_0001); } else { rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_RGBA); } rs->inst[id] |= R300_RS_INST_COL_ID(id); } static void r300_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset) { rs->inst[id] |= R300_RS_INST_COL_CN_WRITE | R300_RS_INST_COL_ADDR(fp_offset); } static void r300_rs_tex(struct r300_rs_block* rs, int id, int ptr, boolean swizzle_X001) { if (swizzle_X001) { rs->ip[id] |= R300_RS_TEX_PTR(ptr*4) | R300_RS_SEL_S(R300_RS_SEL_C0) | R300_RS_SEL_T(R300_RS_SEL_K0) | R300_RS_SEL_R(R300_RS_SEL_K0) | R300_RS_SEL_Q(R300_RS_SEL_K1); } else { rs->ip[id] |= R300_RS_TEX_PTR(ptr*4) | R300_RS_SEL_S(R300_RS_SEL_C0) | R300_RS_SEL_T(R300_RS_SEL_C1) | R300_RS_SEL_R(R300_RS_SEL_C2) | R300_RS_SEL_Q(R300_RS_SEL_C3); } rs->inst[id] |= R300_RS_INST_TEX_ID(id); } static void r300_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset) { rs->inst[id] |= R300_RS_INST_TEX_CN_WRITE | R300_RS_INST_TEX_ADDR(fp_offset); } static void r500_rs_col(struct r300_rs_block* rs, int id, int ptr, boolean swizzle_0001) { rs->ip[id] |= R500_RS_COL_PTR(ptr); if (swizzle_0001) { rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_0001); } else { rs->ip[id] |= R500_RS_COL_FMT(R300_RS_COL_FMT_RGBA); } rs->inst[id] |= R500_RS_INST_COL_ID(id); } static void r500_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset) { rs->inst[id] |= R500_RS_INST_COL_CN_WRITE | R500_RS_INST_COL_ADDR(fp_offset); } static void r500_rs_tex(struct r300_rs_block* rs, int id, int ptr, boolean swizzle_X001) { int rs_tex_comp = ptr*4; if (swizzle_X001) { rs->ip[id] |= R500_RS_SEL_S(rs_tex_comp) | R500_RS_SEL_T(R500_RS_IP_PTR_K0) | R500_RS_SEL_R(R500_RS_IP_PTR_K0) | R500_RS_SEL_Q(R500_RS_IP_PTR_K1); } else { rs->ip[id] |= R500_RS_SEL_S(rs_tex_comp) | R500_RS_SEL_T(rs_tex_comp + 1) | R500_RS_SEL_R(rs_tex_comp + 2) | R500_RS_SEL_Q(rs_tex_comp + 3); } rs->inst[id] |= R500_RS_INST_TEX_ID(id); } static void r500_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset) { rs->inst[id] |= R500_RS_INST_TEX_CN_WRITE | R500_RS_INST_TEX_ADDR(fp_offset); } /* Set up the RS block. * * This is the part of the chipset that actually does the rasterization * of vertices into fragments. This is also the part of the chipset that * locks up if any part of it is even slightly wrong. */ static void r300_update_rs_block(struct r300_context* r300, struct r300_shader_semantics* vs_outputs, struct r300_shader_semantics* fs_inputs) { struct r300_rs_block* rs = r300->rs_block; int i, col_count = 0, tex_count = 0, fp_offset = 0; void (*rX00_rs_col)(struct r300_rs_block*, int, int, boolean); void (*rX00_rs_col_write)(struct r300_rs_block*, int, int); void (*rX00_rs_tex)(struct r300_rs_block*, int, int, boolean); void (*rX00_rs_tex_write)(struct r300_rs_block*, int, int); if (r300_screen(r300->context.screen)->caps->is_r500) { rX00_rs_col = r500_rs_col; rX00_rs_col_write = r500_rs_col_write; rX00_rs_tex = r500_rs_tex; rX00_rs_tex_write = r500_rs_tex_write; } else { rX00_rs_col = r300_rs_col; rX00_rs_col_write = r300_rs_col_write; rX00_rs_tex = r300_rs_tex; rX00_rs_tex_write = r300_rs_tex_write; } /* Rasterize colors. */ for (i = 0; i < ATTR_COLOR_COUNT; i++) { if (vs_outputs->color[i] != ATTR_UNUSED) { /* Always rasterize if it's written by the VS, * otherwise it locks up. */ rX00_rs_col(rs, col_count, i, FALSE); /* Write it to the FS input register if it's used by the FS. */ if (fs_inputs->color[i] != ATTR_UNUSED) { rX00_rs_col_write(rs, col_count, fp_offset); fp_offset++; } col_count++; } else { /* Skip the FS input register, leave it uninitialized. */ /* If we try to set it to (0,0,0,1), it will lock up. */ if (fs_inputs->color[i] != ATTR_UNUSED) { fp_offset++; } } } /* Rasterize texture coordinates. */ for (i = 0; i < ATTR_GENERIC_COUNT; i++) { if (vs_outputs->generic[i] != ATTR_UNUSED) { /* Always rasterize if it's written by the VS, * otherwise it locks up. */ rX00_rs_tex(rs, tex_count, tex_count, FALSE); /* Write it to the FS input register if it's used by the FS. */ if (fs_inputs->generic[i] != ATTR_UNUSED) { rX00_rs_tex_write(rs, tex_count, fp_offset); fp_offset++; } tex_count++; } else { /* Skip the FS input register, leave it uninitialized. */ /* If we try to set it to (0,0,0,1), it will lock up. */ if (fs_inputs->generic[i] != ATTR_UNUSED) { fp_offset++; } } } /* Rasterize fog coordinates. */ if (vs_outputs->fog != ATTR_UNUSED) { /* Always rasterize if it's written by the VS, * otherwise it locks up. */ rX00_rs_tex(rs, tex_count, tex_count, TRUE); /* Write it to the FS input register if it's used by the FS. */ if (fs_inputs->fog != ATTR_UNUSED) { rX00_rs_tex_write(rs, tex_count, fp_offset); fp_offset++; } tex_count++; } else { /* Skip the FS input register, leave it uninitialized. */ /* If we try to set it to (0,0,0,1), it will lock up. */ if (fs_inputs->fog != ATTR_UNUSED) { fp_offset++; } } /* Rasterize at least one color, or bad things happen. */ if (col_count == 0 && tex_count == 0) { rX00_rs_col(rs, 0, 0, TRUE); col_count++; } rs->count = (tex_count*4) | (col_count << R300_IC_COUNT_SHIFT) | R300_HIRES_EN; rs->inst_count = MAX3(col_count - 1, tex_count - 1, 0); } /* Update the vertex format. */ static void r300_update_derived_shader_state(struct r300_context* r300) { struct r300_screen* r300screen = r300_screen(r300->context.screen); /* struct r300_shader_key* key; struct r300_shader_derived_value* value; key = CALLOC_STRUCT(r300_shader_key); key->vs = r300->vs; key->fs = r300->fs; value = (struct r300_shader_derived_value*) util_hash_table_get(r300->shader_hash_table, (void*)key); if (value) { //vformat = value->vformat; rs_block = value->rs_block; FREE(key); } else { rs_block = CALLOC_STRUCT(r300_rs_block); value = CALLOC_STRUCT(r300_shader_derived_value); r300_update_rs_block(r300, rs_block); //value->vformat = vformat; value->rs_block = rs_block; util_hash_table_set(r300->shader_hash_table, (void*)key, (void*)value); } */ /* Reset structures */ memset(r300->rs_block, 0, sizeof(struct r300_rs_block)); memset(r300->vertex_info, 0, sizeof(struct r300_vertex_info)); memcpy(r300->vertex_info->vinfo.hwfmt, r300->vs->hwfmt, sizeof(uint)*4); r300_update_rs_block(r300, &r300->vs->outputs, &r300->fs->inputs); if (r300screen->caps->has_tcl) { r300_vertex_psc(r300); } else { r300_draw_emit_all_attribs(r300); draw_compute_vertex_size(&r300->vertex_info->vinfo); r300_swtcl_vertex_psc(r300); } r300->dirty_state |= R300_NEW_RS_BLOCK; } static boolean r300_dsa_writes_depth_stencil(struct r300_dsa_state* dsa) { /* We are interested only in the cases when a new depth or stencil value * can be written and changed. */ /* We might optionally check for [Z func: never] and inspect the stencil * state in a similar fashion, but it's not terribly important. */ return (dsa->z_buffer_control & R300_Z_WRITE_ENABLE) || (dsa->stencil_ref_mask & R300_STENCILWRITEMASK_MASK) || ((dsa->z_buffer_control & R500_STENCIL_REFMASK_FRONT_BACK) && (dsa->stencil_ref_bf & R300_STENCILWRITEMASK_MASK)); } static boolean r300_dsa_alpha_test_enabled(struct r300_dsa_state* dsa) { /* We are interested only in the cases when alpha testing can kill * a fragment. */ uint32_t af = dsa->alpha_function; return (af & R300_FG_ALPHA_FUNC_ENABLE) && (af & R300_FG_ALPHA_FUNC_ALWAYS) != R300_FG_ALPHA_FUNC_ALWAYS; } static void r300_update_ztop(struct r300_context* r300) { r300->ztop_state.z_buffer_top = R300_ZTOP_ENABLE; /* This is important enough that I felt it warranted a comment. * * According to the docs, these are the conditions where ZTOP must be * disabled: * 1) Alpha testing enabled * 2) Texture kill instructions in fragment shader * 3) Chroma key culling enabled * 4) W-buffering enabled * * The docs claim that for the first three cases, if no ZS writes happen, * then ZTOP can be used. * * (3) will never apply since we do not support chroma-keyed operations. * (4) will need to be re-examined (and this comment updated) if/when * Hyper-Z becomes supported. * * Additionally, the following conditions require disabled ZTOP: * 5) Depth writes in fragment shader * 6) Outstanding occlusion queries * * ~C. */ /* ZS writes */ if (r300_dsa_writes_depth_stencil(r300->dsa_state) && (r300_dsa_alpha_test_enabled(r300->dsa_state) || /* (1) */ r300->fs->info.uses_kill)) { /* (2) */ r300->ztop_state.z_buffer_top = R300_ZTOP_DISABLE; } else if (r300_fragment_shader_writes_depth(r300->fs)) { /* (5) */ r300->ztop_state.z_buffer_top = R300_ZTOP_DISABLE; } else if (r300->query_current) { /* (6) */ r300->ztop_state.z_buffer_top = R300_ZTOP_DISABLE; } } void r300_update_derived_state(struct r300_context* r300) { if (r300->dirty_state & (R300_NEW_FRAGMENT_SHADER | R300_NEW_VERTEX_SHADER | R300_NEW_VERTEX_FORMAT)) { r300_update_derived_shader_state(r300); } if (r300->dirty_state & (R300_NEW_DSA | R300_NEW_FRAGMENT_SHADER | R300_NEW_QUERY)) { r300_update_ztop(r300); } }