/* * Mesa 3-D graphics library * Version: 3.3 * Copyright (C) 1995-2000 Brian Paul * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * NURBS implementation written by Bogdan Sikorski (bogdan@cira.it) * See README2 for more info. */ #ifdef PC_HEADER #include "all.h" #else #include <stdio.h> #include <stdlib.h> #include "gluP.h" #include "nurbs.h" #endif void call_user_error(GLUnurbsObj * nobj, GLenum error) { nobj->error = error; if (nobj->error_callback != NULL) { (*(nobj->error_callback)) (error); } else { printf("NURBS error %d %s\n", error, (char *) gluErrorString(error)); } } GLUnurbsObj *GLAPIENTRY gluNewNurbsRenderer(void) { GLUnurbsObj *n; GLfloat tmp_viewport[4]; GLint i, j; n = (GLUnurbsObj *) malloc(sizeof(GLUnurbsObj)); if (n) { /* init */ n->culling = GL_FALSE; n->nurbs_type = GLU_NURBS_NONE; n->error = GLU_NO_ERROR; n->error_callback = NULL; n->auto_load_matrix = GL_TRUE; n->sampling_tolerance = 50.0; n->parametric_tolerance = 0.5; n->u_step = n->v_step = 100; n->sampling_method = GLU_PATH_LENGTH; n->display_mode = GLU_FILL; /* in case the user doesn't supply the sampling matrices */ /* set projection and modelview to identity */ for (i = 0; i < 4; i++) for (j = 0; j < 4; j++) if (i == j) { n->sampling_matrices.model[i * 4 + j] = 1.0; n->sampling_matrices.proj[i * 4 + j] = 1.0; } else { n->sampling_matrices.model[i * 4 + j] = 0.0; n->sampling_matrices.proj[i * 4 + j] = 0.0; } /* and set the viewport sampling matrix to current ciewport */ glGetFloatv(GL_VIEWPORT, tmp_viewport); for (i = 0; i < 4; i++) n->sampling_matrices.viewport[i] = tmp_viewport[i]; n->trim = NULL; } return n; } void GLAPIENTRY gluDeleteNurbsRenderer(GLUnurbsObj * nobj) { if (nobj) { free(nobj); } } void GLAPIENTRY gluLoadSamplingMatrices(GLUnurbsObj * nobj, const GLfloat modelMatrix[16], const GLfloat projMatrix[16], const GLint viewport[4]) { GLint i; for (i = 0; i < 16; i++) { nobj->sampling_matrices.model[i] = modelMatrix[i]; nobj->sampling_matrices.proj[i] = projMatrix[i]; } for (i = 0; i < 4; i++) nobj->sampling_matrices.viewport[i] = viewport[i]; } void GLAPIENTRY gluNurbsProperty(GLUnurbsObj * nobj, GLenum property, GLfloat value) { GLenum val; switch (property) { case GLU_SAMPLING_TOLERANCE: if (value <= 0.0) { call_user_error(nobj, GLU_INVALID_VALUE); return; } nobj->sampling_tolerance = value; break; case GLU_PARAMETRIC_TOLERANCE: if (value <= 0.0) { call_user_error(nobj, GLU_INVALID_VALUE); return; } nobj->parametric_tolerance = value; break; case GLU_U_STEP: if (value <= 0.0) { call_user_error(nobj, GLU_INVALID_VALUE); return; } nobj->u_step = (GLint) value; break; case GLU_V_STEP: if (value <= 0.0) { call_user_error(nobj, GLU_INVALID_VALUE); return; } nobj->v_step = (GLint) value; break; case GLU_SAMPLING_METHOD: val = (GLenum) value; if (val != GLU_PATH_LENGTH && val != GLU_PARAMETRIC_ERROR && val != GLU_DOMAIN_DISTANCE) { call_user_error(nobj, GLU_INVALID_ENUM); return; } nobj->sampling_method = val; break; case GLU_DISPLAY_MODE: val = (GLenum) value; if (val != GLU_FILL && val != GLU_OUTLINE_POLYGON && val != GLU_OUTLINE_PATCH) { call_user_error(nobj, GLU_INVALID_ENUM); return; } if (nobj->nurbs_type == GLU_NURBS_CURVE) { call_user_error(nobj, GLU_NURBS_ERROR26); return; } nobj->display_mode = val; if (val == GLU_OUTLINE_PATCH) fprintf(stderr, "NURBS, for the moment, can display only in POLYGON mode\n"); break; case GLU_CULLING: val = (GLenum) value; if (val != GL_TRUE && val != GL_FALSE) { call_user_error(nobj, GLU_INVALID_ENUM); return; } nobj->culling = (GLboolean) value; break; case GLU_AUTO_LOAD_MATRIX: val = (GLenum) value; if (val != GL_TRUE && val != GL_FALSE) { call_user_error(nobj, GLU_INVALID_ENUM); return; } nobj->auto_load_matrix = (GLboolean) value; break; default: call_user_error(nobj, GLU_NURBS_ERROR26); } } void GLAPIENTRY gluGetNurbsProperty(GLUnurbsObj * nobj, GLenum property, GLfloat * value) { switch (property) { case GLU_SAMPLING_TOLERANCE: *value = nobj->sampling_tolerance; break; case GLU_DISPLAY_MODE: *value = (GLfloat) (GLint) nobj->display_mode; break; case GLU_CULLING: *value = nobj->culling ? 1.0 : 0.0; break; case GLU_AUTO_LOAD_MATRIX: *value = nobj->auto_load_matrix ? 1.0 : 0.0; break; default: call_user_error(nobj, GLU_INVALID_ENUM); } } void GLAPIENTRY gluBeginCurve(GLUnurbsObj * nobj) { if (nobj->nurbs_type == GLU_NURBS_CURVE) { call_user_error(nobj, GLU_NURBS_ERROR6); return; } nobj->nurbs_type = GLU_NURBS_CURVE; nobj->curve.geom.type = GLU_INVALID_ENUM; nobj->curve.color.type = GLU_INVALID_ENUM; nobj->curve.texture.type = GLU_INVALID_ENUM; nobj->curve.normal.type = GLU_INVALID_ENUM; } void GLAPIENTRY gluEndCurve(GLUnurbsObj * nobj) { if (nobj->nurbs_type == GLU_NURBS_NONE) { call_user_error(nobj, GLU_NURBS_ERROR7); return; } if (nobj->curve.geom.type == GLU_INVALID_ENUM) { call_user_error(nobj, GLU_NURBS_ERROR8); nobj->nurbs_type = GLU_NURBS_NONE; return; } glPushAttrib((GLbitfield) (GL_EVAL_BIT | GL_ENABLE_BIT)); glDisable(GL_MAP1_VERTEX_3); glDisable(GL_MAP1_VERTEX_4); glDisable(GL_MAP1_INDEX); glDisable(GL_MAP1_COLOR_4); glDisable(GL_MAP1_NORMAL); glDisable(GL_MAP1_TEXTURE_COORD_1); glDisable(GL_MAP1_TEXTURE_COORD_2); glDisable(GL_MAP1_TEXTURE_COORD_3); glDisable(GL_MAP1_TEXTURE_COORD_4); glDisable(GL_MAP2_VERTEX_3); glDisable(GL_MAP2_VERTEX_4); glDisable(GL_MAP2_INDEX); glDisable(GL_MAP2_COLOR_4); glDisable(GL_MAP2_NORMAL); glDisable(GL_MAP2_TEXTURE_COORD_1); glDisable(GL_MAP2_TEXTURE_COORD_2); glDisable(GL_MAP2_TEXTURE_COORD_3); glDisable(GL_MAP2_TEXTURE_COORD_4); do_nurbs_curve(nobj); glPopAttrib(); nobj->nurbs_type = GLU_NURBS_NONE; } void GLAPIENTRY gluNurbsCurve(GLUnurbsObj * nobj, GLint nknots, GLfloat * knot, GLint stride, GLfloat * ctlarray, GLint order, GLenum type) { if (nobj->nurbs_type == GLU_NURBS_TRIM) { #if 0 /* TODO: NOT IMPLEMENTED YET */ nurbs_trim *ptr1; trim_list *ptr2; if (type != GLU_MAP1_TRIM_2 && type != GLU_MAP1_TRIM_3) { call_user_error(nobj, GLU_NURBS_ERROR14); return; } for (ptr1 = nobj->trim; ptr1->next; ptr1 = ptr1->next); if (ptr1->trim_loop) { for (ptr2 = ptr1->trim_loop; ptr2->next; ptr2 = ptr2->next); if ((ptr2->next = (trim_list *) malloc(sizeof(trim_list))) == NULL) { call_user_error(nobj, GLU_OUT_OF_MEMORY); return; } ptr2 = ptr2->next; } else { if ((ptr2 = (trim_list *) malloc(sizeof(trim_list))) == NULL) { call_user_error(nobj, GLU_OUT_OF_MEMORY); return; } ptr1->trim_loop = ptr2; } ptr2->trim_type = GLU_TRIM_NURBS; ptr2->curve.nurbs_curve.knot_count = nknots; ptr2->curve.nurbs_curve.knot = knot; ptr2->curve.nurbs_curve.stride = stride; ptr2->curve.nurbs_curve.ctrlarray = ctlarray; ptr2->curve.nurbs_curve.order = order; ptr2->curve.nurbs_curve.dim = (type == GLU_MAP1_TRIM_2 ? 2 : 3); ptr2->curve.nurbs_curve.type = type; ptr2->next = NULL; #endif } else { if (type == GLU_MAP1_TRIM_2 || type == GLU_MAP1_TRIM_3) { call_user_error(nobj, GLU_NURBS_ERROR22); return; } if (nobj->nurbs_type != GLU_NURBS_CURVE) { call_user_error(nobj, GLU_NURBS_ERROR10); return; } switch (type) { case GL_MAP1_VERTEX_3: case GL_MAP1_VERTEX_4: if (nobj->curve.geom.type != GLU_INVALID_ENUM) { call_user_error(nobj, GLU_NURBS_ERROR8); return; } nobj->curve.geom.type = type; nobj->curve.geom.knot_count = nknots; nobj->curve.geom.knot = knot; nobj->curve.geom.stride = stride; nobj->curve.geom.ctrlarray = ctlarray; nobj->curve.geom.order = order; break; case GL_MAP1_INDEX: case GL_MAP1_COLOR_4: nobj->curve.color.type = type; nobj->curve.color.knot_count = nknots; nobj->curve.color.knot = knot; nobj->curve.color.stride = stride; nobj->curve.color.ctrlarray = ctlarray; nobj->curve.color.order = order; break; case GL_MAP1_NORMAL: nobj->curve.normal.type = type; nobj->curve.normal.knot_count = nknots; nobj->curve.normal.knot = knot; nobj->curve.normal.stride = stride; nobj->curve.normal.ctrlarray = ctlarray; nobj->curve.normal.order = order; break; case GL_MAP1_TEXTURE_COORD_1: case GL_MAP1_TEXTURE_COORD_2: case GL_MAP1_TEXTURE_COORD_3: case GL_MAP1_TEXTURE_COORD_4: nobj->curve.texture.type = type; nobj->curve.texture.knot_count = nknots; nobj->curve.texture.knot = knot; nobj->curve.texture.stride = stride; nobj->curve.texture.ctrlarray = ctlarray; nobj->curve.texture.order = order; break; default: call_user_error(nobj, GLU_INVALID_ENUM); } } } void GLAPIENTRY gluBeginSurface(GLUnurbsObj * nobj) { switch (nobj->nurbs_type) { case GLU_NURBS_NONE: nobj->nurbs_type = GLU_NURBS_SURFACE; nobj->surface.geom.type = GLU_INVALID_ENUM; nobj->surface.color.type = GLU_INVALID_ENUM; nobj->surface.texture.type = GLU_INVALID_ENUM; nobj->surface.normal.type = GLU_INVALID_ENUM; break; case GLU_NURBS_TRIM: call_user_error(nobj, GLU_NURBS_ERROR16); break; case GLU_NURBS_SURFACE: case GLU_NURBS_NO_TRIM: case GLU_NURBS_TRIM_DONE: call_user_error(nobj, GLU_NURBS_ERROR27); break; case GLU_NURBS_CURVE: call_user_error(nobj, GLU_NURBS_ERROR6); break; } } void GLAPIENTRY gluEndSurface(GLUnurbsObj * nobj) { switch (nobj->nurbs_type) { case GLU_NURBS_NONE: call_user_error(nobj, GLU_NURBS_ERROR13); break; case GLU_NURBS_TRIM: call_user_error(nobj, GLU_NURBS_ERROR12); break; case GLU_NURBS_TRIM_DONE: /* if(nobj->trim->trim_loop==NULL) { call_user_error(nobj,GLU_NURBS_ERROR18); return; }*/ /* no break - fallthrough */ case GLU_NURBS_NO_TRIM: glPushAttrib((GLbitfield) (GL_EVAL_BIT | GL_ENABLE_BIT | GL_POLYGON_BIT)); glDisable(GL_MAP2_VERTEX_3); glDisable(GL_MAP2_VERTEX_4); glDisable(GL_MAP2_INDEX); glDisable(GL_MAP2_COLOR_4); glDisable(GL_MAP2_NORMAL); glDisable(GL_MAP2_TEXTURE_COORD_1); glDisable(GL_MAP2_TEXTURE_COORD_2); glDisable(GL_MAP2_TEXTURE_COORD_3); glDisable(GL_MAP2_TEXTURE_COORD_4); /* glDisable(GL_MAP1_VERTEX_3); glDisable(GL_MAP1_VERTEX_4); glDisable(GL_MAP1_INDEX); glDisable(GL_MAP1_COLOR_4); glDisable(GL_MAP1_NORMAL); glDisable(GL_MAP1_TEXTURE_COORD_1); glDisable(GL_MAP1_TEXTURE_COORD_2); glDisable(GL_MAP1_TEXTURE_COORD_3); glDisable(GL_MAP1_TEXTURE_COORD_4);*/ do_nurbs_surface(nobj); glPopAttrib(); break; default: call_user_error(nobj, GLU_NURBS_ERROR8); } nobj->nurbs_type = GLU_NURBS_NONE; } void GLAPIENTRY gluNurbsSurface(GLUnurbsObj * nobj, GLint sknot_count, GLfloat * sknot, GLint tknot_count, GLfloat * tknot, GLint s_stride, GLint t_stride, GLfloat * ctrlarray, GLint sorder, GLint torder, GLenum type) { if (nobj->nurbs_type == GLU_NURBS_NO_TRIM || nobj->nurbs_type == GLU_NURBS_TRIM || nobj->nurbs_type == GLU_NURBS_TRIM_DONE) { if (type == GL_MAP2_VERTEX_3 || type == GL_MAP2_VERTEX_4) { call_user_error(nobj, GLU_NURBS_ERROR8); return; } } else if (nobj->nurbs_type != GLU_NURBS_SURFACE) { call_user_error(nobj, GLU_NURBS_ERROR11); return; } switch (type) { case GL_MAP2_VERTEX_3: case GL_MAP2_VERTEX_4: nobj->surface.geom.sknot_count = sknot_count; nobj->surface.geom.sknot = sknot; nobj->surface.geom.tknot_count = tknot_count; nobj->surface.geom.tknot = tknot; nobj->surface.geom.s_stride = s_stride; nobj->surface.geom.t_stride = t_stride; nobj->surface.geom.ctrlarray = ctrlarray; nobj->surface.geom.sorder = sorder; nobj->surface.geom.torder = torder; nobj->surface.geom.type = type; nobj->nurbs_type = GLU_NURBS_NO_TRIM; break; case GL_MAP2_INDEX: case GL_MAP2_COLOR_4: nobj->surface.color.sknot_count = sknot_count; nobj->surface.color.sknot = sknot; nobj->surface.color.tknot_count = tknot_count; nobj->surface.color.tknot = tknot; nobj->surface.color.s_stride = s_stride; nobj->surface.color.t_stride = t_stride; nobj->surface.color.ctrlarray = ctrlarray; nobj->surface.color.sorder = sorder; nobj->surface.color.torder = torder; nobj->surface.color.type = type; break; case GL_MAP2_NORMAL: nobj->surface.normal.sknot_count = sknot_count; nobj->surface.normal.sknot = sknot; nobj->surface.normal.tknot_count = tknot_count; nobj->surface.normal.tknot = tknot; nobj->surface.normal.s_stride = s_stride; nobj->surface.normal.t_stride = t_stride; nobj->surface.normal.ctrlarray = ctrlarray; nobj->surface.normal.sorder = sorder; nobj->surface.normal.torder = torder; nobj->surface.normal.type = type; break; case GL_MAP2_TEXTURE_COORD_1: case GL_MAP2_TEXTURE_COORD_2: case GL_MAP2_TEXTURE_COORD_3: case GL_MAP2_TEXTURE_COORD_4: nobj->surface.texture.sknot_count = sknot_count; nobj->surface.texture.sknot = sknot; nobj->surface.texture.tknot_count = tknot_count; nobj->surface.texture.tknot = tknot; nobj->surface.texture.s_stride = s_stride; nobj->surface.texture.t_stride = t_stride; nobj->surface.texture.ctrlarray = ctrlarray; nobj->surface.texture.sorder = sorder; nobj->surface.texture.torder = torder; nobj->surface.texture.type = type; break; default: call_user_error(nobj, GLU_INVALID_ENUM); } } void GLAPIENTRY gluNurbsCallback(GLUnurbsObj * nobj, GLenum which, void (GLCALLBACK * fn) ()) { nobj->error_callback = (void (GLCALLBACKPCAST) (GLenum)) fn; if (which != GLU_ERROR) call_user_error(nobj, GLU_INVALID_ENUM); } void GLAPIENTRY gluBeginTrim(GLUnurbsObj * nobj) { #if 0 nurbs_trim *ptr; #endif if (nobj->nurbs_type != GLU_NURBS_TRIM_DONE) if (nobj->nurbs_type != GLU_NURBS_NO_TRIM) { call_user_error(nobj, GLU_NURBS_ERROR15); return; } nobj->nurbs_type = GLU_NURBS_TRIM; fprintf(stderr, "NURBS - trimming not supported yet\n"); #if 0 if ((ptr = (nurbs_trim *) malloc(sizeof(nurbs_trim))) == NULL) { call_user_error(nobj, GLU_OUT_OF_MEMORY); return; } if (nobj->trim) { nurbs_trim *tmp_ptr; for (tmp_ptr = nobj->trim; tmp_ptr->next; tmp_ptr = tmp_ptr->next); tmp_ptr->next = ptr; } else nobj->trim = ptr; ptr->trim_loop = NULL; ptr->segments = NULL; ptr->next = NULL; #endif } void GLAPIENTRY gluPwlCurve(GLUnurbsObj * nobj, GLint count, GLfloat * array, GLint stride, GLenum type) { #if 0 nurbs_trim *ptr1; trim_list *ptr2; #endif if (nobj->nurbs_type == GLU_NURBS_CURVE) { call_user_error(nobj, GLU_NURBS_ERROR9); return; } if (nobj->nurbs_type == GLU_NURBS_NONE) { call_user_error(nobj, GLU_NURBS_ERROR19); return; } if (type != GLU_MAP1_TRIM_2 && type != GLU_MAP1_TRIM_3) { call_user_error(nobj, GLU_NURBS_ERROR14); return; } #if 0 for (ptr1 = nobj->trim; ptr1->next; ptr1 = ptr1->next); if (ptr1->trim_loop) { for (ptr2 = ptr1->trim_loop; ptr2->next; ptr2 = ptr2->next); if ((ptr2->next = (trim_list *) malloc(sizeof(trim_list))) == NULL) { call_user_error(nobj, GLU_OUT_OF_MEMORY); return; } ptr2 = ptr2->next; } else { if ((ptr2 = (trim_list *) malloc(sizeof(trim_list))) == NULL) { call_user_error(nobj, GLU_OUT_OF_MEMORY); return; } ptr1->trim_loop = ptr2; } ptr2->trim_type = GLU_TRIM_PWL; ptr2->curve.pwl_curve.pt_count = count; ptr2->curve.pwl_curve.ctrlarray = array; ptr2->curve.pwl_curve.stride = stride; ptr2->curve.pwl_curve.dim = (type == GLU_MAP1_TRIM_2 ? 2 : 3); ptr2->curve.pwl_curve.type = type; ptr2->next = NULL; #endif } void GLAPIENTRY gluEndTrim(GLUnurbsObj * nobj) { if (nobj->nurbs_type != GLU_NURBS_TRIM) { call_user_error(nobj, GLU_NURBS_ERROR17); return; } nobj->nurbs_type = GLU_NURBS_TRIM_DONE; }