/* $Id: project.c,v 1.2 1999/09/14 00:10:31 brianp Exp $ */

/*
 * Mesa 3-D graphics library
 * Version:  3.1
 * Copyright (C) 1995-1999  Brian Paul
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public
 * License along with this library; if not, write to the Free
 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */


/*
 * $Log: project.c,v $
 * Revision 1.2  1999/09/14 00:10:31  brianp
 * added gluUnProject4()
 *
 * Revision 1.1.1.1  1999/08/19 00:55:42  jtg
 * Imported sources
 *
 * Revision 1.7  1999/01/03 03:23:15  brianp
 * now using GLAPIENTRY and GLCALLBACK keywords (Ted Jump)
 *
 * Revision 1.6  1998/07/08 01:43:43  brianp
 * new version of invert_matrix()  (also in src/matrix.c)
 *
 * Revision 1.5  1997/07/24 01:28:44  brianp
 * changed precompiled header symbol from PCH to PC_HEADER
 *
 * Revision 1.4  1997/05/28 02:29:38  brianp
 * added support for precompiled headers (PCH), inserted APIENTRY keyword
 *
 * Revision 1.3  1997/04/11 23:22:42  brianp
 * added divide by zero checks to gluProject() and gluUnproject()
 *
 * Revision 1.2  1997/01/29 19:05:29  brianp
 * faster invert_matrix() function from Stephane Rehel
 *
 * Revision 1.1  1996/09/27 01:19:39  brianp
 * Initial revision
 *
 */


#ifdef PC_HEADER
#include "all.h"
#else
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "gluP.h"
#endif


/*
 * This code was contributed by Marc Buffat (buffat@mecaflu.ec-lyon.fr).
 * Thanks Marc!!!
 */



/* implementation de gluProject et gluUnproject */
/* M. Buffat 17/2/95 */



/*
 * Transform a point (column vector) by a 4x4 matrix.  I.e.  out = m * in
 * Input:  m - the 4x4 matrix
 *         in - the 4x1 vector
 * Output:  out - the resulting 4x1 vector.
 */
static void transform_point( GLdouble out[4], const GLdouble m[16],
			     const GLdouble in[4] )
{
#define M(row,col)  m[col*4+row]
   out[0] = M(0,0) * in[0] + M(0,1) * in[1] + M(0,2) * in[2] + M(0,3) * in[3];
   out[1] = M(1,0) * in[0] + M(1,1) * in[1] + M(1,2) * in[2] + M(1,3) * in[3];
   out[2] = M(2,0) * in[0] + M(2,1) * in[1] + M(2,2) * in[2] + M(2,3) * in[3];
   out[3] = M(3,0) * in[0] + M(3,1) * in[1] + M(3,2) * in[2] + M(3,3) * in[3];
#undef M
}




/*
 * Perform a 4x4 matrix multiplication  (product = a x b).
 * Input:  a, b - matrices to multiply
 * Output:  product - product of a and b
 */
static void matmul( GLdouble *product, const GLdouble *a, const GLdouble *b )
{
   /* This matmul was contributed by Thomas Malik */
   GLdouble temp[16];
   GLint i;

#define A(row,col)  a[(col<<2)+row]
#define B(row,col)  b[(col<<2)+row]
#define T(row,col)  temp[(col<<2)+row]

   /* i-te Zeile */
   for (i = 0; i < 4; i++)
     {
	T(i, 0) = A(i, 0) * B(0, 0) + A(i, 1) * B(1, 0) + A(i, 2) * B(2, 0) + A(i, 3) * B(3, 0);
	T(i, 1) = A(i, 0) * B(0, 1) + A(i, 1) * B(1, 1) + A(i, 2) * B(2, 1) + A(i, 3) * B(3, 1);
	T(i, 2) = A(i, 0) * B(0, 2) + A(i, 1) * B(1, 2) + A(i, 2) * B(2, 2) + A(i, 3) * B(3, 2);
	T(i, 3) = A(i, 0) * B(0, 3) + A(i, 1) * B(1, 3) + A(i, 2) * B(2, 3) + A(i, 3) * B(3, 3);
     }

#undef A
#undef B
#undef T
   MEMCPY( product, temp, 16*sizeof(GLdouble) );
}



/*
 * Compute inverse of 4x4 transformation matrix.
 * Code contributed by Jacques Leroy jle@star.be
 * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
 */
static GLboolean invert_matrix( const GLdouble *m, GLdouble *out )
{
/* NB. OpenGL Matrices are COLUMN major. */
#define SWAP_ROWS(a, b) { GLdouble *_tmp = a; (a)=(b); (b)=_tmp; }
#define MAT(m,r,c) (m)[(c)*4+(r)]

 GLdouble wtmp[4][8];
 GLdouble m0, m1, m2, m3, s;
 GLdouble *r0, *r1, *r2, *r3;

 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];

 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,

 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,

 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,

 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;

 /* choose pivot - or die */
 if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
 if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
 if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
 if (0.0 == r0[0])  return GL_FALSE;

 /* eliminate first variable     */
 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
 s = r0[4];
 if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
 s = r0[5];
 if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
 s = r0[6];
 if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
 s = r0[7];
 if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }

 /* choose pivot - or die */
 if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
 if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
 if (0.0 == r1[1])  return GL_FALSE;

 /* eliminate second variable */
 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
 s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
 s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
 s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
 s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }

 /* choose pivot - or die */
 if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
 if (0.0 == r2[2])  return GL_FALSE;

 /* eliminate third variable */
 m3 = r3[2]/r2[2];
 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
 r3[7] -= m3 * r2[7];

 /* last check */
 if (0.0 == r3[3]) return GL_FALSE;

 s = 1.0/r3[3];              /* now back substitute row 3 */
 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;

 m2 = r2[3];                 /* now back substitute row 2 */
 s  = 1.0/r2[2];
 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
 m1 = r1[3];
 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
 m0 = r0[3];
 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;

 m1 = r1[2];                 /* now back substitute row 1 */
 s  = 1.0/r1[1];
 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
 m0 = r0[2];
 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;

 m0 = r0[1];                 /* now back substitute row 0 */
 s  = 1.0/r0[0];
 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);

 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; 

 return GL_TRUE;

#undef MAT
#undef SWAP_ROWS
}



/* projection du point (objx,objy,obz) sur l'ecran (winx,winy,winz) */
GLint GLAPIENTRY gluProject(GLdouble objx,GLdouble objy,GLdouble objz,
                          const GLdouble model[16],const GLdouble proj[16],
                          const GLint viewport[4],
                          GLdouble *winx,GLdouble *winy,GLdouble *winz)
{
    /* matrice de transformation */
    GLdouble in[4],out[4];

    /* initilise la matrice et le vecteur a transformer */
    in[0]=objx; in[1]=objy; in[2]=objz; in[3]=1.0;
    transform_point(out,model,in);
    transform_point(in,proj,out);

    /* d'ou le resultat normalise entre -1 et 1*/
    if (in[3]==0.0)
       return GL_FALSE;

    in[0]/=in[3]; in[1]/=in[3]; in[2]/=in[3];

    /* en coordonnees ecran */
    *winx = viewport[0]+(1+in[0])*viewport[2]/2;
    *winy = viewport[1]+(1+in[1])*viewport[3]/2;
    /* entre 0 et 1 suivant z */
    *winz = (1+in[2])/2;
    return GL_TRUE;
}



/* transformation du point ecran (winx,winy,winz) en point objet */
GLint GLAPIENTRY gluUnProject(GLdouble winx,GLdouble winy,GLdouble winz,
                            const GLdouble model[16],const GLdouble proj[16],
                            const GLint viewport[4],
                            GLdouble *objx,GLdouble *objy,GLdouble *objz)
{
    /* matrice de transformation */
    GLdouble m[16], A[16];
    GLdouble in[4],out[4];

    /* transformation coordonnees normalisees entre -1 et 1 */
    in[0]=(winx-viewport[0])*2/viewport[2] - 1.0;
    in[1]=(winy-viewport[1])*2/viewport[3] - 1.0;
    in[2]=2*winz - 1.0;
    in[3]=1.0;

    /* calcul transformation inverse */
    matmul(A,proj,model);
    invert_matrix(A,m);

    /* d'ou les coordonnees objets */
    transform_point(out,m,in);
    if (out[3]==0.0)
       return GL_FALSE;
    *objx=out[0]/out[3];
    *objy=out[1]/out[3];
    *objz=out[2]/out[3];
    return GL_TRUE;
}


/*
 * New in GLU 1.3
 * This is like gluUnProject but also takes near and far DepthRange values.
 */
GLint GLAPIENTRY
gluUnProject4( GLdouble winx, GLdouble winy, GLdouble winz, GLdouble clipw,
               const GLdouble modelMatrix[16],
               const GLdouble projMatrix[16],
               const GLint viewport[4],
               GLclampd nearZ, GLclampd farZ,
               GLdouble *objx, GLdouble *objy, GLdouble *objz, GLdouble *objw )
{
    /* matrice de transformation */
    GLdouble m[16], A[16];
    GLdouble in[4],out[4];
    GLdouble z = nearZ + winz * (farZ - nearZ);

    /* transformation coordonnees normalisees entre -1 et 1 */
    in[0] = (winx-viewport[0])*2/viewport[2] - 1.0;
    in[1] = (winy-viewport[1])*2/viewport[3] - 1.0;
    in[2] = 2.0 * z - 1.0;
    in[3] = clipw;

    /* calcul transformation inverse */
    matmul(A,projMatrix,modelMatrix);
    invert_matrix(A,m);

    /* d'ou les coordonnees objets */
    transform_point(out,m,in);
    if (out[3]==0.0)
       return GL_FALSE;
    *objx=out[0]/out[3];
    *objy=out[1]/out[3];
    *objz=out[2]/out[3];
    *objw=out[3];
    return GL_TRUE;
}