/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 1.1 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. ** */ /* */ #include <stdlib.h> #include <stdio.h> #include <assert.h> #include <math.h> #include "bezierEval.h" #ifdef __WATCOMC__ #pragma warning 14 10 #endif #define TOLERANCE 0.0001 #ifndef MAX_ORDER #define MAX_ORDER 16 #endif #ifndef MAX_DIMENSION #define MAX_DIMENSION 4 #endif static void normalize(float vec[3]); static void crossProduct(float x[3], float y[3], float ret[3]); #if 0 // UNUSED static void bezierCurveEvalfast(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retpoint[]); #endif static float binomialCoefficients[8][8] = { {1,0,0,0,0,0,0,0}, {1,1,0,0,0,0,0,0}, {1,2,1,0,0,0,0,0}, {1,3,3,1,0,0,0,0}, {1,4,6,4,1,0,0,0}, {1,5,10,10,5,1,0,0}, {1,6,15,20,15,6,1,0}, {1,7,21,35,35,21,7,1} }; void bezierCurveEval(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retpoint[]) { float uprime = (u-u0)/(u1-u0); float *ctlptr = ctlpoints; float oneMinusX = 1.0f-uprime; float XPower = 1.0f; int i,k; for(k=0; k<dimension; k++) retpoint[k] = (*(ctlptr + k)); for(i=1; i<order; i++){ ctlptr += stride; XPower *= uprime; for(k=0; k<dimension; k++) { retpoint[k] = retpoint[k]*oneMinusX + ctlptr[k]* binomialCoefficients[order-1][i] * XPower; } } } #if 0 // UNUSED /*order = degree +1 >=1. */ void bezierCurveEvalfast(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retpoint[]) { float uprime = (u-u0)/(u1-u0); float buf[MAX_ORDER][MAX_ORDER][MAX_DIMENSION]; float* ctlptr = ctlpoints; int r, i,j; for(i=0; i<order; i++) { for(j=0; j<dimension; j++) buf[0][i][j] = ctlptr[j]; ctlptr += stride; } for(r=1; r<order; r++){ for(i=0; i<order-r; i++) { for(j=0; j<dimension; j++) buf[r][i][j] = (1-uprime)*buf[r-1][i][j] + uprime*buf[r-1][i+1][j]; } } for(j=0; j<dimension; j++) retpoint[j] = buf[order-1][0][j]; } #endif /*order = degree +1 >=1. */ void bezierCurveEvalDer(float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retDer[]) { int i,k; float width = u1-u0; float *ctlptr = ctlpoints; float buf[MAX_ORDER][MAX_DIMENSION]; if(order == 1){ for(k=0; k<dimension; k++) retDer[k]=0; } for(i=0; i<order-1; i++){ for(k=0; k<dimension; k++) { buf[i][k] = (ctlptr[stride+k] - ctlptr[k])*(order-1)/width; } ctlptr += stride; } bezierCurveEval(u0, u1, order-1, (float*) buf, MAX_DIMENSION, dimension, u, retDer); } void bezierCurveEvalDerGen(int der, float u0, float u1, int order, float *ctlpoints, int stride, int dimension, float u, float retDer[]) { int i,k,r; float *ctlptr = ctlpoints; float width=u1-u0; float buf[MAX_ORDER][MAX_ORDER][MAX_DIMENSION]; if(der<0) der=0; for(i=0; i<order; i++){ for(k=0; k<dimension; k++){ buf[0][i][k] = ctlptr[k]; } ctlptr += stride; } for(r=1; r<=der; r++){ for(i=0; i<order-r; i++){ for(k=0; k<dimension; k++){ buf[r][i][k] = (buf[r-1][i+1][k] - buf[r-1][i][k])*(order-r)/width; } } } bezierCurveEval(u0, u1, order-der, (float *) (buf[der]), MAX_DIMENSION, dimension, u, retDer); } /*the Bezier bivarite polynomial is: * sum[i:0,uorder-1][j:0,vorder-1] { ctlpoints[i*ustride+j*vstride] * B(i)*B(j) * where B(i) and B(j) are basis functions */ void bezierSurfEvalDerGen(int uder, int vder, float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float ret[]) { int i; float newPoints[MAX_ORDER][MAX_DIMENSION]; for(i=0; i<uorder; i++){ bezierCurveEvalDerGen(vder, v0, v1, vorder, ctlpoints+ustride*i, vstride, dimension, v, newPoints[i]); } bezierCurveEvalDerGen(uder, u0, u1, uorder, (float *) newPoints, MAX_DIMENSION, dimension, u, ret); } /*division by w is performed*/ void bezierSurfEval(float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float ret[]) { bezierSurfEvalDerGen(0, 0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, ret); if(dimension == 4) /*homogeneous*/{ ret[0] /= ret[3]; ret[1] /= ret[3]; ret[2] /= ret[3]; } } void bezierSurfEvalNormal(float u0, float u1, int uorder, float v0, float v1, int vorder, int dimension, float *ctlpoints, int ustride, int vstride, float u, float v, float retNormal[]) { float partialU[4]; float partialV[4]; assert(dimension>=3 && dimension <=4); bezierSurfEvalDerGen(1,0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, partialU); bezierSurfEvalDerGen(0,1, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, partialV); if(dimension == 3){/*inhomogeneous*/ crossProduct(partialU, partialV, retNormal); normalize(retNormal); return; } else { /*homogeneous*/ float val[4]; /*the point coordinates (without derivative)*/ float newPartialU[MAX_DIMENSION]; float newPartialV[MAX_DIMENSION]; int i; bezierSurfEvalDerGen(0,0, u0, u1, uorder, v0, v1, vorder, dimension, ctlpoints, ustride, vstride, u, v, val); for(i=0; i<=2; i++){ newPartialU[i] = partialU[i] * val[3] - val[i] * partialU[3]; newPartialV[i] = partialV[i] * val[3] - val[i] * partialV[3]; } crossProduct(newPartialU, newPartialV, retNormal); normalize(retNormal); } } /*if size is 0, then nothing is done*/ static void normalize(float vec[3]) { float size = (float)sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]); if(size < TOLERANCE) { #ifdef DEBUG fprintf(stderr, "Warning: in oglBSpline.c normal is 0\n"); #endif return; } else { vec[0] = vec[0]/size; vec[1] = vec[1]/size; vec[2] = vec[2]/size; } } static void crossProduct(float x[3], float y[3], float ret[3]) { ret[0] = x[1]*y[2] - y[1]*x[2]; ret[1] = x[2]*y[0] - y[2]*x[0]; ret[2] = x[0]*y[1] - y[0]*x[1]; }