/* * Mesa 3-D graphics library * Version: 3.5 * * Copyright (C) 1999 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * Author: * Keith Whitwell */ /* Unlike the other templates here, this assumes quite a bit about the * underlying hardware. Specifically it assumes a d3d-like vertex * format, with a layout more or less constrained to look like the * following: * * union { * struct { * float x, y, z, w; * struct { char r, g, b, a; } color; * struct { char r, g, b, fog; } spec; * float u0, v0; * float u1, v1; * } v; * struct { * float x, y, z, w; * struct { char r, g, b, a; } color; * struct { char r, g, b, fog; } spec; * float u0, v0, q0; * float u1, v1, q1; * } pv; * struct { * float x, y, z; * struct { char r, g, b, a; } color; * } tv; * float f[16]; * unsigned int ui[16]; * unsigned char ub4[4][16]; * } * * HW_VIEWPORT: Hardware performs viewport transform. * HW_DIVIDE: Hardware performs perspective divide. * * DO_XYZW: Emit xyz and maybe w coordinates. * DO_RGBA: Emit color, v.color is in RGBA order. * DO_BGRA: Emit color, v.color is in BGRA order. * DO_SPEC: Emit specular color. * DO_TEX0: Emit tex0 u,v coordinates. * DO_TEX1: Emit tex1 u,v coordinates. * DO_PTEX: Emit tex0, tex1 q coordinates where possible. * * HAVE_TINY_VERTICES: Hardware understands v.tv format. * HAVE_PTEX_VERTICES: Hardware understands v.pv format. * HAVE_NOTEX_VERTICES: Hardware understands v.v format with texcount 0. * * Additionally, this template assumes it is emitting *transformed* * vertices; the modifications to emit untransformed vertices (ie. to * t&l hardware) are probably too great to cooexist with the code * already in this file. * * NOTE: The PTEX vertex format always includes TEX0 and TEX1, even if * only TEX0 is enabled, in order to maintain a vertex size which is * an exact number of quadwords. */ #if (HW_VIEWPORT) #define VIEWPORT_X(x) x #define VIEWPORT_Y(x) x #define VIEWPORT_Z(x) x #else #define VIEWPORT_X(x) (s[0] * x + s[12]) #define VIEWPORT_Y(y) (s[5] * y + s[13]) #define VIEWPORT_Z(z) (s[10] * z + s[14]) #endif #if (HW_DIVIDE || DO_RGBA || DO_XYZW || !HAVE_TINY_VERTICES) static void TAG(emit)( GLcontext *ctx, GLuint start, GLuint end, void *dest, GLuint stride ) { struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb; GLfloat (*tc0)[4], (*tc1)[4], *fog; GLubyte (*col)[4], (*spec)[4]; GLuint tc0_stride, tc1_stride, col_stride, spec_stride, fog_stride; GLuint tc0_size, tc1_size; GLfloat (*coord)[4]; GLuint coord_stride; VERTEX *v = (VERTEX *)dest; int i; if (HW_VIEWPORT && HW_DIVIDE) { coord = VB->ClipPtr->data; coord_stride = VB->ClipPtr->stride; } else { coord = VB->ProjectedClipPtr->data; coord_stride = VB->ProjectedClipPtr->stride; } if (DO_TEX0) { tc0_stride = VB->TexCoordPtr[0]->stride; tc0 = VB->TexCoordPtr[0]->data; if (DO_PTEX) tc0_size = VB->TexCoordPtr[0]->size; } if (DO_TEX1) { tc1 = VB->TexCoordPtr[1]->data; tc1_stride = VB->TexCoordPtr[1]->stride; if (DO_PTEX) tc1_size = VB->TexCoordPtr[1]->size; } if (DO_RGBA || DO_BGRA) { col = VB->ColorPtr[0]->data; col_stride = VB->ColorPtr[0]->stride; } if (DO_SPEC) { spec = VB->SecondaryColorPtr[0]->data; spec_stride = VB->SecondaryColorPtr[0]->stride; } if (DO_FOG) { fog = VB->FogCoordPtr->data; fog_stride = VB->FogCoordPtr->stride; } if (VB->importable_data) { /* May have nonstandard strides: */ if (start) { coord = (GLfloat (*)[4])((GLubyte *)coord + start * coord_stride); if (DO_TEX0) tc0 = (GLfloat (*)[4])((GLubyte *)tc0 + start * tc0_stride); if (DO_TEX1) tc0 = (GLfloat (*)[4])((GLubyte *)tc1 + start * tc1_stride); if (DO_RGBA || DO_BGRA) STRIDE_4UB(col, start * col_stride); if (DO_SPEC) STRIDE_4UB(spec, start * spec_stride); if (DO_FOG) STRIDE_F(fog, start * fog_stride); } for (i=start; i < end; i++, v = (ddVertex *)((GLubyte *)v + stride)) { if (DO_XYZW) { if (HW_VIEWPORT || mask[i] == 0) { VIEWPORT_X(v->v.x, coord[0][0]); VIEWPORT_Y(v->v.y, coord[0][1]); VIEWPORT_Z(v->v.z, coord[0][2]); VIEWPORT_W(v->v.w, coord[0][3]); } coord = (GLfloat (*)[4])((GLubyte *)coord + coord_stride); } if (DO_RGBA) { *(GLuint *)&v->v.color = *(GLuint *)&col[0]; STRIDE_4UB(col, col_stride); } if (DO_BGRA) { v->v.color.blue = col[0][2]; v->v.color.green = col[0][1]; v->v.color.red = col[0][0]; v->v.color.alpha = col[0][3]; STRIDE_4UB(col, col_stride); } if (DO_SPEC) { v->v.specular.red = spec[0][0]; v->v.specular.green = spec[0][1]; v->v.specular.blue = spec[0][2]; STRIDE_4UB(spec, spec_stride); } if (DO_FOG) { v->v.specular.alpha = fog[0] * 255.0; STRIDE_F(fog, fog_stride); } if (DO_TEX0) { *(GLuint *)&v->v.tu0 = *(GLuint *)&tc0[0][0]; *(GLuint *)&v->v.tv0 = *(GLuint *)&tc0[0][1]; if (DO_PTEX) { if (HAVE_PTEX_VERTICES) { if (tc0_size == 4) *(GLuint *)&v->pv.tq0 = *(GLuint *)&tc0[0][3]; else *(GLuint *)&v->pv.tq0 = IEEE_ONE; } else if (tc0_size == 4) { float rhw = 1.0 / tc0[0][3]; v->v.w *= tc0[0][3]; v->v.u0 *= w; v->v.v0 *= w; } } tc0 = (GLfloat (*)[4])((GLubyte *)tc0 + tc0_stride); } if (DO_TEX1) { if (DO_PTEX) { *(GLuint *)&v->pv.u1 = *(GLuint *)&tc1[0][0]; *(GLuint *)&v->pv.v1 = *(GLuint *)&tc1[0][1]; *(GLuint *)&v->pv.q1 = IEEE_ONE; if (tc1_size == 4) *(GLuint *)&v->pv.q1 = *(GLuint *)&tc1[0][3]; } else { *(GLuint *)&v->v.u1 = *(GLuint *)&tc1[0][0]; *(GLuint *)&v->v.v1 = *(GLuint *)&tc1[0][1]; } tc1 = (GLfloat (*)[4])((GLubyte *)tc1 + tc1_stride); } else if (DO_PTEX) { *(GLuint *)&v->pv.q1 = 0; /* avoid culling on radeon */ } } } else { for (i=start; i < end; i++, v = (ddVertex *)((GLubyte *)v + stride)) { if (DO_XYZW) { if (HW_VIEWPORT || mask[i] == 0) { VIEWPORT_X(v->v.x, coord[i][0]); VIEWPORT_Y(v->v.y, coord[i][1]); VIEWPORT_Z(v->v.z, coord[i][2]); VIEWPORT_W(v->v.w, coord[i][3]); } } if (DO_RGBA) { *(GLuint *)&v->v.color = *(GLuint *)&col[i]; } if (DO_BGRA) { v->v.color.blue = col[i][2]; v->v.color.green = col[i][1]; v->v.color.red = col[i][0]; v->v.color.alpha = col[i][3]; } if (DO_SPEC) { v->v.specular.red = spec[i][0]; v->v.specular.green = spec[i][1]; v->v.specular.blue = spec[i][2]; } if (DO_FOG) { v->v.specular.alpha = fog[i] * 255.0; } if (DO_TEX0) { if (DO_PTEX) { *(GLuint *)&v->pv.u0 = *(GLuint *)&tc0[i][0]; *(GLuint *)&v->pv.v0 = *(GLuint *)&tc0[i][1]; *(GLuint *)&v->pv.q0 = IEEE_ONE; if (tc0_size == 4) *(GLuint *)&v->pv.q0 = *(GLuint *)&tc0[i][3]; } else { *(GLuint *)&v->v.u0 = *(GLuint *)&tc0[i][0]; *(GLuint *)&v->v.v0 = *(GLuint *)&tc0[i][1]; } } if (DO_TEX1) { if (DO_PTEX) { *(GLuint *)&v->pv.u1 = *(GLuint *)&tc1[i][0]; *(GLuint *)&v->pv.v1 = *(GLuint *)&tc1[i][1]; *(GLuint *)&v->pv.q1 = IEEE_ONE; if (tc1_size == 4) *(GLuint *)&v->pv.q1 = *(GLuint *)&tc1[i][3]; } else { *(GLuint *)&v->v.u1 = *(GLuint *)&tc1[i][0]; *(GLuint *)&v->v.v1 = *(GLuint *)&tc1[i][1]; } } else if (DO_PTEX) { *(GLuint *)&v->pv.q1 = 0; /* must be valid float to avoid culling? */ } } } if (DO_PTEX && !HAVE_PTEX_VERTICES) { INVALIDATE_STORED_VERTICES(); } } #else static void TAG(emit)( GLcontext *ctx, GLuint start, GLuint end, void *dest, GLuint stride ) { struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb; GLubyte (*col)[4] = VB->ColorPtr[0]->data; GLuint col_stride = VB->ColorPtr[0]->stride; GLfloat (*coord)[4] = VB->ProjectedClipPtr->data; GLuint coord_stride = VB->ProjectedClipPtr->stride; GLfloat *v = (GLfloat *)dest; int i; ASSERT(stride == 4); /* Pack what's left into a 4-dword vertex. Color is in a different * place, and there is no 'w' coordinate. */ if (VB->importable_data) { if (start) { coord = (GLfloat (*)[4])((GLubyte *)coord + start * coord_stride); STRIDE_4UB(col, start * col_stride); } for (i=start; i < end; i++, v+=4) { if (HW_VIEWPORT || mask[i] == 0) { v[0] = VIEWPORT_X(coord[0][0]); v[1] = VIEWPORT_Y(coord[0][1]); v[2] = VIEWPORT_Z(coord[0][2]); } coord = (GLfloat (*)[4])((GLubyte *)coord + coord_stride); if (DO_RGBA) { *(GLuint *)&v[3] = *(GLuint *)col; } else if (DO_BGRA) { GLubyte *b = (GLubyte *)&v[3]; b[0] = col[0][2]; b[1] = col[0][1]; b[2] = col[0][0]; b[3] = col[0][3]; } STRIDE_4UB( col, col_stride ); } } else { for (i=start; i < end; i++, v+=4) { if (HW_VIEWPORT || mask[i] == 0) { v[0] = VIEWPORT_X(coord[i][0]); v[1] = VIEWPORT_Y(coord[i][1]); v[2] = VIEWPORT_Z(coord[i][2]); } if (DO_RGBA) { *(GLuint *)&v[3] = *(GLuint *)&col[i]; } else if (DO_BGRA) { GLubyte *b = (GLubyte *)&v[3]; b[0] = col[i][2]; b[1] = col[i][1]; b[2] = col[i][0]; b[3] = col[i][3]; } } } } #endif #if (DO_XYZW) && (DO_RGBA) static GLboolean TAG(check_tex_sizes)( GLcontext *ctx ) { if (DO_PTEX) return GL_TRUE; if (DO_TEX0) { struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb; if (DO_TEX1) { if (VB->TexCoordPtr[0] == 0) VB->TexCoordPtr[0] = VB->TexCoordPtr[1]; if (VB->TexCoordPtr[1]->size == 4) return GL_FALSE; } if (VB->TexCoordPtr[0]->size == 4) return GL_FALSE; } return GL_TRUE; } #if (!DO_PTEX || HAVE_PTEX_VERTICES) static void TAG(interp)( GLcontext *ctx, GLfloat t, GLuint edst, GLuint eout, GLuint ein, GLboolean force_boundary ) { struct vertex_buffer *VB = &TNL_CONTEXT(ctx)->vb; GLubyte *ddverts = GET_VERTEX_STORE(); GLuint shift = GET_VERTEX_STRIDE_SHIFT(); const GLfloat *dstclip = VB->ClipPtr->data[edst]; GLfloat w; VERTEX *dst = (VERTEX *)(ddverts + (edst << shift)); VERTEX *in = (VERTEX *)(ddverts + (eout << shift)); VERTEX *out = (VERTEX *)(ddverts + (ein << shift)); /* fprintf(stderr, "%s\n", __FUNCTION__); */ if (!HW_DIVIDE) { w = 1.0 / dstclip[3]; VIEWPORT_X( dst->v.x, dstclip[0] * w ); VIEWPORT_Y( dst->v.y, dstclip[1] * w ); VIEWPORT_Z( dst->v.z, dstclip[2] * w ); } else { VIEWPORT_X( dst->v.x, dstclip[0] ); VIEWPORT_Y( dst->v.y, dstclip[1] ); VIEWPORT_Z( dst->v.z, dstclip[2] ); w = dstclip[3]; } if (HW_DIVIDE || DO_FOG || DO_SPEC || DO_TEX0 || DO_TEX1) { if (!HW_VIEWPORT || !HW_DIVIDE) dst->v.w = w; INTERP_UB( t, dst->ub4[4][0], out->ub4[4][0], in->ub4[4][0] ); INTERP_UB( t, dst->ub4[4][1], out->ub4[4][1], in->ub4[4][1] ); INTERP_UB( t, dst->ub4[4][2], out->ub4[4][2], in->ub4[4][2] ); INTERP_UB( t, dst->ub4[4][3], out->ub4[4][3], in->ub4[4][3] ); if (DO_SPEC) { INTERP_UB( t, dst->ub4[5][0], out->ub4[5][0], in->ub4[5][0] ); INTERP_UB( t, dst->ub4[5][1], out->ub4[5][1], in->ub4[5][1] ); INTERP_UB( t, dst->ub4[5][2], out->ub4[5][2], in->ub4[5][2] ); } if (DO_FOG) { INTERP_UB( t, dst->ub4[5][3], out->ub4[5][3], in->ub4[5][3] ); } if (DO_TEX0) { if (DO_PTEX && HAVE_PTEX_VERTICES) { INTERP_F( t, dst->pv.u0, out->pv.u0, in->pv.u0 ); INTERP_F( t, dst->pv.v0, out->pv.v0, in->pv.v0 ); INTERP_F( t, dst->pv.q0, out->pv.q0, in->pv.q0 ); } else { INTERP_F( t, dst->v.u0, out->v.u0, in->v.u0 ); INTERP_F( t, dst->v.v0, out->v.v0, in->v.v0 ); } } if (DO_TEX1) { if (DO_PTEX) { INTERP_F( t, dst->pv.u1, out->pv.u1, in->pv.u1 ); INTERP_F( t, dst->pv.v1, out->pv.v1, in->pv.v1 ); INTERP_F( t, dst->pv.q1, out->pv.q1, in->pv.q1 ); } else { INTERP_F( t, dst->v.u1, out->v.u1, in->v.u1 ); INTERP_F( t, dst->v.v1, out->v.v1, in->v.v1 ); } } else if (DO_PTEX) { dst->pv.q0 = 0.0; /* must be a valid float on radeon */ } } else { /* 4-dword vertex. Color is in v[3] and there is no oow coordinate. */ INTERP_UB( t, dst->ub4[3][0], out->ub4[3][0], in->ub4[3][0] ); INTERP_UB( t, dst->ub4[3][1], out->ub4[3][1], in->ub4[3][1] ); INTERP_UB( t, dst->ub4[3][2], out->ub4[3][2], in->ub4[3][2] ); INTERP_UB( t, dst->ub4[3][3], out->ub4[3][3], in->ub4[3][3] ); } } #endif #endif static void TAG(init)( void ) { setup_tab[IND].emit = TAG(emit); #if (DO_XYZW && DO_RGBA) setup_tab[IND].check_tex_sizes = TAG(check_tex_sizes); setup_tab[IND].interp = TAG(interp); #endif if (DO_SPEC) setup_tab[IND].copy_pv = _tnl_dd_copy_pv_rgba4_spec5; else if (HW_DIVIDE || DO_SPEC || DO_FOG || DO_TEX0 || DO_TEX1) setup_tab[IND].copy_pv = _tnl_dd_copy_pv_rgba4; else setup_tab[IND].copy_pv = _tnl_dd_copy_pv_rgba3; if (DO_TEX1) { if (DO_PTEX) { ASSERT(HAVE_PTEX_VERTICES); setup_tab[IND].vc_format = PROJ_TEX_VERTEX_FORMAT; setup_tab[IND].vertex_size = 12; setup_tab[IND].vertex_stride_shift = 6; } else { setup_tab[IND].vc_format = TEX1_VERTEX_FORMAT; setup_tab[IND].vertex_size = 10; setup_tab[IND].vertex_stride_shift = 6; } } else if (DO_TEX0) { if (DO_PTEX && HAVE_PTEX_VERTICES) { setup_tab[IND].vc_format = PROJ_TEX_VERTEX_FORMAT; setup_tab[IND].vertex_size = 12; setup_tab[IND].vertex_stride_shift = 6; } else { setup_tab[IND].vc_format = TEX0_VERTEX_FORMAT; setup_tab[IND].vertex_size = 8; setup_tab[IND].vertex_stride_shift = 5; } } else if (!HW_DIVIDE && !DO_SPEC && !DO_FOG && HAVE_TINY_VERTICES) { setup_tab[IND].vertex_format = TINY_VERTEX_FORMAT; setup_tab[IND].vertex_size = 4; setup_tab[IND].vertex_stride_shift = 4; } else if (HAVE_NOTEX_VERTICES) { setup_tab[IND].vertex_format = NOTEX_VERTEX_FORMAT; setup_tab[IND].vertex_size = 6; setup_tab[IND].vertex_stride_shift = 5; } else { setup_tab[IND].vc_format = TEX0_VERTEX_FORMAT; setup_tab[IND].vertex_size = 8; setup_tab[IND].vertex_stride_shift = 5; } } #undef IND #undef TAG